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THE WEAK TOPOLOGY ON LOGICAL CALCULI

ARNOLD R. VOBACH

1 Introduction The basis of this note is the thought that the discrete
topology on Q= {0, l}, the topology generally used for mathematical state-
ments about logical calculi, "throws away too much" of what is available
by retaining an ordering on two elements. Perhaps it is still possible to
say something about propositional calculus, and even predicate calculus, by
regarding Q as an ordered set.

The first section below deals with a topology induced on the proposi-
tional calculus of a set of variables which arises by making each of the
usual realizations in Q, topologized, continuous. According to Theorem 1,
this is the smallest topology for which consequence-closed sets are always
closed. Theorem 2 pertains to the theory induced by a set of propositional
formulas, the Lindenbaum algebra of the calculus, quotient topologies and
an embedding of the Lindenbaum algebra in a product of Q's. In the second
section below, dealing with first order predicate languages, a weak topology
on the formulas of such a language is induced, with the object of obtaining
the first order analogue of Theorem 1. In effect, for first order languages,
the topology naturally associated with the "external" or semantic notion of
consequence is characterized "internally," in terms of canonical realiza-
tions only. The propositional calculus (with its own weak topology) on the
atomic formulas of the language is homeomorphically embedded in the
larger space of all formulas, and the new topology is the smallest fulfilling
a natural satisfiability condition expressed in terms of satisfiability in
canonical realizations.

2 Propositional Calculus Let 5 be endowed with the topology {s#, {θ}, {θ, l}}.
Let P be an infinite set of propositional variables and Prop(P) the proposi-
tional calculus on P. Let Horn (Prop(P), Q) be the set of realizations
p: Prop(P) -* i£. Now, let Prop(P) be given the weak topology, W, induced by
the realizations p. Observe that, for At Prop(P), Clu,({A}) = {Be Prop(P) \A -»
B is a theorem}. (If one had chosen {θ}, rather than {l}, to be closed in <g,
CÎ ({A}) would have been {B\B-* A is a theorem}.) As usual, define
Con(S) = {Ae Prop(P)U is a consequence of S}, S c p r o p(P). The discrete
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topology has the property that Con(S) is closed, each S c Prop(P), while the
indiscrete topology does not. The weak topology is the * 'breaking point."

We shall call a topology, r, on Prop(P) satisfactory (after "satisfiable")
if for each SC Prop(P) such that SCp^fjl}), some realization p, then
J-/Con(Clr(S)). The weak topology on Prop(P) is satisfactory: Suppose
SCp'^jl}), some p, and suppose J-e Con{C\w{S)). Then CI^(S)c C\w(p'ι({l})) =
p^Ofl}), Con (CMS)) C Con (p^tfl})) = p'^-fl}), and l e p ' ^ l j ) , an impossi-
bility.

Proposition 1 If the topology, T, on Prop(P) is such that Clr(Con(S)) = Con(S),
each S c .Prop(P), then τ is satisfactory.

Proof: Suppose r satisfies the hypothesis but is not satisfactory. Then
there are p and S such that SCp" 1 ^}) and Xe Con(Clr(S)). Now, Con(S) =
Clr (Con(S)) => C\r(S) and hence Con(S) D Con(CIΓ(S)) so that ±e Con(Clr(S)) c
Con(S) c Contp"1^})) = p'^l}), an impossibility.

Proposition 2 W is the smallest satisfactory topology on Prop(P).

Proof: Let r be a satisfactory topology on Prop(P). We claim ClΛp"1^!})) =
p-^l}), eachp: Suppose Ae [ClΛp'^l})) - p'^l})]. Then ΊAep'^l}) and
±e ConίGrOo"1^}))). Thus, for each p, (p id)"1^}) = p^tfl}) = CUp"1^})),
the identity map id:

(Prop(P), T) — (Prop(P), W) is continuous and τ 3 W.

Theorem 1 W is the smallest topology, τ, for which Clr(Con(S)) = Con(S),
each S c Prop(P).

Disjunction, as a function from (Prop(P), W) x (Prop(P), W) into
(Prop(P), W), is continuous, while negation, as a single-variable function is
not. Letting A~B when CIW({A}) = CIM;({J5}), W: = Prop(P)/~ is the set of
elements of the Lindenbaum algebra of Prop(P), and $1, with the quotient
topology induced by the natural map q: A —> \A\, is To. Since open sets in
(Prop(P), W) are saturated with respect to ~, q is both open and closed and
51 is an upper semi-continuous decomposition.

