Notre Dame Journal of Formal Logic Volume XVII, Number 2, April 1976 NDJFAM

THREE IDENTITIES FOR ORTHOLATTICES

LADISLAV BERAN

In a recent paper [1], B. Sobociński proved the following theorem:
(A) Any algebraic system

$$
\mathfrak{A}=\langle A, \cup, \cap, \perp\rangle
$$

where \cup and \cap are two binary operations and \perp is a unary operation defined on the carrier set A, is an ortholattice, if it satisfies the following four mutually independent postulates:

```
B1 [ab]:a,b\inA.... }a\cupb=b\cup
B2 [ab]:a,b\inA.\supset. a=a\cap(a\cupb)
B3 [ab]:a,b\inA.\supset. a=a\cup(b\capb\perp)
B4 [abc]:a,b,c\inA.\supset. (a\cupb)\cupc=((c\mp@subsup{c}{}{\perp}\cap\mp@subsup{b}{}{\perp})\cap\mp@subsup{a}{}{\perp}\mp@subsup{)}{}{\perp}
```

In the present paper, we improve this result by showing that Sobociński's system of axioms can be replaced by a shorter one. We will presuppose acquaintance with the principal results of [1]; the reader is also asked to refer to [1] for definitions and notations not given here. Our result is as follows:
(a) Any algebra $\langle A, \cup, \cap, \perp\rangle$ with two binary operations \cup, \cap and one unary operation \perp which satisfies the mutually independent axioms

```
b1 [abc]:a,b,c\inA.\supset. (a\cupb)\cupc=(\mp@subsup{c}{}{\perp}\cap\mp@subsup{b}{}{\perp}\mp@subsup{)}{}{\perp}\cupa
b2 [ab]:a,b\inA.\supset. a=a\cap(a\cupb)
b3 [ab]:a,b\inA.つ. a=a\cup(b\cap\mp@subsup{b}{}{\perp})
```

is an ortholattice.
Proof:
1 It is enough to prove that $b 1, b 2, b 3$ imply $B 1, B 2, B 3$, and $B 4$. Now, as consequences of $b 1-b 3$ we have

$$
b 4 \quad[a]: a \in A . \supset . a=a \cap a
$$

$$
\left[b 2, b / b \cap b^{\perp} ; b 3\right]
$$

```
\(b 5 \quad[a b]: a, b \in A\).ว. \(a=\left(\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \cup a\)
    [b3; b3, \(\left.a / a \cup\left(b \cap b^{\perp}\right) ; b 1, b / b \cap b^{\perp}, c / b \cap b^{\perp} ; b 4, a /\left(b \cap b^{\perp}\right)^{\perp}\right]\)
\(b 6 \quad[b]: b \in A . \supset . b \cap b^{\perp}=\left(\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} \quad\left[b 3, a /\left(\left(b \cap b^{\perp}\right)^{\perp}\right)^{\perp} ; b 5, a / b \cap b^{\perp}\right]\)
\(b 7\) [ab]: \(a, b \in A\).つ. \(a=\left(b \cap b^{\perp}\right) \cup a\)
                                    \([b 5 ; b 6]\)
\(b 8 \quad[b c]: b, c \in A\).つ. \(b \cup c=\left(c^{\perp} \cap b^{\perp}\right)^{\perp}\)
                                    \(\left[b 1, a / a \cap a^{\perp} ; b 7, a / b, b / a ; b 3, a /\left(c^{\perp} \cap b^{\perp}\right)^{\perp}, b / a\right]\)
\(b 9 \quad[a b c]: a, b, c \in A . \supset . a \cup b=\left(\left(c \cap c^{\perp}\right)^{\perp} \cap b^{\perp}\right)^{\perp} \cup a\)
                                    \(\left[b 1, c / c \cap c^{\perp} ; b 3, a / a \cup b, b / c\right]\)
\(b 10[b c]: b, c \in A . \supset . b=\left(\left(c \cap c^{\perp}\right)^{\perp} \cap b^{\perp}\right)^{\perp}\)
    \(\left[b 7, b / a, a / b ; b 9, a / a \cap a^{\perp} ; b 3, a /\left(\left(c \cap c^{\perp}\right)^{\perp} \cap b^{\perp}\right)^{\perp}, b / a\right]\)
\(b 11\) [ab]: \(a, b \in A . \supset . a \cup b=b \cup a\)
[b9; b10]
\(b 12[a b]: a, b \in A . \supset .\left(a^{\perp}\right)^{\perp}=\left(a^{\perp} \cap\left(b^{\perp} \cap\left(a^{\perp}\right)^{\perp}\right)^{\perp}\right)^{\perp} \quad\left[b 2, a / a^{\perp} ; b 8, b / a^{\perp}, c / b\right]\)
\(b 13[a]: a \in A . \supset . a=\left(a^{\perp}\right)^{\perp} \quad\left[b 12, b / a ; b 8, b / a^{\perp} \cap\left(a^{\perp}\right)^{\perp}, c / a ; b 7, b / a^{\perp}\right]\)
\(b 14[a b c]: a, b, c \in A\).つ. \((a \cup b) \cup c=\left(\left(c^{\perp} \cap b^{\perp}\right) \cap a^{\perp}\right)^{\perp}\)
    [b1; b11, \(\left.a /\left(c^{\perp} \cap b^{\perp}\right)^{\perp}, b / a ; b 8, b / a, c /\left(c^{\perp} \cap b^{\perp}\right)^{\perp} ; b 13, a / c^{\perp} \cap b^{\perp}\right]\)
```

2 The algebra $\mathfrak{M 2}([1]$, p．143）verifies $b 1, b 3$ and falsifies $b 2$ ；the algebra $\mathfrak{M 3}$（［1］，p．143）verifies $b 1, b 2$ and falsifies $b 3$ ．Since the axioms B1－B4 are mutually independent，we therefore conclude that b1－b3 are also mutually independent．

This completes the proof（a）．

REFERENCE

［1］Sobociński，B．，＂A short postulate－system for ortholattices，＂Notre Dame Journal of Formal Logic，vol．XVI（1975），pp．141－144．

Charles University
Prague，Czechoslovakia

