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A Predicate Logic Based on Indefinite
Description and Two Notions
of Identity

ROBERT A. ALPS and ROBERT C. NEVELN

We present a formal! system of free predicate logic based on three primi-
tives: indefinite description (using a variant of the Hilbert ‘e’-symbol) and two
notions of identity, one reflexive and the other nonreflexive. This logic is
intended to be of practical use in mathematics. Sample applications are given
in Sections 13 and 16.

We assume an axiomatic development of the usual sentence logic. For
the predicate logic we list two primitive formulas

1 x=y) identity
2) x=y) equality

and one primitive term
(3) anxp'x indefinite description.

By (1) we mean identity in the sense of Leibniz, i.e., ‘x’ and ‘Y’ may be sub-
stituted one for the other in any formula without affecting its truth.2 By (2)
we mean identity in the sense of Peirce, i.e., there is some object z such that
‘x’ names z and ‘y’ names z.2> Thus neither (1) nor (2) is a statement about
objects x and y but is instead a statement about the variables (or what would
in the general case be terms) ‘x’ and ‘y’. More precisely (1) says that ‘x’ and
‘y’ are synonymous in the strict sense that if T is a formula obtained from
a formula S by replacing ‘x’ by ‘y’ then one is entitled to infer T from S.
(1) is therefore a syntactical statement which satisfies Carnap’s definition
of a pseudo-object sentence. Carnap gave, as an example of a pseudo-object
sentence, the sentence “Five is not a thing but a number,” which he translated
as follows: * ‘Five’ is not a thing-word but a number-word.”* In most cases (1)
holds if and only if (2) holds. The two meanings are in conflict only in the
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case that ‘x’ and ‘y’ fail to denote. Suppose that ‘x’ for the moment does not
denote. In this case ‘(x = x)’ is true while ‘(x = x)’ is false.® For a fuller dis-
cussion of our interpretations of (1) and (2) see [13].

Terms which do not denote arise in the use of indefinite descriptions.
By (3) we mean an object z such that E’z, if such a z exists. Otherwise (3)
is a term with no denotation.

We use the formal inferential language of Morse [11] with the following
alterations.

First we maintain the customary distinction between terms and formulas.

LI

As a result, only terms may replace schematic expressions such as ‘ux’, ‘u'xy”’,

¢ " 3 ’

u''xyz’, ‘vx’, “v'xp’, etc. Similarly, only formulas may replace schematic
expressions such as ‘p’, ‘q’, ‘r’, ‘p'x’, ‘q'x’, ‘r'x’, ‘p''xy’, etc.

Second, a strengthened form of Morse s rule of schematic substitution
is used. It does not require that the schematic expressions being replaced all
contain the same string of variables.®

Finally, the rule of universalization has been dropped in view of Theorems
6.3 and 6.4.

In 1.1 below, the notion of existence is defined by letting ‘ex x’ (to be
read: x exists) mean (x = x), i.e., there is an object z such that ‘x’ denotes z.
We are then led naturally to Definition 1.2 in relation to which substitution
for ‘_Q'x’ is much simpler than in Hilbert’s’

(Vxp'x < p' an xp'x).

In 1.4 we define the formula constant ‘¢’ to mean that something exists.
& will be a theorem in any mathematical theory which is based on this logic
and which axiomatically guarantees the existence of objects. Section 10 deals
with the results of assuming & as a hypothesis. If we were to assume & as an
axiom, the resulting predicate logic would be free (allowing nondenoting terms)
but not universal (valid in every domain).

In 1.5-1.7 we define the definite description and two related uniqueness
quantifiers.

In Section 17 we introduce forms which are useful in the application of
descriptions to the construction of definitions in mathematics.

Sections 1 through 6 constitute the foundations of the formal system.