For |i4|e2l, define, slightly abusing notation, p(\A\); = p(A). Each
(new) p is compatible with the usual operations defined on 51 (p(π|A|) =
P ( | Ί A | ) = ρ{lA), etc.) and continuous from % to «g. Together they comprise
Horn (21, 3). Horn(21, 3) separates points of 21 and the evaluation map e\ % —»
£Hom(9i,£) i S a n embedding. Since P is infinite, #(2ί) is a proper, dense,
(trivially) compact and connected (since I T I is in each closed set) subset of
£Hom(tl#«)β

Naturally, all that has been said about % above applies to the theory of
Boolean algebras generally.

One might wonder if the quotient weak topology on 21 can be more
simply described as that topology, Z7, generated by principal upper ends in
21, given the ordering U N (-Si if (A— B) is a theorem of Prop(P). The
closed sets then would be intersections of sets of the form (I Aγ\ Λ . . . Λ | A J ) .
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However, CI^(Con(S)) £ Con(S) (defined in the natural way for S c 31) for all
S, as one sees by taking S = {l/>ll/>€ P}.

One might likewise wonder whether topologizing 31 by decreeing
non-empty sets to be closed if they are both upper ends and contain infima
(where they exist) of their subsets, yields the weak topology on 31. As
before, however, letting S = {\p\\pe P} gives |±| = inf(S) but |±|/Con(S).

Since the product topology for î Homφi, £) i S the Scott (induced) topology1

(cf. [2]), e(31) carries the relativized Scott topology. One may think of the
"theory of S" as Con(S), in 31. Alternatively, let for \A\, \B\e%, \A\SJB\
if Con({UI}u S) = Con({|^|}u S). Denoting the equivalence classes of S by

\A\S, the theory of S may be identified with 31/S on the basis of:

Proposition 3 Given S = Con(S) and T = Con(T), S = T if and only if \A \s =
\A\T, each \A\t%.

Now, let 31/S be given the quotient topology and note that for S = Con(S),
if U | e S , | |3I/S | |= 1. So, for U | / S = Con(S), let /Z(S) ("<R» for "real iza-
tions") be the filter on P{ Horn (31, 3)) generated by {p e Horn (31, £ ) | p iB a

model for S}. Define gjβ) on (̂31) by e(U|)'5?(S) e(\B\) if {pe Horn(31,

Q)\p(A) = p ( B ) } e J?(S). O b s e r v e t h a t e ( \ A \ ) £ ( S ) e ( \ B \ ) if a n d o n l y if t h e
set of realizations with respect to which \A\ and \B\ agree includes the
models of S. If |-L|eS, there are no realizations of S; one defines all

elements of e(3!) to be R(S)-equivalent, and 11 e(3!)/^(S) 11 = 1. In any event:

Theorem 2 If S = Con(S), 31/S is homeomorphic to e(3l)/Λ(S), also with the
quotient topology.

Proof: Define ft: 31/5 - e(*)/£(S) by h(\A\s) = e(\A\)/*(S), the ^(S)-

equivalence class of e(|-A|). The function h is well defined: Suppose \A\S =

\B\S and e(\A\)/<R(S) Πe(\B\)/<R{S). Then there is a p satisfying S but not,
say, \B\. Hence, IB\/Con({|A |}U S), a contradiction.

The function h is clearly onto and is also 1-1: Suppose e(\A\)/<R{S) =

e(\B\)/K{S) but \%\s Φ \B\S. Then one may assume, without loss of
generality, that there is a \c\e [Con({UI}u S) - Con({|£|}u S)] and thus that
p( | C\) = 1 for every model, p, of {|A|}u S. However, there is a model, p c ,
of { |# | }US such that p c ( | c | ) = 0. Hence, ρc(\B\) = 1, and, necessarily
then, pc(\A\) = 0. Therefore, {pe Horn(31, 2)\p(\A\) = p ( | ^ | ) } d o e s not con-
tain the set of models of S, and e(|A|)/Λ(S) Φ e(\B\)/Ά(S).

