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Every Quotient Algebra for

Ci is Trivial

CHRIS MORTENSEN

1 In recent years, a number of different types of logics have been proposed
with the intention of avoiding the various paradoxes of material implication,
particularly the property that from a contradiction anything may be deduced.
Two such types of logics are the relevance logics of Anderson and Belnap [ 1 ],
and the paraconsistent logics in the vicinity of C1. The logic Cx has primitives
~1, D, &, v, and is given axiomatically below. In the opinion of this author, Cx

has various unsatisfactory features, two of which are that it lacks the theorem
A D 11 A, and that the rule of replacement (K4 = B implies \~C(A) = C(B), for
any context C; A = B being defined as usual by {A D B) &(B D A)) does not
hold for Cy

To date, there has been an outstanding problem (raised, for example, in
[10], p. 508) about C\: how to "algebraise" it. The aim of this paper is to
contribute to the solution of that problem by proving that on certain very
minimal assumptions Cx has no nontrivial quotient algebra. We will say pres-
ently what it means for a quotient algebra to be trivial. It is suggested that the
present result, in addition to "solving" the algebraisation problem, exhibits a
further unsatisfactory feature of Cl5 namely that Cx lacks a proper bicondi-
tional. We hope to amplify this point in a later paper.

The present enterprise is to investigate the consequences of partitioning
the formula algebra of Cx into a quotient algebra of equivalence classes by some
relation ~ holding between formulas. The relation ~ need not necessarily be
syntactic, i.e., definable by a formula in the operators "1, D, &, v. We impose
the following four requirements on any such relation ~ and quotient algebra:
(a) ~ is an equivalence relation, i.e., A~A,A~B implies B ~ A, and A ~ B and
B ~ C imply A ~ C. (b) The formula algebra is homomorphic to the quotient
algebra (with corresponding operations) obtained from the equivalence relation;
i.e., A - B implies C{A) - C(B), for any context C. (c) UA~B and h4 then
\~B (where ' h' means provability in Cx). This is necessary to prevent including
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nontheorems and theorems in the same equivalence class, which would have the
consequence that we would be unable both to designate the equivalence class
(without making some nontheorems theorems), and not to designate it (without
refuting some theorem). Again, if \~A and not \~B then it is easy to show that
A and B are distinguishable by the valuation semantics described below, and we
would not want an algebraisation in which \A\ and \B\ were to be identified by
the fact that A ~ B when A and B are distinguishable semantically. We prove in
Theorem 2 that conditions (b) and (c) in the context of Cx imply the condition:
if A ~ B then \~A = B. This fact is crucially used in the proof of our main
theorem, Theorem 3. (d) The quotient algebra so obtained is nontrivial. We
promised earlier a definition of this term. In one sense there are always at least
two equivalence relations: one is 'A is the same formula as B\ and another is
'A is a formula and B is a formula'. In order to avoid such trivial cases, we make
a definition.

Definition 1 Let JL be a sentential language and let ~ and-£/~ be, respec-
tively, equivalence relation and quotient algebra satisfying (a)-(c) above. Then
-£ /~ is trivial iff either {MA e - O ( U I = \A\) (where \A I is the equivalence class
of yl), or(\/A, B e -O(UI = 151). Otherwise,-£/~ is nontrivial.

The fourth requirement, then, is that the quotient algebra determined by ~ be
nontrivial.

2 We now present C\ formally. We begin with a language .£ consisting of a
denumerable number of sentential variables p/, 1 < / < CJ, closed as usual under
1, &, v, D. The operator = is defined as usual (see above), and we have two new
defined symbols: A° is an abbreviation for ~](A & 1A), and ~]*A is an abbrevia-
tion for ~\A & A°. Capital letters from the beginning of the alphabet are meta-
linguistic schematic variables.

Definition 2 The logic Cx is the smallest subset of -£ closed under uniform
substitution and modus ponens (for D) and containing all instances of the
following schemata:

(1) A D(BDA)
(2) (ADB)D ((A D(BD C)) D (A D C))
(3) (A&B)DA
(4) (A ScB)DB
(5) A D(BD(A &B))
(6) A D (A v B)
(7) BD(AvB)
(8) (ADC)D ((£ DC)D ((A v B) D C))
(9) A \J~\A

(10) 1~M DA
(11) B°D((A DB)D((A D~]B)D1A))
(12) (A°ScB)D((A ScB)°&(A v B)° & (A D B)°).

