Notre Dame Journal of Formal Logic Volume XVIII, Number 1, January 1977 NDJFAM

A NOTE ON THOMASON'S REPRESENTATION OF S5

SATOSHI MIURA and SHIGEO OHAMA

Introduction S. K. Thomason has proved in [3] that a formula is provable in S5 iff all its substitution instances are in H, which is a unique correct set and is Thm(\mathfrak{C}). In order to prove this, he semantically showed that a formula $A(x_1, \ldots, x_n)$ is valid in S5 (tautology of S5 in the sense of Kripke [2], pp. 11ff.) iff $V*(A(B_1, \ldots, B_n)) = 1$ for all B_1, \ldots, B_n in \mathcal{L}_c (modal language with proposition constants).

In this paper, we shall show by means other than Kripke's model that $A(x_1, \ldots, x_n)$ is provable in S5 iff $\mu^*(A(B_1, \ldots, B_n)) = 1$ for all classical formulas (without modal symbols), B_1, \ldots, B_n , for all μ^* , where μ^* is essentially the same as V^* above, except that μ^* is a valuation for modal formulas with proposition variables. In the last section of this paper, we shall also show a relation between Kripke's partial truth tables and μ^* -valuations.

1 Formulation of S5 and truth valuation We prepare a countable set of proposition variables, Π , logical connectives, \vee , \sim , \square , and parentheses, (,). Formulas are defined as usual. For any formulas A and B, we define $A \wedge B$ as $\sim (\sim A \vee \sim B)$, $A \to B$ as $\sim A \vee B$, $A \longleftrightarrow B$ as $(A \to B) \wedge (B \to A)$, and $A \to B \to A$. If $A \to B$ are formulas, the following expressions are axioms:

- (A1) $(A \lor A) \rightarrow A$.
- (A2) $B \rightarrow (A \lor B)$.
- (A3) $(A \lor B) \rightarrow (B \lor A)$.
- (A4) $(B \rightarrow C) \rightarrow ((A \lor B) \rightarrow (A \lor C)).$
- (A5) $\Box A \rightarrow A$.
- (A6) \Box $(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$.
- (A7) $\Diamond A \rightarrow \Box \Diamond A$.

When A and B are formulas, we suppose the following rules of inference:

- (R1) If $\vdash A$ and $\vdash A \rightarrow B$, then $\vdash B$.
- (R2) If $\vdash A$, then $\vdash \Box A$.

For any formula A, we say that A is a classical formula iff A contains none of \Box and \Diamond . $A(x_1, \ldots, x_n)$ denotes a formula, A, having exactly n distinct

proposition variables, x_1, \ldots, x_n , in Π . When B_1, \ldots, B_n , and $A(x_1, \ldots, x_n)$ are formulas, then $A(B_1, \ldots, B_n)$ also represents a formula obtained by substituting B_1, \ldots, B_n for x_1, \ldots, x_n in $A(x_1, \ldots, x_n)$, respectively.

A truth value assignment is a mapping μ : $\Pi \to \{0, 1\}$, where 0 means false and 1 means true. Let Ω be the set of all μ 's. A truth valuation is a mapping μ^* from the set of all formulas into $\{0, 1\}$, which is the unique extension of μ in the following way:

For any formulas A and B,

- (a) if A is x_i in Π , $\mu^*(x_i) = \mu(x_i)$,
- (b) if $\mu^*(A)$ and $\mu^*(B)$ are defined, $\mu^*(A \vee B) = \text{Max} \{\mu^*(A), \mu^*(B)\}$,
- (c) if $\mu^*(A)$ is defined, $\mu^*(\sim A) = 1 \mu^*(A)$, $\mu^*(\Box A) = \text{Min}\{\nu^*(A) \mid \nu \in \Omega\}$.

We can then easily see that

(d) if $\mu^*(A)$ is defined, $\mu^*(\diamondsuit A) = \text{Max}\{\nu^*(A) \mid \nu \in \Omega\}.$

When A is $A(x_1, \ldots, x_n)$, then $\mu^*(\Box A)$ and $\mu^*(\Diamond A)$ are actually determined by considering 2^n cases of $\nu^*(A)$'s for all n-tuples $(\nu(x_1), \ldots, \nu(x_n)) \in \{0, 1\}^n$, and they take uniformly either 0 or 1 for all cases. A formula A is called valid iff $\mu^*(A) = 1$ for all $\mu \in \Omega$.