1 Definitions

1.1 (exx © (x =Xx))

1.2 (\/xpx “ex an xp 'x)

1.3 (/\xpx<->~Vx ~px)

1.4 (& < Vxexx)

1.5 (the xp'x =any A x(p'x ¢ x =y))
1.6 (One xp'x < ex the xp'x)

1.7 (Ung xp'x < (Vxp'x > One xp'x))

2 Axioms for identity and equality

2.1 ((x=y)=>('x~>p'y)
2.2 ((x=y)=>x=y))
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3 Axioms for quantification

3.1 ((y =anxp'x)~>p'y)
3.2 (exy = (p'y = Vxp'x))

4 Completeness axioms

4.1 (Ax(p'x < q'x) = (an xp'x = an xq'x))
4.2 (y=anx (x=y))

5 Theorems of identity and equality

5.1 x=Ey->y=y)

52 x=y->@=z->x=2))
5.3 (XEy—>y=x)

5.4 (x=y-=>px*py)

55 (x=y—=>p'x<py)

5.6 x=y—->y=y)

5.7 x=y—>y=z—>x=2))
5.8 x=y—=>y=Xx)

5.9 xX=yoexxXAeXYyAX=Y)
Proof:
x=y-=>y=y
—~>exy)
x=y—->y=x
—>ex x)

(x=y—>x=y).
Thus

(x=y—=>exxAnexyAx=y).
Conversely,

xX=Eynrexx2>exxA(z=x—>z=Y))
xXEyrexx2>x=xAXx=x—>x=y)
—)x:y).

6 Basic lemmas
6.1 (exy A Axp'x > p'y)
Proof:
(exy = (~p'y = Vx ~p'x)
= (~Vx ~p'x > p'y)
= (Axp'x = p'y)).
6.2 (Vxp'x < an xp'x = an xp'x)
6.3 (p'y > ~(»y = an x ~p'x))®
Proof:

(y =anx ~p'x > ~p'y).

253

[5.6]
[1.1]
[5.8]

[2.2]

[2.1]

[3.2]

[1.3]

[3.1]



254 ROBERT A. ALPS and ROBERT C. NEVELN

6.4 (~(anx ~p'x =anx ~p'x) > Axp'x)
Proof:
(~(an x ~p'x = an x ~p'x) > ~Vx ~p'x [6.2]
= Axp'x). [1.3]

Theorems 6.3 and 6.4 provide the basis for the universalization of theorems.
The proof of 6.5 illustrates their use.

6.5  Ax(p'x=p'x)
Proof: '

((p'y > p'y) > ~(y = anx ~(p'x = p'x))) [6.3]
~(y =anx ~(p'x »> p'x))

~(an x ~(p'x = p'x) = an x ~(p'x > p'x))

Ax(p'x = p'x). [6.4]

Sections 7 through 11 deal with quantification.
7 Distributive properties

7.1 (Ax(p'x = g'x) = (Vxp'x = Vxq'x))

Proof:
(Ax(p'x = q'x) A Vxp'x
d /\x—(g’x = q'x)Anan xp'x = an xp'x [6.2]
= Ax(p'x = q'x) Ap’' an xp'x Aex an xp'x [3.1, 1.1]
- (p' anxp'x > q' anxp'x) Ap' an xp'x A ex an xp'x (6.11
- q' an xp'x Aex anxp'x -
- Vxq'x). [3.2]

The remaining proofs, which we omit, are standard.

7.2 (Ax(p'x = q'x) = (Axp'x > Axq'x))
7.3 (Ax(p'x ¢ q'x) > prx<->qux)
7.4 (Ax(p'x < q'x) > Axp'x © Axq'x)
7.5 (pr x © ~A\x ~p'x)

7.6 (/\x(prqx)**/\xpx A Axq'x)
7.7 (Vx(p'x v q'x) © Vxp'x v Vxq'x)

8 Behavior with respect to a constant
8.1 (Vxp = p)
Proof:

(Vxp = an xp = an xp [6.2]
~>p). [3.1]
The remaining proofs, which we omit, are standard.

8.2 (p = Axp)
8.3 (Vx(p Ap'x) © p A Vxp'x)
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8.9
8.10
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(Ax(pvp'x) ¢ pvAxp'x)
(Vx(p vp'x) > pv Vxp'x)

(p A Axp'x) = (Ax(p Ap'x))
(Ax(p—=>p'x) < (p > Axp'x))
(Ax(p'x = p) © (Vxp'x > p))
(Vx(p = p'x) = (p > Vxp'x))
(Vx(p'x = p) > (Axp'x = p))

9 Commutative properties

9.1
Proof:

The converse follows by switching variables in the above result.

9.2
9.3

Proof:

(VxVyp'xy < VyVxp'xy)

(VxVyp"xy

- an xVyp'xy = anxVyp'xy

- Vyp" an xVyp''xyy nex an xVyp'xy
= Vy(p" an xVyp"xyy nex an xVyp"xy)
- VyVxp"xp).