Definition 3 A evaluation is a function v: JL~* U, 0} such that

(1) v(A) = 0 =* vOA) = 1
(2) vO~]A)= 1 =>v(A)= 1
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(3) v(B°) = v(A DB) = v(A D15)=1=> v(A) = 0
(4) v(A) = 0 or v(B) =\*=*v(ADB)=\
(5) v(A) = v(B) = \*=*v(A &B)=\
(6) v(A) = 1 or u(B) = 1 *=^ v(A v 5 ) = 1
(7) i;G4°) = K-#°) = 1 =» v((i4 v 5)°) = y(U & 5)°) = v((A D B)°) = 1.

A formula A is true in a valuation u iff v(A) = 1.

Theorem 1 Cx is sound and complete with respect to the class of all C r

valuationsile., all and only theorems of'C1 are true in all evaluations (da Costa
and Alves [ 11 ]). Cx is decidable (Fidel. See [ 11 ], p. 627).

We use the decidability of Cx extensively below, so we outline Fidel's
decision procedure. A quasi matrix for a formula A is constructed as follows:

1. List all the propositional constants of A (in a horizontal line) and, as in
truth tables for classical propositional calculus, list all possible assignments of 1
and 0 to them.

2. List all denials of propositional constants (to the right of the former
list) of A and assign values as follows: if the propositional constant was assigned
0 its denial is assigned 1. If the constant was assigned 1, bifurcate the line on
which the 1 occurs, and on one half the denial is assigned 0 and on the other 1.

3. List all remaining subformulas of A and negations of proper sub-
formulas of A and proceed as follows:

(3.1) If the major connective of any such formula is &, v, or D, its
value is determined from the values of its two components as in classical logic.

(3.2) If the formula is of the form IB and B was assigned 0, assign B
the value 1.

(3.3) If the formula is of the form IB and B was assigned 1, then there
are several subcases

(3.3.1) B is of the form ~\C and C was assigned 0. Assign ~]B (i.e.,
~~I~IC) the value 0.

(3.3.2) B is of the form ~)C and C assigned 1. Bifurcate the line and
assign IB the value 0 on one bifurcation and 1 on the other.

(3.3.3) B is of the form C & ~\C or 1 C & C. Assign IB the value 0.

(3.3.4) B is of the form C o D (where o is &, v, or D) but not of the
form 3.3.3. If the value of C is different from the value of ~1C and the
value of D is different from the value of ~\D, assign 12? the value 0.
Otherwise, bifurcate the line and assign IB the value 0 on one half and
1 on the other half.

We can now state the outcomes of this decision procedure: if some line of the
quasi matrix of A assigns 0 to A, then for some Crvaluation v, v(A) = 0, and so
A is not valid and not a theorem. Otherwise, for all Crvaluations v, v(A) = 1
and A is valid and a theorem.
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3 In Section 1 the claim was made that the conditions (b) and (c) we
imposed on equivalence relations imply that if A ~ B then Y~A = B. In this
section, we prove that result.

Theorem 2 If an equivalence relation ~ satisfies the conditions: (b) if A ~ 5
then C(A) ~ C(B) for any context C, and (c) if A ^ B and h4 then hfi, then it
necessarily satisfies the condition: if A ^ B then \~A =B.

Proof: Suppose the antecedent of the theorem, and suppose that A ~ B. We
need to prove that \~A = B. If either \~A or \~B then by the antecedent of the
theorem Y~B and \~A, respectively. Hence, by the properties of Cx (Axioms (1)
and (5)), \~A =B. So suppose neither \~A nor \~B, and suppose, for contradic-
tion, \j~A = B. If \f~A = 5 then, as is well known, there is a Cj-valuation i> such
that v(A)¥zv(B). Suppose that v(A) = 1, u(B) = 0. It follows from the properties
of (^-valuations that v(1*A) = 0, v(Av1*A) = 1, and v(Bv1*A) = 0. From
v(B\j~\*A) = 0, we have \tB\i~]*A. Now by condition (b) of the theorem, if
A ~B then (Av1*A) ~ (Bv1*A). But it is also a fact that h4vl* ,4 . Hence, by
condition (c), \~B\i~\*A. Contradiction. Hence \r~A = 5. This proves the
theorem.