2 Representation of S5 Let $A(x_1, \ldots, x_n)$ be a formula of the form $\Diamond C \lor \Box D_1 \lor \ldots \lor \Box D_l \lor E$, where C, D_1, \ldots, D_l , and E are all classical formulas. The following two lemmas are stated:

Lemma 1 If $A(B_1, ..., B_n)$ is valid for every classical formula, $B_1, ..., B_n$, then at least one of $C \vee D_1, ..., C \vee D_l, C \vee E$ in $A(x_1, ..., x_n)$ is provable in the classical logic.

Lemma 2 If at least one of $C \vee D_1, \ldots, C \vee D_l, C \vee E$ in $A(x_1, \ldots, x_n)$ is provable in the classical logic, then $A(x_1, \ldots, x_n)$ is provable in S5.

Proof of Lemma 1: Suppose none of $C \vee D_1$, . . ., $C \vee D_l$, $C \vee E$ is provable in the classical logic. As for classical formulas, truth valuation, μ^* , coincides with usual valuation. Hence, $\mu_i^*(C \vee D_i) = 0$ $(i = 1, \ldots, l)$, $\mu_{l+1}^*(C \vee E) = 0$ for some μ_i^* , μ_{l+1}^* such that $\mu_i(x_j) = e_{ij}$, $\mu_{l+1}(x_j) = e_{l+1j}$ $(j = 1, \ldots, n)$, respectively. (Each of e_{ij} and e_{l+1j} is 0 or 1.) We illustrate these relations with the following truth table:

x_1	x_2		x_n	C	D_1	D_2		D_l	\boldsymbol{E}
e_{11}	e_{12}		e_{1n}	0	0				
e_{21}	e_{22}		e_{2n}	0		0.			
		• • • • •	- 1	:			٠.		
e_{l1}	e_{l2}	6	e_{ln}	0				0	
e_{l+1}	e_{l+12}	6	e_{l+1n}	0					0
			•						

Now, let k be the integer such that $2^{k-1} < l + 1 \le 2^k$. Take k distinct proposition variables, y_1, \ldots, y_k , in Π . Define B_1, \ldots, B_n so as to satisfy

the next truth table with 2^k rows, where for the rows from (l+1)'th to 2^k 'th, each B_i has the same value e_{l+1} ; $(j=1,\ldots,n)$:

<i>y</i> ₁	$y_2 \cdot \cdot \cdot \cdot y_k$	$B_1 B_2 \ldots B_n$
0	0 0	e_{11} e_{12} $\dots e_{1n}$
0	0 1	$egin{array}{ccccc} e_{11} & e_{12} & \dots & e_{1n} \\ e_{21} & e_{22} & \dots & e_{2n} \end{array}$
		e_{l1} e_{l2} $\dots e_{ln}$
		e_{l+11} e_{l+12} \dots e_{l+1n}
		: :
1	1 1	$\mid \stackrel{\cdot}{e_{l+11}} \stackrel{\cdot}{e_{l+12}} \dots \stackrel{\cdot}{\dots} \stackrel{\cdot}{e_{l+1n}}$

By the functional completeness of classical logic, B_1, \ldots, B_n above can be expressed by the disjunctive normal forms having y_1, \ldots, y_k . Then for all $\mu \in \Omega$, $\mu^*(C(B_1, \ldots, B_n)) = 0$, i.e., $\mu^*(\diamondsuit C(B_1, \ldots, B_n)) = 0$. For some $\mu \in \Omega$, $\mu^*(D_s(B_1, \ldots, B_n)) = 0$ ($s = 1, \ldots, l$), hence for all $\mu \in \Omega$, $\mu^*(\Box D_s(B_1, \ldots, B_n)) = 0$. And there exists at least one $\mu \in \Omega$, say μ_0 , such that $\mu^*(E(B_1, \ldots, B_n)) = 0$. Hence $\mu^*_0(A(B_1, \ldots, B_n)) = 0$, i.e., $A(B_1, \ldots, B_n)$ is not valid. This contradicts the hypothesis.

Proof of Lemma 2: Assume that at least one of $C \vee D_1, \ldots, C \vee D_l, C \vee E$ is provable in the classical logic. Then it is clearly provable in S5. As for the case $\vdash C \vee D_s$, i.e., $\vdash \sim C \to D_s$, $(s = 1, \ldots, l)$, we have $\vdash \Box \sim C \to \Box D_s$, i.e., $\vdash \sim C \vee \Box D_s$, by rule (R2), axiom (A6), and rule (R1). Hence $\vdash A(x_1, \ldots, x_n)$. As for the case $\vdash C \vee E$, we have also $\vdash \Box \sim C \to \Box E$, and hence $\vdash \Box \sim C \to E$, i.e., $\vdash \sim C \vee E$ by (A5). Thus we have again $A(x_1, \ldots, x_n)$.

Theorem A formula $A(x_1, \ldots, x_n)$ is provable in S5 iff for every classical formula, $B_1, \ldots, B_n, A(B_1, \ldots, B_n)$ is valid.

Proof: That if $A(x_1, \ldots, x_n)$ is provable in S5 then $A(B_1, \ldots, B_n)$ is valid for every classical formula, B_1, \ldots, B_n , is clear by verifying that all axioms are valid and all rules of inference preserve validity.

Next, we prove that for a formula $A(x_1, \ldots, x_n)$ if $A(B_1, \ldots, B_n)$ is valid for every classical formula, B_1, \ldots, B_n , then $A(x_1, \ldots, x_n)$ is provable in S5. It is well-known that $A(x_1, \ldots, x_n)$ can be reduced in S5 to the modal conjunctive normal form, A', which is of the form $A_1 \wedge \ldots \wedge A_r(r \geq 1)$, each $A_\alpha(\alpha = 1, \ldots, r)$ being of the form $\lozenge C \vee \square D_1 \vee \ldots \vee \square D_l \vee E$, where C, D_1, \ldots, D_l , and E are all classical formulas, $l \geq 0$, and C or E may be missing. Let B_1, \ldots, B_n be any classical formulas, and suppose $A(B_1, \ldots, B_n)$ is valid. Then $A'(B_1, \ldots, B_n)$ is valid, and so is $A_\alpha(B_1, \ldots, B_n)$, $(\alpha = 1, \ldots, r)$. By Lemma 1 and Lemma 2, we have $A_\alpha(x_1, \ldots, x_n)$ is provable in S5, and so is $A'(x_1, \ldots, x_n)$. Hence $A(x_1, \ldots, x_n)$ is provable in S5.

^{1.} If C is missing then $C \vee D_1, \ldots, C \vee D_l, C \vee E$ degenerate into D_1, \ldots, D_l, E , if E is missing then so is $C \vee E$, and if l = 0 then $C \vee D_1, \ldots, C \vee D_l$ are missing. In such special cases, these two lemmas still hold.

3 Remark We remark that for any (classical) formulas, B_1, \ldots, B_n , $A(B_1, \ldots, B_n)$ is valid, iff $A(x_1, \ldots, x_n)$ is a tautology of S5 in the sense of Kripke [2], i.e., iff $A(x_1, \ldots, x_n)$ is assigned 1 in every row of every partial truth table of $A(x_1, \ldots, x_n)$. In fact, if $A(x_1, \ldots, x_n)$ is a tautology, then for any (classical) formulas, B_1, \ldots, B_n , $\{(\mu^*(B_1), \ldots, \mu^*(B_n)) | \mu \in \Omega\} \subseteq \{0, 1\}^n$, hence $A(B_1, \ldots, B_n)$ is valid. Conversely, assuming any (classical) formulas, B_1, \ldots, B_n , $A(B_1, \ldots, B_n)$ is valid. We consider any partial truth table, \sum , with m ($1 \le m \le 2^n$) rows of $A(x_1, \ldots, x_n)$. Let k be the integer such that $2^{k-1} < m \le 2^k$, and take k distinct proposition variables, y_1, \ldots, y_k , in Π . In the same way as the proof of Lemma 1, we can construct $B_j(y_1, \ldots, y_k)$ ($j = 1, \ldots, n$) such that $A(B_1, \ldots, B_n)$ satisfies \sum . By the assumption, $A(B_1, \ldots, B_n)$ is valid. Hence $A(x_1, \ldots, x_n)$ is assigned 1 in every row of \sum . Therefore, $A(x_1, \ldots, x_n)$ is a tautology.

We notice that in the above Theorem and Remark, B_1, \ldots, B_n do not need to be classical formulas, i.e., they can be any formulas of S5.

In the proof of Theorem 2 of Thomason [3], it was shown that A is valid in S5 (tautology of S5 in the sense of Kripke [2]) iff every formula of \mathcal{L}_c of the form $A(B_1, \ldots, B_n)$ is valid in \mathfrak{C} . This fact corresponds with the above remark.

REFERENCES

- [1] Hughes, G. E., and M. J. Cresswell, An Introduction to Modal Logic, Methuen Co. Ltd., London (1968), pp. 116-121.
- [2] Kripke, S. A., "A completeness theorem in modal logic," The Journal of Symbolic Logic, vol. 24 (1959), pp. 1-14.
- [3] Thomason, S. K., "A new representation of S5," Notre Dame Journal of Formal Logic, vol. XIV (1973), pp. 281-284.

Nagoya Institute of Technology Nagoya, Japan

and

Toyota Technical College Toyota, Japan