Notre Dame Journal of Formal Logic Volume XVIII, Number 1, January 1977 NDJFAM ## A NOTE ON THOMASON'S REPRESENTATION OF S5 ## SATOSHI MIURA and SHIGEO OHAMA Introduction S. K. Thomason has proved in [3] that a formula is provable in S5 iff all its substitution instances are in H, which is a unique correct set and is Thm(\mathfrak{C}). In order to prove this, he semantically showed that a formula $A(x_1, \ldots, x_n)$ is valid in S5 (tautology of S5 in the sense of Kripke [2], pp. 11ff.) iff $V*(A(B_1, \ldots, B_n)) = 1$ for all B_1, \ldots, B_n in \mathcal{L}_c (modal language with proposition constants). In this paper, we shall show by means other than Kripke's model that $A(x_1, \ldots, x_n)$ is provable in S5 iff $\mu^*(A(B_1, \ldots, B_n)) = 1$ for all classical formulas (without modal symbols), B_1, \ldots, B_n , for all μ^* , where μ^* is essentially the same as V^* above, except that μ^* is a valuation for modal formulas with proposition variables. In the last section of this paper, we shall also show a relation between Kripke's partial truth tables and μ^* -valuations. 1 Formulation of S5 and truth valuation We prepare a countable set of proposition variables, Π , logical connectives, \vee , \sim , \square , and parentheses, (,). Formulas are defined as usual. For any formulas A and B, we define $A \wedge B$ as $\sim (\sim A \vee \sim B)$, $A \to B$ as $\sim A \vee B$, $A \longleftrightarrow B$ as $(A \to B) \wedge (B \to A)$, and $A \to B \to A$. If $A \to B$ are formulas, the following expressions are axioms: - (A1) $(A \lor A) \rightarrow A$. - (A2) $B \rightarrow (A \lor B)$. - (A3) $(A \lor B) \rightarrow (B \lor A)$. - (A4) $(B \rightarrow C) \rightarrow ((A \lor B) \rightarrow (A \lor C)).$ - (A5) $\Box A \rightarrow A$. - (A6) \Box $(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$. - (A7) $\Diamond A \rightarrow \Box \Diamond A$. When A and B are formulas, we suppose the following rules of inference: - (R1) If $\vdash A$ and $\vdash A \rightarrow B$, then $\vdash B$. - (R2) If $\vdash A$, then $\vdash \Box A$. For any formula A, we say that A is a classical formula iff A contains none of \Box and \Diamond . $A(x_1, \ldots, x_n)$ denotes a formula, A, having exactly n distinct proposition variables, x_1, \ldots, x_n , in Π . When B_1, \ldots, B_n , and $A(x_1, \ldots, x_n)$ are formulas, then $A(B_1, \ldots, B_n)$ also represents a formula obtained by substituting B_1, \ldots, B_n for x_1, \ldots, x_n in $A(x_1, \ldots, x_n)$, respectively. A truth value assignment is a mapping μ : $\Pi \to \{0, 1\}$, where 0 means false and 1 means true. Let Ω be the set of all μ 's. A truth valuation is a mapping μ^* from the set of all formulas into $\{0, 1\}$, which is the unique extension of μ in the following way: For any formulas A and B, - (a) if A is x_i in Π , $\mu^*(x_i) = \mu(x_i)$, - (b) if $\mu^*(A)$ and $\mu^*(B)$ are defined, $\mu^*(A \vee B) = \text{Max} \{\mu^*(A), \mu^*(B)\}$, - (c) if $\mu^*(A)$ is defined, $\mu^*(\sim A) = 1 \mu^*(A)$, $\mu^*(\Box A) = \text{Min}\{\nu^*(A) \mid \nu \in \Omega\}$. We can then easily see that (d) if $\mu^*(A)$ is defined, $\mu^*(\diamondsuit A) = \text{Max}\{\nu^*(A) \mid \nu \in \Omega\}.