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A Three-Valued Free Logic for

Presuppositional Languages

ROBERT J. COSGROVE, JR.

Peter Strawson revived the topic of presupposition in 1950.* In sub-
sequent writings, he proposed a notion of semantic presupposition along the
following lines: a statement A presupposes a statement B if and only if A is
neither true nor false unless B is true. Now, it is a simple matter to show that
this (semantic) relation is distinct from the more traditional notion of semantic
entailment (sometimes called “‘logical implication™). It is another matter to
show that presupposition exists in English, though I think this is also easily
done. This, however, is not to say that Strawson was right on all—or even
some—of the cases he considered, for what any particular statement pre-
supposes is a further matter still; this last matter is to be decided by what I call
one’s “theory of presuppositions”. It is not my aim to offer or to defend any
particular theory of presuppositions here. Instead, I am concerned with the
formalization of a logic in which the relation of presupposition is a nontrivial
relation.

With these things in mind, the problem this paper is addressed to is this:
Can a logical calculus be developed which will allow some statements to be
neither true nor false if they have a presupposition which fails to be true? I
present in this paper an axiomatic, first-order logic; a semantics is provided,
and the axioms are proved to be sound and complete with respect to the
semantics. The logic allows a statement to be true, false, or neither-true-nor-
false. In every case, if all the statements being considered have a truth-value
(true or false), the logic gives the same results that classical logic does. More
specifically, what is wanted here is a logic that does three things: it must allow

*] am indebted to Hugues Leblanc for his several kinds of help on earlier versions of this
paper; I have learned a great deal from him.
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statements to be truth-valueless when they have a presupposition that fails to
be true; it must be what Meyer and Lambert have called “universally free”;!
and it must otherwise agree with classical two-valued logic. (Classical two-
valued logic will hereafter be referred to as “C2”.) Furthermore, just as the
traditional concept of semantic entailment is representable (not expressible)
in C2 by the validity of an appropriate conditional (“If-then’) statement, so
I wish to be able to represent in my logic the concept of semantic presupposi-
tion by the validity of another statement. (Of course, I still wish to be able to
represent semantic entailment in this logic by the validity of an appropriate
conditional.) That is, I wish to develop a first-order logic in which the notion
of semantic presupposition is taken just as seriously as semantic entailment is
taken in C2. The logic presented here does all of these things.

The logic (called ‘F3’ here) is presented in Section 1, and strong soundness
and completeness theorems are proved there. Section 2 contains a discussion
of some of the novel features of F3.

1 I dub this logic “F3” since it is a free three-valued logic. Strictly speak-
ing, the language of F3 presented here is a language-form; in spite of this I
sometimes refer to the ‘“language of F3”. The primitive vocabulary of F3
includes: (i) denumerably many individual variables, ‘x,’, ‘x,’, ‘x3’, . . . (referred
to by ‘X°, ‘Y’ ‘Z’; these capital letters are metalinguistic variables); (ii) de-
numerably many individual parameters, ‘a,’, ‘ay’, ‘a5’ ... (referred to by ‘P’,
‘P");2 (iii) denumerably many d-place predicate parameters (for every d from
zero on), ‘f{’, ¥, ¥, ... (referred to by ‘F®, i = 1);* (iv) a one-place
predicate constant ‘E!’;* (v) two sentence connectives ‘~’ and ‘D’; (vi) one
quantifier letter ‘V’; and (vii) the punctuation symbols ‘(’, *)’, and °,’.

We will refer to the individual signs (the individual variables and individual
parameters) by means of ‘I’, ‘I, ‘I, etc. A formula of F3 is any string of
symbols from the vocabulary; these will be referred to by means of ‘4’, ‘B’, ‘C’,
and ‘D’.

We will need a substitution notation. Where A4 is a formula’ of F3, A(I'/I)
is to be the result of substituting /' for I, for every occurrence of / in A; and
Ay, Iz, . . LG L, . . ., 1) is to be the result of simultaneously substituting
I} (1 < i < n) for every occurrence of I; in A. We will call APy, Py, ..., Py/
P, P,, ..., Py) a parametric variant of A.%

The well-formed formulas (wffs) of F3 are: (i) any d-place predicate letter
followed by d individual parameters—these are the atomic wffs; (ii) ~A4 and
(4 D B), if A and B are wffs—these are, respectively, the negation of A and a
conditional; and (iii) (VX)A, if A(P/X) is a wff—(VX)A is a (universal) quan-
tification.