1. Naturally, since {θ} is open instead of {l}, the order in [2] is reversed and the
closed sets in ^Homί?!, £) a r e those sets C such that:

(i) C is an upper end,

and

(ii) If D C C is down-directed and ίnf(D) exists, then inf(D) e C.
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Finally, h is continuous and open: Note that Q c M/S is open if and

only if U e(\A\s) is o p e n i n g * ) . Further, U e(\A\s) = , U , x

e(|A|)/Λ(S). Then by the definition of the <#(S)-quotient topology, this last

is open if and only if h(Q) = U {e(|Λ|)/Λ($)} is open in e(%)/'#($).
e{\A\)/A(S)eh(Q)

3 First Order Predicate Calculus One can impose on the formulas of a
first order language a weak topology, WC9 induced by the canonical realiza-
tions, which is the smallest for which consequence-closed sets are closed.
The formulas of the propositional calculus on the atomic formulas of the
language, when endowed with the topology W, embed in the space of all
formulas. Finally, Wc is the smallest topology on the formulas of the
language fulfilling a natural satisfiability condition involving the con-
sequence operation and canonical realizations.

Let T^ be the set of terms of the first order predicate language, -C, F̂
its set of formulas, At̂  its set of atomic formulas, and V̂  its infinite set
of variables.2

For pe Horn (Prop (At^), £), let rp: F̂  -» P(t/*) be defined inductively
(cf. [1], p. 16) beginning with, for an rc-ary relational symbol P, P ^ =
{(ίi, ., Q e T J | p ( « ! . . . tn) = 1}. Then Pt, . . . fcV = {θ e Ί^lpiPdh . . .
dtn) = 1} where dt{ is the term derived from the term U when the variables
take the values given by θ. Observe that for Ae Prop(At̂ >), p(A) = 1 if and
only if id e Arp , where id e T^ ̂  is the identity map on V .̂

Further, define σ: P(Ί^) — S by σ(S) = 1 if id e S and σ(S) = 0 other-
wise. For pe Horn(Prop(At̂ ), <g) (σ^p)"1 ({l}) is a prime filter in (r^F^) Π
^ ( T ^ ) , £). Note also that σqp = p, where #p = rp\ Prop(At̂ »).

We pause here to remark on the 1-1 correspondence3 between canoni-
cal realizations, r, on F^ and propositional realizations, p, on Prop(At^).
Obviously, each r determines a unique p r: Prop(Af̂ ) —• H defined, starting
with w-ary predicate letters P, by pr(Pti . . . tn) = 1 if and only if ide
Ptx . . . ίw

(r). Since prp = p and rp^ = r, we can label each canonical realiza-
tion as some rp (with p = p r).

Next, we topologize F̂  with Wc, the weak topology induced by the maps
σrp: F^ -• 5, p e Horn(Prop(At̂ ), 5). (The subscript " c " stands for ^ca-
nonical/')

As a summarizing diagram:

(Fχ,U/c) . rP

(Prop(At,), l ^ ) = r = = = r l l ^ l ^ ^ l σ

2. Terminology in this section is that of [1],

3. Cf. [1], p. 23.
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Proposition 4 (Prop(At^), W) is embedded in (F^, Wc).

Proof: Subbasic open sets in W are of the form ρ-1({θ}) = (σqP)~ι ({θ}) =
(σrp)"1 ({θ}) Π PropίAt̂ ) and (αr^)"1 ({θ}) is a subbasic open set in Wc-

Is Wc the smallest topology on F̂  in which (Prop(At^), W) embeds?
Is Prop (At^ ) first category in (F^, Wc)?

As usual, we define Con(S), for S c F^, to be LA e F^ | _Π_ ~Bir) c Ά(r) each
realization, r>.

Propositionδ For each pe Horn(Prop(At̂ ), Q), (σrp)'1 ({l}) = Con((σrpΓ1^})).

Paralleling section 2, we shall call a topology, r, on F^ satisfactory if
for each S c F^ such that S a (σrp)~1({l})9 fqr some canonical realization
rp, (i.e., such that the identity mapping on the variables is in the r^-realized
value of each formula of S), ±/Con(CIΓ(S)). The weak topology is satisfac-
tory, and substituting "σrp" for "p" in the proofs of Propositions 1 and 2,
we get:

Proposition 6 If the topology, τ, on F^ is such that Clτ(Con(S)) = Con(S),
each S c F^, then r is satisfactory.

Proposition 7 Wc is the smallest satisfactory topology on F^.

Theorem 3 Wc is the smallest topology, τ, on Fj> such that Clr(Con(S)) =
Con(S), eachS^ F^.
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