$ When A is $A(x_1, \ldots, x_n)$, then $\mu^*(\Box A)$ and $\mu^*(\Diamond A)$ are actually determined by considering 2^n cases of $\nu^*(A)$'s for all n-tuples $(\nu(x_1), \ldots, \nu(x_n)) \in \{0, 1\}^n$, and they take uniformly either 0 or 1 for all cases. A formula A is called valid iff $\mu^*(A) = 1$ for all $\mu \in \Omega$. **2** Representation of S5 Let $A(x_1, \ldots, x_n)$ be a formula of the form $\Diamond C \lor \Box D_1 \lor \ldots \lor \Box D_l \lor E$, where C, D_1, \ldots, D_l , and E are all classical formulas. The following two lemmas are stated: Lemma 1 If $A(B_1, ..., B_n)$ is valid for every classical formula, $B_1, ..., B_n$, then at least one of $C \vee D_1, ..., C \vee D_l, C \vee E$ in $A(x_1, ..., x_n)$ is provable in the classical logic. Lemma 2 If at least one of $C \vee D_1, \ldots, C \vee D_l, C \vee E$ in $A(x_1, \ldots, x_n)$ is provable in the classical logic, then $A(x_1, \ldots, x_n)$ is provable in S5. *Proof of* Lemma 1: Suppose none of $C \vee D_1$, . . ., $C \vee D_l$, $C \vee E$ is provable in the classical logic. As for classical formulas, truth valuation, μ^* , coincides with usual valuation. Hence, $\mu_i^*(C \vee D_i) = 0$ $(i = 1, \ldots, l)$, $\mu_{l+1}^*(C \vee E) = 0$ for some μ_i^* , μ_{l+1}^* such that $\mu_i(x_j) = e_{ij}$, $\mu_{l+1}(x_j) = e_{l+1j}$ $(j = 1, \ldots, n)$, respectively. (Each of e_{ij} and e_{l+1j} is 0 or 1.) We illustrate these relations with the following truth table: | x_1 | x_2 | | x_n | C | D_1 | D_2 | | D_l | \boldsymbol{E} | |-----------|------------|-----------|------------|---|-------|-------|----|-------|------------------| | e_{11} | e_{12} | | e_{1n} | 0 | 0 | | | | | | e_{21} | e_{22} | | e_{2n} | 0 | | 0. | | | | | | | • • • • • | - 1 | : | | | ٠. | | | | e_{l1} | e_{l2} | 6 | e_{ln} | 0 | | | | 0 | | | e_{l+1} | e_{l+12} | 6 | e_{l+1n} | 0 | | | | | 0 | | | | | • | | | | | | | Now, let k be the integer such that $2^{k-1} < l + 1 \le 2^k$. Take k distinct proposition variables, y_1, \ldots, y_k , in Π . Define B_1, \ldots, B_n so as to satisfy the next truth table with 2^k rows, where for the rows from (l+1)'th to 2^k 'th, each B_i has the same value e_{l+1} ; $(j=1,\ldots,n)$: | <i>y</i> ₁ | $y_2 \cdot \cdot \cdot \cdot y_k$ | $B_1 B_2 \ldots B_n$ | |-----------------------|-----------------------------------|---| | 0 | 0 0 | e_{11} e_{12} $\dots e_{1n}$ | | 0 | 0 1 | $egin{array}{ccccc} e_{11} & e_{12} & \dots & e_{1n} \\ e_{21} & e_{22} & \dots & e_{2n} \end{array}$ | | | | | | | | e_{l1} e_{l2} $\dots e_{ln}$ | | | | e_{l+11} e_{l+12} \dots e_{l+1n} | | | | : : | | 1 | 1 1 | $\mid \stackrel{\cdot}{e_{l+11}} \stackrel{\cdot}{e_{l+12}} \dots \stackrel{\cdot}{\dots} \stackrel{\cdot}{e_{l+1n}}$ | By the functional completeness of classical logic, B_1, \ldots, B_n above can be expressed by the disjunctive normal forms having y_1, \ldots, y_k . Then for all $\mu \in \Omega$, $\mu^*(C(B_1, \ldots, B_n)) = 0$, i.e., $\mu^*(\diamondsuit C(B_1, \ldots, B_n)) = 0$. For some $\mu \in \Omega$, $\mu^*(D_s(B_1, \ldots, B_n)) = 0$ ($s = 1, \ldots, l$), hence for all $\mu \in \Omega$, $\mu^*(\Box D_s(B_1, \ldots, B_n)) = 0$. And there exists at least one $\mu \in \Omega$, say μ_0 , such that $\mu^*(E(B_1, \ldots, B_n)) = 0$. Hence $\mu^*_0(A(B_1, \ldots, B_n)) = 0$, i.e., $A(B_1, \ldots, B_n)$ is not valid. This contradicts the hypothesis. *Proof of* Lemma 2: Assume that at least one of $C \vee D_1, \ldots, C \vee D_l, C \vee E$ is provable in the classical logic. Then it is clearly provable in S5. As for the case $\vdash C \vee D_s$, i.e., $\vdash \sim C \to D_s$, $(s = 1, \ldots, l)$, we have $\vdash \Box \sim C \to \Box D_s$, i.e., $\vdash \sim C \vee \Box D_s$, by rule (R2), axiom (A6), and rule (R1). Hence $\vdash A(x_1, \ldots, x_n)$. As for the case $\vdash C \vee E$, we have also $\vdash \Box \sim C \to \Box E$, and hence $\vdash \Box \sim C \to E$, i.e., $\vdash \sim C \vee E$ by (A5). Thus we have again $A(x_1, \ldots, x_n)$. Theorem A formula $A(x_1, \ldots, x_n)$ is provable in S5 iff for every classical formula, $B_1, \ldots, B_n, A(B_1, \ldots, B_n)$ is valid. *Proof:* That if $A(x_1, \ldots, x_n)$ is provable in S5 then $A(B_1, \ldots, B_n)$ is valid for every classical formula, B_1, \ldots, B_n , is clear by verifying that all axioms are valid and all rules of inference preserve validity. Next, we prove that for a formula $A(x_1, \ldots, x_n)$ if $A(B_1, \ldots, B_n)$ is valid for every classical formula, B_1, \ldots, B_n , then $A(x_1, \ldots, x_n)$ is provable in S5. It is well-known that $A(x_1, \ldots, x_n)$ can be reduced in S5 to the modal conjunctive normal form, A', which is of the form $A_1 \wedge \ldots \wedge A_r(r \geq 1)$, each $A_\alpha(\alpha = 1, \ldots, r)$ being of the form $\lozenge C \vee \square D_1 \vee \ldots \vee \square D_l \vee E$, where C, D_1, \ldots, D_l , and E are all classical formulas, $l \geq 0$, and C or E may be missing. Let B_1, \ldots, B_n be any classical formulas, and suppose $A(B_1, \ldots, B_n)$ is valid. Then $A'(B_1, \ldots, B_n)$ is valid, and so is $A_\alpha(B_1, \ldots, B_n)$, $(\alpha = 1, \ldots, r)$. By Lemma 1 and Lemma 2, we have $A_\alpha(x_1, \ldots, x_n)$ is provable in S5, and so is $A'(x_1, \ldots, x_n)$. Hence $A(x_1, \ldots, x_n)$ is provable in S5. ^{1.} If C is missing then $C \vee D_1, \ldots, C \vee D_l, C \vee E$ degenerate into D_1, \ldots, D_l, E , if E is missing then so is $C \vee E$, and if l = 0 then $C \vee D_1, \ldots, C \vee D_l$ are missing. In such special cases, these two lemmas still hold. 3 Remark We remark that for any (classical) formulas, B_1, \ldots, B_n , $A(B_1, \ldots, B_n)$ is valid, iff $A(x_1, \ldots, x_n)$ is a tautology of S5 in the sense of Kripke [2], i.e., iff $A(x_1, \ldots, x_n)$ is assigned 1 in every row of every partial truth table of $A(x_1, \ldots, x_n)$. In fact, if $A(x_1, \ldots, x_n)$ is a tautology, then for any (classical) formulas, B_1, \ldots, B_n , $\{(\mu^*(B_1), \ldots, \mu^*(B_n)) | \mu \in \Omega\} \subseteq \{0, 1\}^n$, hence $A(B_1, \ldots, B_n)$ is valid. Conversely, assuming any (classical) formulas, B_1, \ldots, B_n , $A(B_1, \ldots, B_n)$ is valid. We consider any partial truth table, \sum , with m ($1 \le m \le 2^n$) rows of $A(x_1, \ldots, x_n)$. Let k be the integer such that $2^{k-1} < m \le 2^k$, and take k distinct proposition variables, y_1, \ldots, y_k , in Π . In the same way as the proof of Lemma 1, we can construct $B_j(y_1, \ldots, y_k)$ ($j = 1, \ldots, n$) such that $A(B_1, \ldots, B_n)$ satisfies \sum . By the assumption, $A(B_1, \ldots, B_n)$ is valid. Hence $A(x_1, \ldots, x_n)$ is assigned 1 in every row of \sum . Therefore, $A(x_1, \ldots, x_n)$ is a tautology. We notice that in the above Theorem and Remark, B_1, \ldots, B_n do not need to be classical formulas, i.e., they can be any formulas of S5. In the proof of Theorem 2 of Thomason [3], it was shown that A is valid in S5 (tautology of S5 in the sense of Kripke [2]) iff every formula of \mathcal{L}_c of the form $A(B_1, \ldots, B_n)$ is valid in \mathfrak{C} . This fact corresponds with the above remark. ## REFERENCES - [1] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen Co. Ltd., London (1968), pp. 116-121. - [2] Kripke, S. A., "A completeness theorem in modal logic," The Journal of Symbolic Logic, vol. 24 (1959), pp. 1-14. - [3] Thomason, S. K., "A new representation of S5," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 281-284. Nagoya Institute of Technology Nagoya, Japan and Toyota Technical College Toyota, Japan