A quasi-wff is A(X/P) if A is a wff and P occurs in A but X does not
occur in A. A wff of the form E!P is an existence statement. Any set of wffs
to which infinitely many individual parameters are foreign will be called
infinitely extendible. The length of a wff A (I(A)) is: (i) 1, if A is atomic;
(ii) /(B) + 1, if A is a negation ~B; (iii) {(B) + I(C) + 1, if A is a conditional
(B D C); and (iv) I(B(P/X)) + 1, if A is a quantification (VX)B. The sub-
formulas of a wff or quasi-wff A are: (i) A itself; (ii) B, if 4 is a negation ~B;
(iii) B and C, if A is a conditional (B D C); (iv) every one of B(a,/X), B(a,/X),

~
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B(a;/X), . .., if A is a quantification (VX)B; and (v) every subformula of a
subformula of A. The wffs of F3 are presumed to be alphabetically ordered.”
There are several defined signs that will prove to be of some interest:?®

(AvB) =((4 DB)DB)

(A& B)=~(~Av~B)
(A=B)=((A DB) & (B D A))
(A1 B) =(4 D (4 DB))

-A =(A4 D ~A4)

Ji(4) =~(4D~A)

Js(4) =~(~4DA)

D(A) = ~(y(4) v I5(A))

(4 > B) = (J;(A) v J3(A4)) D Jy(B))
(4= B)=((4 ~ B) & (J,(4) D -B))
(3X)A =~(VX)~A.

The axioms of F3 are any wffs of any of the following kinds:

Al ADBDA4)

A2 ADB)D((BDCYDMUADCY
A3 (4AD~A)DA)DA

A4 (~AD~B)D(BDA)

AS (VX)(ADB)D({(VYX)A D(VX)B)
A6 4D (VX)A

A7 E!PD((VX)A D A(P/X))

A8 (VX)E'X

A9 —(3X)(A4DA)D~(IX)(A D A)

and any wff of the sort (VX)A where, for some P foreign to (VX)A, A(P/X)
is an axiom.®

Rule. From A and (4 D B), infer B. (B is the ponential of A and (A D B).)

Proofs are defined in the expected way. If S is a set of wffs of /'3 and A is
a wff of F3, we say that A is derivable from S (S | A) if there is a proof of 4
from S. And, as a special case, A is provable, or A is a theorem (|-A), if A is
derivable from the empty set.

A set S of wffs of F3 is syntactically consistent if there is no wff 4 such
that S F A and S = ~A4; S is syntactically inconsistent otherwise. S is maxi-
mally consistent if S is syntactically consistent and for any wff 4 not derivable
from S, S U {4} is syntactically inconsistent. S is omega-complete relative to
a set T of individual parameters if for any quantification (VX)4, S F (VX)4
iff S = A(P/X) for every P in . T may be empty;if it is, S is omega-complete
relative to ¢ if every (universal) quantification is derivable from S.

1.1 The semantics of F3 A truth-value assignment, a, is to be any function
from the atomic wffs of F3 into {1, 2, 3}. X is to be any (possibly empty) set
of individual parameters of F3. Then, («,X) is a truth-value pair, and will be
referred to as ‘ay’. A truth-value pair (o, X) is existence-normal if: (i) az(E!P) =
1 forevery P in X, and (ii) ax(E!P) = 3 for every other P. From this point on,
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we will restrict our attention to existence-normal truth-value pairs, and we will
usually call them just “tv-pairs”.
The value of a wff 4 on an existence-normal tv-pair («, XZ) is:

(i) if A is atomic, ax(A) = a(A4)

(ii) if A is a negation ~B, as(A) =4 — ax(B)

(iii) if A4 is a conditional (B D C), az(A) = max(l, az(C) — ax(B) + 1)
(iv) if A4 is a quantification (VX)B,

1 ifag(B(P/X))=1forevery Pin X
ag(A) =<3 if ax(B(P/X)) =3 for some Pin X
2 otherwise.

With this done, we say that A is true on (o, X) if as(A4) = 1; A is false on («,Y)
if az(A) = 3; otherwise, A4 is neither-true-false on («, Z).'°

The resultant truth-tables for the sentence connectives are presented
below.