(AxAyp"xy < AyAxp"xy)
(VxAyp"xy = AyVxp''xy)

(VxAyp'xy

->an xA\yp"xy = an xAyp"xy

= Ayp" an xAyp"xyy nex an xAyp''xy
= Ay(p"" an xAyp"xyy nex an xAyp''xy)
= AyVxp"xy).

10 Existence

10.1
Proof:

(& = (Axp'x = Vxp'x))

(exx = (Ayp'y = p'x))
Ax(ex x = (Ayp'y = p'x))
(Vx ex x = Vx(Ayp'y = p'x)
= (Ayp'y = Vxp'x))
(&= (Axp'x = Vxp'x)).
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[6.2]
[3.1, 1.1]
[8.3]
[3.2,7.1]

[6.2]
(3.1, 1.1]
[8.6]
[3.2,7.2]

[6.1]
[6.3, 6.4]
[7.1]
[8.9]
[1.4]

Given a nonempty domain, Theorems 10.2 through 10.7 yield the
expected converses for Theorems 8.1, 8.2, 8.5, 8.6, 8.9, and 8.10, respectively.

10.2
10.3
10.4
10.5
10.6
10.7
10.8

(&—>Vxp < p)

(&~ NAxp+p)

(&= Vx(pvp'x)«pv Vxp'x)
(&= Ax(pAp'x) < pAAxp'x)
(&= Vx(p—~>p'x) < (p~> Vxp'x))
(&= Vx(p'x = p) ¢ (Axp'x > p))
(exx > &)
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(exx>exx Anexx
- Vxexx
- &).

x=y—=>0)
(Vxp'x = &)

11 Range of quantification

11.1 Ax exx
Proof:
(y=anx~exx—>exy A~exy)
~(y =an x ~ex x)
~(an x ~exX x = an x ~ex X)
AXx ex x.
11.2 Ax &
11.3 (Vxp'x < Vx(ex x Ap'x) © Vx(ex x = p'x))
11.4 (prxQVx(&Apx)QVx(&épx))
11.5 (Axp'x < Ax(ex x A p'x) © Ax(ex x > p'x))
11.6 (Axp'x © Ax(& Ap'x) < Ax(& = p'x))
11.7 (exy < Vx(x =y))
Proof:
(exy >exyAy=y
> Vx(x = y)).
Conversely,
(Vx(x=y)—2>anx(x=y)=anx(x =y)
>anx(x=y)=y
->exy).
11.8 (Vx(x=y ap'x) < exy Ap'y)
11.9 (Ax(x =y —>p'x) ¢ (exy > p'y))

[3.2]
[1.4]

[5.9, 3.1]

[6.4]

[1.1]
[3.2]

[6.2]
[3.1]
[5.9]

Sections 12 through 14 deal with descriptions and examples. ‘One xp'x’

is Morse’s existence and uniqueness quantifier (cf. 13.8 and 13.3).

12 Descriptions

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

(y =thexp'x ¢ exy A Ax(p'x ¢ x =y))

(y =thexp'x ¢ exy Ap'y AAX(p'x > x =y))

(¥ =thexp'x ¢ exy Ap'y AOne xp'x)
(y =the xp'x ¢ exy Ap'y A Ung xp'x)
(y = the xp'x >y = an xp'x)

(Onexpx/\/\x(pxeqx)—>thexpx—-thequ)
(y—thex(vaqx)*y—thexpxvy—thequ)

(z = the xVyp"xy = Vy(z = the xp"'xy))
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13 Uniqueness

13.1 (One xp'x < Vy(y = the xp'x))

13.2 (One xp'x < VyAx(p'x < x =y))

13.3 (Ung xp'x ¢ AxAy(p'x Ap'y = x =y))

13.4 (&~ Unqg xp'x < VyAx(p'x > x = ))

13.5 (Ax(p'x ¢ g'x) > One xp'x © One xq'x)

13.6 (Ax(p'x < q'x) = Unq xp'x © Unq xq'x)

13.7 (One xp'x = Vxp'x)

13.8 (One xp'x < Vxp'x A Unq xp'x)

13.9 (p = Unq xp'x < Ung x(p A p'x) < Ung x(p > p'x))

13.10 (p > One xp'x < One x(p A p'x) < One x(p — p'x))

14 Examples Formal descriptions are generally not used as a tool in
making definitions in mathematics. This has resulted in many circumlocutions
in descriptive definitions. We believe the following examples will demonstrate
the ease and naturalness with which descriptions can be used. The reader will
observe that it is exactly the notion of existence which enables descriptions to
function so naturally.

