Notre Dame Journal of Formal Logic Volume XVIII, Number 3, July 1977 NDJFAM

HINTIKKA'S FREE LOGIC IS NOT FREE

HENRI J. SARLET

In his "Existential presuppositions and their elimination", Hintikka uses his Rule of existential instantiation,

(C.Eq) if $(Ex)p \in \mu$, then $p(a/x) \in \mu$ and $E!a \in \mu$ for at least one free individual symbol a

to prove that

(1) $\mathbf{E} ! a \equiv (\mathbf{E} x)(x = a)$

Part of this proof goes as follows:

- (2) $(\mathbf{E}x)(a=x) \in \mu$
- $\begin{array}{ll}
 (3) & a = b \in \mu \\
 (4) & \text{E!} b \in \mu
 \end{array} \right\} (\text{C.Eq})$

Now from (3) and (4) you may infer, quite uncontroversially I think,

- (5) $(\mathbf{E}x)(x=b) \in \mu$
- By (C.Eq), following the same steps as (2)-(4), you may infer from (5)
- (6) $\mathbf{E}!\mathbf{C}\in\boldsymbol{\mu}$

Going on this way, you may prove that for any term n of your syntax it is true that

(7) $\mathbf{E}! n \in \mu$

The rule of identity used assures that "whenever a and b are identical and a exists, b exists too' (p. 32). Thus it appears that for any given universe of discourse there exists at most one self-identical individual.

Université de Liège Liège, Belgium

^{1.} Models for Modalities, Reidel, Dordrecht (1969), pp. 23-44.