A ~A -A Ji(4) J,(4) J5(4)
1 3 3 1 3 3
2 2 1 3 1 3
3 1 1 3 3 1

>11 2 3 Ij1 2 3

111 2 3 1 2 3

211 1 2 211 1 1

311 1 1 311 1 1

=11 2 3 =11 2 3

1|1 3 3 1{1 3 3

2 (1 1 1 213 1 1

311 3 3 311 3 3

A set S of wffs of F3 is tv-verifiable if there is a tv-pair (o, Z) on which
every member of S is true. (A wff A4 is tv-verifiable if {A4} is.) S is semantically
consistent if there is a tv-verifiable set S’ to which S is isomorphic.!! S is
semantically inconsistent if it is not semantically consistent. A is a semantic
consequence of S (S entails A; S FEA4)if S U {-4} is semantically inconsistent.
A is valid (logically true, E A), if ag(A) = 1 for every as. (This will be so iff
{—A} is semantically inconsistent.) A4 is logically false if az(A) = 3 for every
os. And, A is logically indeterminate if A is neither logically true nor logically
false. A and B are logically equivalent if (A = B) is logically true (so that
as(A) = ax(B) for every ay).
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Before proceeding, a few comments on the semantics of F3 are in
order; we wish to point out some of the novelties of the semantics. (i) Since
may be empty, there may be nothing; i.e., every singular term may fail to
denote and every existential quantification may fail to be true. In particular,
(3x)(f(x) v ~f(x)) is not a logical truth, and we are, therefore, free of Russell’s
lament.!? (ii) Any atomic wff (except an existence statement) containing a
nondenoting singular term may be true. It is not required that all such atomic
wifs be either neither-true-nor-false or false. This, I think, is desirable, for a
sentence of English such as ‘Pegasus is a winged-horse’ is, I think, true even
though ‘Pegasus’ fails to denote. Also, such a sentence may be false, as Russell
urged with his famous “King of France” example; or, it may be neither-true-
nor-false as Strawson sometimes argued.!3 (iii) Not only are there valid argu-
ments in /3, but there are valid statements as well. This is one of the notable
points of difference between F3 and the work of Professor Woodruff.!4
(iv) Any conjunction is ““as false as’ any of its conjuncts, and any disjunction is
“as true as” any of its disjuncts. Thus, (p & ~p) is never true, but it is not
necessarily false, for if ‘p’ and ‘~p’ are neither-true-nor-false, so is (p & ~p).
But, if any conjunct of some conjunction is false, so is the entire conjunction.
The case is similar for disjunctions: (p v ~p) is not necessarily true, but it is
never false. However, if any disjunct of a disjunction is true, the entire dis-
junction is true.!s Finally, we note that even though (p v ~p) is not valid,
(p v —p) is valid; ‘-p’ is the exclusion-negation of ‘p’. (v) By the construction
of ay, azx((VX)A) = 1 iff az(A(P/X)) = 1 for every P such that as(E!P) = 1.
And, az((3X)A4) = 1 iff ag(A(P/X)) = 1 for some P such that ax(E!P) = 1.16
(vi) az(E!P) = 1 or ax(E!P) = 3, since it is presumed that a statement is neither-
true-nor-false only if it has a presupposition that fails to be true, and E!P never
has a presupposition that fails to be true. (vii) Neither (VX)4 D A(P/X)
(universal instantiation) nor A(P/X) D (3X)A (existential generalization) is
valid, but both E!P D ((VX)A4 D A(P/X)) and E!P D (A(P/X) D (3X)A) are
valid. (viii) The table for (4 — B) is the same as Woodruff’s table for his
(4 =B).Y

1.2 Preliminary lemmas This section contains various theorems concerning
F3. Many of these will be useful in proving the soundness and completeness of
our axioms. Some are very familiar results; others are a bit unusual. We begin
with some results on provability. (Where a proof is relatively straightforward,
only the numbers of the theorems needed for the proof are listed to the right
of the theorem.)

T1 (a) IfS A, then S' & A for at least one finite subset S' of S.
(b) IfS A, then SUS' A for every set S' of wffs of F3.

(c) IfA isa member of S, then S F A.

(d) If A is an axiom of F3, then S = A for every set S of wffs of F3.
() IfSHFAand S +A4DB, thenS FB.

(f) Ifeither St AorS F~A4D~B, thenS B DA.

(g) IfStE~A thenStADB.

() IfS FA, then S E(VX)A, so long as X is foreign to A.

G IfS F(VX)(A DB), then S F(VX)A D (VX)B.

G IfS E(VX)(ADB)and S F(VX)A, then S - (VYX)B.
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Proof: (a)«(j) are just T2.1.1(a)-(g), (0), (p), (@), of [7]. The proofs there will
suffice.

T2 (@) IfSEFADB,thenSHBDC)D(ADC0).
() IfSFADBand S EFBDOC, thenS HFADC.