We consider first the definition of limit from calculus. We do not specify
any particular formalization of the real number system (e.g., as part of set
theory); but, for this example, we use ‘real is y’ to assert that y is a real
number. 14.1 and 14.2 are definitions.®

14.1 (ux>Lasx—>y)< (realisy A Ne>0
VE>0Ax(0<|x-y|<6—lux - L|<e))).
14.2 (lim x > yux = the L(ux > L as x > ))

In 14.1 we have defined a statement meaning ux converges to L as x goes
to y. In 14.2 we have defined the limit as x goes to y of ux. The important
point here is that 14.2 in no way prejudices the issue of existence of the limit.!°
We have, for example,

(limx—->22-x+3)=17)
and
~ex lim x = 0 sin(1/x).

The basic theorems concerning limits can be given as follows.

14.3 Unq L(ux > L asx > y) Uniqueness
14.4 ((ux~>Lasx—>y)—~>exL) Existence
14.5 (L =limx = yux ¢ (ux > L as x ~> »)) Characterization

Theorem 14.3 is often formulated roughly as follows:
(limx=2>yux =L Alimx—>yux=M—>L =M).

Transitivity of equality makes this statement both obvious and trivial, thus
obscuring the intended meaning. According to Theorem 13.3, what must be
proved in 14.3 is

ANLAM((ux > Lasx~>y)a(ux>Masx—>y)—~>L=M).
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The simple and obvious Theorem 14.4 cannot be expressed in ordinary
logic or in any other logic in which all terms denote.

Theorem 14.5 follows immediately from 14.3 and 14.4 and our Theorem
12.4. An important feature of 14.5 is that both sides of the biconditional
assert the existence of L (see 5.9). Usually something very like 14.5 is given
as a definition of limit. However, in the context of ordinary logic, 14.5 leads
to difficulties. For example, from the usual theorem ‘(x = x)’ and the
admission of ‘lim x = yux’ as a term we obtain

(lim x = 0(1/x) =1lim x = 0(1/x)).
Replacing ‘L’ by ‘lim x > 0(1/x)’ in 14.5 we obtain
((1/x) > lim x = 0(1/x) as x —> 0).

Since ‘(ux = L as x = y)’ is always understood to imply the existence of L,
we reach the absurd conclusion that lim x = 0(1/x) exists.

These difficulties are commonly evaded by refusing to admit ‘lim x -
yux’ as a term.!! As explained in [13], this creates serious problems in the
syntax.

As our second example the value of a function at a point!? is considered.
14.6 and 14.7 are definitions.!?

14.6 (function is f < (relation is f A Ax Unq y ((x,») € f)))
14.7 (.fx =the y (function isf A (x,») € f))

We now have the following theorems:

14.8 (y = .fx © functionis f A (x,y) € f)

Proof:1*
=.fx
<y = the ¢t (function is f A (x,?) € f)
< ex y A function is f A (x,¥) € f A Unq ¢ (function is f A (x,¢) € f)
[12.4]
< functionis f A (x,¥) e f A Unq ¢ ((x,?) € f) [13.9]
< functionis f A (x,y) e f nex x A As Unq t((s,t) € f)
AUnqg t((x,t) € f)
< functionis f A (x,y) efaexx AAs Unq t((s,t) € f) [6.1]
< function is f A (x,y) € f).
14.9 (ex .fx < function is f Ax € dmn f)

14.10 (Vx(y = .fx) © functionisf Ay € mgf)

An application of the results above is given by the following character-
ization of the continuity of a function at a point on the real line.

14.11 ((fis continuous at x) < .fx = lim ¢ = x .ff).

The ‘<’ direction is obtained from 5.9 and 14.9.