4 We now proceed to our main theorem. First, we need some lemmas.

Lemma 1 Let h4 = B. The following are sufficient conditions for the truth
of Y-IA = IB:

(1) A - B (A is the same formula as B)
(2) for all C^valuations v, v(A) = 0 (equivalently, v(B) = 0)
(3) for some Cx-valuation v, v(A) - v(B) = 1 and for all C^valuations vh

v2, v1(A)= 1 implies v^iA) = 0 and u2(B) = 1 implies v2C~\B) - 0.

The following are sufficient conditions for the truth of (3): for some v,
v(A) = v(B) = 1, together with any condition from List One together with any
condition from List Two.

List One:

(i) A is of the form 1C and (\fv)(u(A) = 1 implies v(C) = 0)
(ii) A is of the form C oD (where o is &, v, D) and C is ID or D is^C
(iii) A is of the form C o D (where o is &, v, D) and (\/v)(v(C o D) = 1

implies v(C) =£ v(~\C) and v(D) =£ V(1D)).

List Two: as for List One with 'B\ 'E\ 'F\ replacing 'A\ 'C\ 'D\ respectively.

Proof: Clearly (1) is sufficient. U(\/u)(v(A) = 0) and h4 =B then (\/v)(v(B) =
0). But u(A) = 0 implies u(1A) = 1, and similarly for 5 , so (\fu)(vOA) = v(1B))
and so, by the conditions for & and 3 , (\fu)(uClA = IB) = 1), i.e., 1=1̂ 4 = "1.5,
i.e., M . 4 ="15. Hence (2) is sufficient. As to (3), either u(A) = 0 or y(̂ 4) = 1.
If uG4) = 0 then u(~]A) = 1, and by hypothesis if v(A) = 1 then u p ^ ) = 0. But
\~A = B so A and B have the same values. But again by our hypothesis, if
u(B) = 1 then v(~lB) = 0, and clearly if v(B) = 0 then v(~\B) = 1. Hence 1A and
~1B have the same values in all valuations and so, as above, t=~|y4 = IB, i.e.,
h~1̂ 4 = "15. Hence (3) is sufficient.
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Now we show that List One combined with List Two are sufficient condi-
tions for (3). It is sufficient to show that List One gives sufficient conditions
for A to satisfy (3), as the proof for B is identical. Clearly (i) is sufficient:
Suppose u(A) = v(1C) = 1. Then from (i) v(C) = 0, but then by condition (2) of
Definition 3, uO~lC) = 0 = V(1A).

Ad (ii) Construct a quasi matrix for ~~\A, i.e., H(C&~1C). Whenever^ is
assigned 1, by 3.3.3 of the definition of a quasi matrix above, ~~\A is assigned 0.
Hence there is no (^-valuation in which A is assigned 1 and also ~]A assigned 1.

Ad. (Hi). As for (ii).

Lemma 2 Let \~A = B. If none of the above sufficient conditions (l)-(3)
obtain, then \t~\A = ~]B. If none of(i)-dii) obtain, (3) does not obtain.

Proof: Construct a quasi matrix for A =B, which also involves giving values to
~)A and ~\B. Since \~A =B, A and B receive the same value on all lines. If none
of (l)-(3) obtain, then we must bifurcate at least one of the lines for ~1A, IB.
But this will ensure that there is a valuation where v(iA) =£ V(1B). We now
simply extend the quasi matrix to a quasi matrix for ~]A = IB by calculating
the values of 1A 3 IB, ~]B D ~\A, 1 ( 1 ^ D ~]B), 1 ( 1 5 => ~L4), and (1A D IB) &
(12? D ~L4). The values of ~]A D IB and ~\B D 1A are calculated directly, the
values of their respective denials being irrelevant. At least one of 1A D ~}B,
IB D ~\A is zero on any of the above lines where ~\A and IB have different
values, and so their conjunction calculates to 0, i.e., ifciA = IB, i.e.,
\t^A=~\B.

By inspection of the conditions for construction of a quasi matrix, pro-
vided that for some v, v(A) = 1, if none of (i)-(iii) apply we must bifurcate the
table for ~1A. But then we can conclude that there is a Cj-valuation v such that
v(A) - 1 and v(~\A) = 1, i.e., (3) is false as required.

We can now prove the promised result, which we state as follows

Theorem 3 No equivalence relation for C1 satisfying the above conditions
(a)-(c) of Section I for equivalence relations determines a nontrivial quotient
algebra.