() IfSFADB,thenS HF(CDA)D(CDB).

(d SHFADA.

) IfSFAIMBDC)andS FAIB, thenSHAIC
) IfSU {4} FB,thenS FA1B. (The Deduction Theorem for F3.)
& IfSHFADBandS FBIC thenSHAIC

(h) IfSFADBand SU {B} FC, thenSU {4} FC.
@D SkE~~4DA4.

(G) SFEAD~~A4.

k) IfSkFE~~A, then S FA.

(D) IfS A, thenS H~~A.

(m) IfSHADB, thenS -~BD~A.

(n) IfSEFADBandS F~B, then S F~A.

(0) IfS+F~(ADB), thenS+Aand S -~B.

(p) IfStHAandS \~B, then S =~(A4 D B).

(Q IfSF--A4, thenS FA.

() IfSHAI-A, thenS F-A.

(s) IfStF-AandS F—-~B, thenS FA DB.

Proof: See T10.1.1(a)-(s) of [7].

T3 (a) IfSHFADB, then SU {4} FB. [T1(c), T1(b), T1(e)]
(b) IfSU A} FBand S A, then S FB. [T2(f), T1(e)]
() SFE~(fP)DOfPHDA. [T2(d), T2(1), T1(g)]
(d) IfStE~ADB, thenS F~BDA. [T2(m), T2(1), T2(b)]
(e) IfStAD~B, thenS B D~A. [T2(m), T2(j), T2(b)]
T4 (a) IfStAand S AI1B, then S - B. [T1(e)]
(b) IfSHFADB, then S HAIB. [T1(D)]
(¢) IfSHAIB, thenSU {A} FB. [T1(b), T1(c), T4(a)]

TS

(@) SFA&BIffSHAand S FB.

[T2(0), T2(n), T2(k),
T1(f), T2(m), T2(p)]

(b) SFA=BiffSFADBand S FBDA. [T5(a)]
(c) IfSFA=Band S A, then S I B. [T5(b), T1(e)]
(d IfSFA=BandS kB, thenS - A. [T5(b), T1(e)]
T6 () SEFADMBDOCH=(BDOADC)).

(b) S H(VX)A D(E!PDA(P/X)).1®

()

S F(VY)((VX)A D A(Y/X)).

(d) IfS FA(P/X) for some P foreign to S and to (VX)A, then S F(VX)A.

Proof: (a) Wajsberg [21] established the weak completeness of Al1-A4 for
(what comes to the same as) the sentential fragment of F3. Thus, since
(ADMBDC)) =B D (A D(C))isvalid, it is provable. Hence, (a) by T1(b).

(b) S F (E!P D ((VX)A D A(P/X))) = (VX)A D (E!P D A(P/X))) by (a).
But, by T1(d), S FE!P D ((VX)A4 D A(P/X)). Hence, (b) by T5(c).
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(c) Since E'P D ((VX)A D A(P/X)) is an axiom, so is (VY )(E!Y D ((VX)A D
A(Y/X))). Hence, by T1(d), S E(VY)(E!Y D ((VX)A D A(Y/X))). Thus, S
(WY)E!'Y D(VY)((VX)AD A(Y/X)) by T1(i). But since (VY)E!Y is an axiom,
S F(VY)E!Y by T1(d). Hence, (c) by T1(e).

(d) The proof of (d) is like that of T2.1.1(t) in [7]. Note in particular that
T2.1.1(s) is our T6(c).

T7 (a) S is syntactically inconsistent iff S = A for every wff A.

(b) S is syntactically inconsistent iff S F=~(p D p).

(c) If Sis syntactically inconsistent, then so is every superset of S.

(d) S is syntactically inconsistent iff at least one finite subset of S is syntac-
tically inconsistent.

() IfSFAandS F-A, then S is syntactically inconsistent.

(f) IfS U {A} is syntactically inconsistent, then S - —A.

(8) IfS U {-A} is syntactically inconsistent, then S - A.

(h) IfS A, then S U {-A} is syntactically inconsistent.

(i) A isvalid iff {—A} is not tv-verifiable.

Proof: (a)-(d) are just T2.1.2(a)-(d) of [7]; (e)-(i) are just T10.1.5(a)-(e) of
[7]. The proofs there will suffice.

T8 If S is syntactically consistent, then at least one of S U { A} and S U {-A4}
is syntactically consistent.

Proof: Suppose both S U {4} and S U {-A} are syntactically inconsistent.
Then, by T7(f) and (g), S -4 and S I A. Hence, by T7(e), S is syntactically
inconsistent. Therefore, T8.