-As our final example we mention two consequences in set theory. As
in the set theory of Bourbaki, the classifier is definable and the axiom of
choice is provable.
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15 Consequences of 4.1

15.1
15.2
15.3
154
15.5
15.6

(Axq'x > an xp'x =an x(q'x A p'x) =an x(q'x = p'x))

(anxp'x =anx (ex x A p'x) =an x (ex x > p'x))
(p~>anxp’x =an x(p A p'x) =an x(p = p'x))
(y=anx(pAp'x)©pAay=anxp'x)
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(Axg'x A Vxp'x = an xp'x = an x(q'x A p'x) = an x(q'x = p'x))

(Ax(p'x ¢ q'x) = the xp'x = the xq'x)

16 Consequences of 4.2

16.1
16.2
16.3
16.4
16.5
16.6

(x=x)
x=Eyex=yv~Eexxvexy))
(y =the xp'x < Ax(p'x ¢ x =y))
(y =the x(x =y))

(exy @ ~(y =anx ~ ex X))
x=EyeNziz=xez=Y))

17 Terms defined by conditions, by cases, or by representation
17.1 through 17.5 are definitions.

17.1
17.2
17.3
17.4
17.5

((p—=>x)=thet(pnrt=x))
(xOy)=thet(t=xvt=y))

((x By)=(x 0 (~ex x> y)))

(O xux = the ¢ Vx(¢ = ux))

(O x,yu'xy =the r VxVy(t = u'xy))

We have the following theorems:

17.6

17.7

17.8

17.9

17.10
17.11
17.12
17.13
17.14
17.15
17.16
17.17
17.18
17.19
17.20
17.21

(p>(@—>x)=x)
(ex(p=>x)epnrexx)
(y=@>x)epry=x)
xOy=yox)
(ex(xOy)e(exxo~exy)vx=y)
(t=xOy—->t=xvt=y)
x=x0y<o(exXXA~eXyY)VX=Y)
(ex(x >y)eexxvexy)
(z=xDy—>z=xvz=y)
x=xDy<eexx)
(y=xDyeexyar~exx)vx=y)
xBOPB)=xDy)Db2)
xDy=yDx<eex(x0y))

(ex < xux < One yVx(y = ux))

(¥ =0 xux © Vx ex ux A Ax(ex ux =y = ux))

Formulas

(z=Ox,yu'xy < VxVy ex u'xy A AxAy(ex u'xy =z = u'xy))

Definition 17.1 provides the fundamental form for terms defined by
condition. For example, we may define the interior of A4 with respect to the
topology <~ so that it has a denotation only if J is a topology and A4 is a
subset of the underlying space, U I

(int & A=((J etopology ad C | &) = ix: VBe I (x e BC A)'S
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The use of such restrictions is a standard practice in the formulation of mathe-
matical definitions.

Definition by cases is another practice frequently encountered in mathe-
matics. To construct such a definition one may compound terms of the form
‘(p = x)’ by means of the ‘O’ connective. For example we may define the
absolute value of a real number by

(IxI=({((x = 0) > x) © ((x < 0) > —x))).

Notice that the result is meaningful even if the two cases overlap provided that
in such an instance both cases agree.

When the second condition in a definition by cases is “otherwise’, the
‘C>’ connective is useful. As an example we give the following definition of the
characteristic function of a set A.

(xA=hx(((xe A)> 1) >0)*e

It is worthwhile noting that the ‘>’ may be used to compound terms in
the same way as 0’. In fact, in the definition of ‘|x|’ above, no change in
meaning results from replacing ‘0’ by ‘>’. What distinguishes the two connec-
tives is that, whereas ‘0’ is commutative, ‘>’ assigns the first term priority as
explained by 17.15 and 17.16.

‘Q’ is used in definition by representation. An example is the definition
of the dimension of a vector space as the cardinality of a basis.

(dim KV = O B ((B is a basis of V over K) = Card B)).

Note that by Theorem 17.19, ‘dim KV’ is meaningful only if every basis of
V has the same cardinality.

An example illustrating the use of the two variable form is the following
definition of the sum of two cardinal numbers.

(a+B) =0 x,y((a=Card x Af=Card y Ax Ny =¢) > Card (x U »)))

18 Comparison with a related system In order to help place the present
system in context we discuss briefly a heirarchy of related systems. These
systems are all based on standard sentence logic.

The fact that standard predicate logic makes existential presuppositions
has been widely discussed. These presuppositions can be eliminated by taking
‘ex x’ as a primitive predicate. The axioms for a universally free predicate
logic can be given as:

18.1 (Ax(p'x = ¢'x) > (Axp'x > Axq'x))
18.2 (p > Axp)

183  (Axp'x~ (exy > p'y))

18.4 Ax ex x

We have in mind for this system the same rules of inference as used in this
paper plus universalization. A similar system is formulated by Meyer and
Lambert [10].

Hintikka has pointed out the semantic equivalence of ‘ex x’ and
‘Vy(x = y)’. Thus when considering predicate logic with identity, ‘ex x’ need
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not be taken as primitive. Instead one may take ‘Axp'x” and ‘(x = y) as
primitive and make the definition

18.5 (exx < Vy(x =y))

and assume as axioms 18.1 through 18.4 and
18.6 ((x=y)=>(p'x = p'y))

and

18.7 (x =x).

We note that in the usual predicate logic identity is merely an adjunct
whereas here identity enters into the quantification axioms 18.3 and 18.4
via the definition of ‘ex x’.

This logic may be further strengthened by introducing the definite de-
scription. In addition to the primitive term ‘the xp'x’, one further axiom will
suffice.

18.8 (z=thexp'x ¢ AyE =y ¢ Ax(p'x ©x =y)))

Lambert has shown in [2] that 18.7 is a consequence of 18.1 through 18.6
plus 18.8.

This final system is a universally free predicate logic with identity and
definite descriptions. There are three primitive expressions and six axioms.
By way of comparison the system of this paper has three primitives, six axioms,
and does not require universalization as a rule of inference. However, the
system of this paper is considerably stronger in that it incorporates indefinite
descriptions rather than definite descriptions. Further, the two completeness
axioms are not used for the development of quantification theory and are of
only marginal use in the theory of descriptions.!’

NOTES

1. By use of the word “formal” we do not wish to associate ourselves with the view that
mathematics consists in the (empty) manipulation of expressions. In the strict observ-
ance of linguistic rules we see a means to clarity and precision of expression.

2. “Definition 1. Same or coincident terms are those which can be substituted for each
other anywhere without affecting truth.” ([9], Vol. 2, p. 613.) This definition of
Leibniz has commonly been confused with Leibniz’s principle of the identity of indis-
cernibles and in the process a use-mention error has been attributed to Leibniz (e.g.,
[2], p. 300). Ishiguro argues effectively against this confusion in Chapter II of [5].
We believe Leibniz’s wording does justice to his meaning. (Accordingly we are not in
sympathy with Ishiguro’s own account of this definition, cf. [13].)

The substitutions of ‘y’ for ‘x’ or vice versa are performed using Axiom 2.1 and
are naturally subject to bound variable restrictions in the substitution procedure (see
Note 6).

3. “But identity, though expressed by the line as a dyadic relation, is not a relation be-
tween two things, but between two representamens of the same thing” ([3], Vol. IV,
p. 372).
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See [1], Section 74, Pseudo-Object Sentences.

5. Theorem 15.1 expresses the reflexivity of identity, while the nonreflexivity of equality

10.

11.

12.

13.
14.

15.

16.
17.

(1]

can be seen in the proof of Theorem 6.5. Both reflexive and nonreflexive identities are
recognized by Lambert and Scharle [7] when they compare the reflexive identity of
a system of theirs with a nonreflexive identity of a system of Lejewski.

The restrictions on the substitution procedure are given by Definition 6-4 of [6].

Because Hilbert did not consider definitions to be part of the formal system, this
formulation of his definition should not be attributed to him.

. We have not defined ‘(x # y)’ for use in this context since we believe that in actual

practice (x # y) implies the existence of both x and y. Thus we prefer the following
definition:

(G #y) e (~(x=y) hexx Aex p)).
Both the definiendum of 14.1 and the definiens of 14.2 are used by Morse.

We find it interesting to note that according to Heath “There is nothing in connection
with definitions which Aristotle takes more pains to emphasize than that a definition
asserts nothing as to existence or non-existence of the thing defined” ({4], Vol. 1,
p. 143).

Instead of admitting such expressions as terms, they are generally introduced by means
of contextual definitions.

The problem of evaluating a function at a point outside its domain is treated in a similar
manner on pp. 209-210 of [8]. In fact much of the discussion in Chapter 10 is pertinent
to the present paper.

The forms defined here are taken from Morse.
We are assuming that in set theory the following stipulations have been made.
((xey)—>exxnexy)
(ex (x,y)eexxnexy)
We discuss such stipulations in [13].

This sort of conditional definition creates two new ways of handling contextual hypoth-
eses in theorems. On occasion they may be dropped as in

(int J int T4 =int J A).
Or they may be included simply by significant usage in the hypothesis, as in
B=intJ A—>BCA).
‘Axux’ is Morse’s bound variable notation for the function which takes each x to ux.

The addition of these two axioms makes the system equivalent to one proved consistent
and complete in [12].
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