Proof: We prove this by proving that for any such relation ~, if A ~ B then
A = B (A is the same formula as B). Suppose A ~ B. By condition (b) for ~,
C(A) ~ C(B), and so in particular 1A ~ IB, (AMpx) ~ (JBsipi) and ~\(Av px) ~
~1(B v p{), where px is the first propositional variable. Hence, by Theorem 2,
\~A=B, tiA=1B, \-(A v px) = (B v px\ and h~\(A v ^i) = H(5 vpO. We
show that these four formulas are theorems iff A = B. Clearly the four theorems
hold ifA=B, because h4 DA. So suppose A ^B. If h4 =B and \~~\A =1B,
then we have both \-{A v px) = (B v px), and also from Lemma 2 that condi-
tions (2) and (3) of Lemma 1 hold with respect to A and B. Construct a quasi
matrix for l ( i v px) = l ( 5 v px), and consider the (bifurcated) line on which
px receives value 1. This line bifurcates giving ~\px the value 1 on one half and
1px the value 0 on the other half. Consider the half on which 1px has the
value 1. Compute the quasi matrix, including the values of A, ~1A, B, ~\B,
Aw ph By ph ~\(A v p j ) , ~\(B V px). Now, since px has \,A\ipl and B v px both
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have 1. But now the value of px is the same as the value of ~]p1 on the lines in
question, and the values of A\J px and B M px are 1. So, taking the VT and '2?' of
Lemma 1 to be A v px and Bv pu respectively, the sufficient conditions (i)-(iii)
of Lemma 1 for the truth of (3) of Lemma 1 (i.e., for all vh ux(A v px) = 1
implies vx(~](A v px)) = 0; and for all v2, v2(Bv px) = 1 implies v2(1(B v px)) = 0)
fail. So, by Lemma 2, (3) fails. But (1) also fails because if A =£ B then
A\J Pi+B \i pu and (2) fails since neither A v px, nor B v px have the value 0.
Hence all of the sufficient conditions (l)-(3) of Lemma 1 for the truth of
h i 04 v px) = 1(B v px) fail, and so by Lemma 2, 1/104 v px) = 1 (£ v p ^ .
Contradiction. Thus, if h4 ~ B, then 4 = B.

In a sequel, we hope to study the algebraic properties of systems in the
neighbourhood of Cx which have nontrivial algebras. These systems cannot be
any weaker than C1? of course: if we can show that A ~ B implies A - B for
Cu then the same must hold for any system with weaker deductive resources
than Cx. Thus for instance we have the corollary

Corollary All of the systems C2, C3, . . . of [11] have only trivial quotient
algebras.

5 That is not quite an end to the question of the algebraisation of Cu

however. There are equivalence relations which partition the formula algebra of
Cx into such trivial quotient algebras. The relation of Theorem 3 will do:
A ~ B iff \-(A = B) & (1/4 = IB) & ((A v px) = (B v px)) & O(A v px) =
1(2? v px)). Now nothing so far established shows that there might not be
interesting (though perhaps bizarre) partial orders which can be imposed on this
quotient algebra. Such partial orders will, as usual, be reflexive, antisymmetric,
and transitive; the antisymmetry property in question being \A\ < 12?I and
\B\ < \A\ implies Ul = \B\. In the light of Theorem 3, this becomes Ul < \B\
and \B\ < \A I implies A = B.

There do exist such partial orders. One is: \A I < 12?I iff \~A D B and either
t/2? D A or A = B. The proof that it is a partial order is not difficult. The
algebra obtained by imposing this partial order on the (trivial) quotient algebra
with singleton equivalence classes is, as might be expected after Theorem 3,
rather strange. Some of its properties are: (i) If Ul < l2?l, then if \~B then
either W~A or A - B. In fact, every theorem is a maximal element. No non-
theorem is maximal, for if Mr A, then Ul < Uvl /41 . (ii) If Ul < I2?l then if
\-A = l * (Cv lC) , then either \j~B = l * (Cv!C) or A = B. Everything which is
equivalent to a negation* of a theorem is a minimal element, (iii) The algebra is
not a lattice with respect to v and &: Ul, \C\ < UvCl fails for the case where
A = C, and dually for &.

Another partial order, of little interest, is deterrnined by ''A is a sub-
formula of 2?". There may be other such partial orders, though it is a fair
conjecture that any such will turn out to be equally uninteresting or strange. It
would be desirable to find some set of conditions for a "reasonable" partial
order, according to which it could be shown that there are no reasonable partial
orders on quotient algebras for Cx.
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