T9 (a) IfSFA1BandS F-B, then S -A. [T3(a), T1(c), T1(e),
T1(b), T1(e), T7(f)]
(b) IfSEFADBandS -B, then S --A. [T4(b), T9(a)]

(c) SF-(A1B)iffSFAand S F-B.

Proof: (c) S F—-(4 1 B)I(A & —B) by a proof like that of T6(a). So, suppose
S F—(1B). Then S -4 and S F--B by T4(a) and T5(a). Next, suppose that
S A and S F -B. Then, since S - (4 & -B) I —(4 I B) (proof like that of
T6(a)), (c) by T5(a) and T4(a).

T10 (a) If S U {A(P/X), A,(PIX),. .., A, (P/X)} - B(P/X), then S U
{(VX)A,, (VX)A,, .. .,(VX)A,3 | (YX)B, so long as P is foreign to S,
(VX)A,,(VX)A4,, ..., (VX)A,, and to (VX)B.

(b) IfS U {AP/X)} F B(P/X) D C(P/X), then S U {(VYX)A} F (VX)B D
(VX)C, so long as P is foreign to S, (VX)A, (VX)B, and (VX)C.

(c) SU{VX)A DB} F@EX)4 D(@3IX)B.

d SF3EX)ADA.

(&) SUVYX)ADB)} F@EX)4 DB.

) IfS E(VX)( D B), then S = A D (VX)B, so long as X is foreign to A.

(2 SEWY)AY/X)DNX)A.

(h) SEFE@EX)ADA4)D@EY)EIY.Y
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Proof: (c)«(g) are proved as T5.3.8(e), (g), (h), (j), and (k) of [7]. (a) is
proved in a way similar to T5.3.8(c) of [7]; see [1], pp. 80-81, T2.3.15(c) for
complete details.

(b) Let P be foreign to §, (VX)A, (VX)B, and (VX)C. Suppose S U
{A(P/X)} FB(P/X)D C(P/X). Then (b) by (a) and T13).

(h) S F(VX)E!X D ((4 D 4) D E!X)) by T1(d). Hence, S F (VX)E!X D
(YX)((A4 D 4) D ELX) by T1({). So, by T1(d) and T1(e), S F(¥X)((4 DA4) D
E'X). But, S U {(VX)((4 D 4) DEX)} F 3X)4 D 4) D (3X)E!X by
T10(c). So, S F(3X)(4 D 4A) D (3X)E!X by T3(b). But, S H (VY)~E!Y D
(VX)~E!X by T2(d) if X and Y are the same, and by T10(g) if X and Y are
different. So, by T2(m), S F(IX)E!X D (IY)E!Y. Thus, (h) by T2(b).

T11 (a) S F(VX)A D(VY)A(Y/X).
(b) S EMX)VY)A D (VY)(VX)A.

Proof: (a) Since (VY)A(Y/X) is presumed to be well-formed, Y is sure to be
foreign to (VX)A; hence, (a) by T6(c) and T10(f).

(b) {E!P, EIP'} F (VX)(VY)A D (VY)A(P/X), and {E!P, E!P'} I
(YY)A(P/X) D (A(P/X)(P']Y), by A7, T3(a), and T1(d). Hence, by T2(b),
{E!P, EIP'} F (VX)(VY)A D (A(P/X))(P'/Y). Hence, by T10(a), {(VZ)E!Z,
EIP'} F (VZ2)((VX)(VY)A D (A(P'/Y))(Z/X)). Hence, by T1(d) and T3(b),
{EBIP'} E(VZ)((VX)(VY)A D (A(P'/Y))(Z/X)). And so, by TI10(f),
{EIP'} F (VX)(VY)A D (VZ)(A(P'/Y))(Z/X). Hence, by (a) and T2(b),
{EIP'} F (VX)(VY)A D (VX)A(P'/Y). Hence, by T10(a), {(VZ)E!Z} F
VZ)(VX)(VY)A D (VX)A(Z/Y)). So, by TI(d) and T3(b), F (VZ)
(VX)(VY)A D (VX)A(Z/Y)). Hence, by T10(f), F (YX)(¥YY)A D (VZ)
(VX)A(Z/Y). And so, by (a) and T2(b), F(VX)(VY)A D (YY)(VX)A. Hence,
(b) by T1(b).

Ti12 (a) S F~3x)(f(x) Df(x)) D(VX)A.

(b)  SUI~EX)() D)} F (VXA

Proof: (a) