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A PATCHING LEMMA

K. K. HICKIN and J. M. PLOTKIN

Let S be a set. A local system L on S is a collection of subsets of S
such that for each finite subset {x,, ..., x,} C S there is an He L with
{*1, . . ., %, C H. In [2] we stated the following patching lemma which we
called Theorem H and which group theorists have found useful in proving
local theorems (see [8], pp. 96-100):

Patching lemma Let L be a local system on S, F a set, n a positive integer.
Suppose that for each He L theve is a function fy: H"— F and {fy(x)|He L}
is finite for each x € S". Then there is a function f: S” — F such that for any
finite subset K C S” theve is an He L with K C H” and f|K = f, |K.

We now give a proof of this lemma based on the Boolean prime ideal
theorem (BPI) and some simple -properties of ultrafilters. By [1] this
really avoids the axiom of choice.

Proof: For each xeS"let I, = {He L|xe H"}. I, C L and by the properties of
local systems {I.|x e S"} has the finite intersection property. By BPI there
is a nontrivial ultrafilter # on L such that I, € # for each x € S™

For each x e S” let A, = { fy(x)| He L}. By assumption each A, is finite.
For xeS” aeA, let Vix,a) ={He L|xe H" fy(x) =al}. It is easy to see that
L =U{vix,a)la e A}. Hence J{V(r,a)laeA}e M. But {V(r,a)lacA,} isa
finite collection of disjoint sets whose union belongs to the ultrafilter #.
Thus there is a unique a*eA, such that V(x,a*)e M. We now define
f: 8" — F as follows: f(x) = a* where V(x,a*)e M. Let K be a finite subset
of §”. {V(x,f(x))|xeK} is a finite collection of elements of 4. Hence
N{v(r,f () |x € K} e # and there is an He L which is in this intersection. If
x e K then x e H” and fy(x) = f(x). And f has the desired property.

Remarks Withn = 1 and L = {H|H finite subset of S} the patching lemma is
the well-known Rado selection lemma [6]. In [3] W. A. J. Luxemburg gave a
proof of Rado’s lemma using ultraproducts. Our proof avoids the mention
of ultraproducts. With » =1 and L a net (in the sense of A. Robinson) we
obtain Robinson’s valuation lemma [7].
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The patching lemma can also be of use when S and F support additional
structure. For example, if S and F are universes of relational systems of
the same similarity type and F is finite and L = {H# | H a finite subsystem of
S} and each fy is a homomorphism, then f is a homomorphism. The local
nature of the definition of homomorphism makes this property of f easily
verifiable. This example is called Gratzer’s theorem by Y. Nakano in [5].
Employing this example when S is a Boolean algebra, F is the two-element
Boolean algebra and fy is a homomorphism such that f;[ AN 1] = {0} where I
is a given ideal of S leads to a proof of BPIl. In this application one
employs the axiom of choice for families of finite sets (ACF) in picking an
fy for each finite subalgebra H. Thus in Zermelo-Fraenkel set theory (ZF)
together with ACF we have the equivalence of the patching lemma and BPI.
And further we can say that the patching lemma is independent of
ZF + ACF. In the model of ZF + ACF which appears in [1] the patching
lemma holds and in the model of ZF + ACF which appears in [4] the
patching lemma fails. In fact, these two models show the independence of
the patching lemma with respect to the stronger axiom system ZF + ‘‘The
universe is linearly ordered.’’
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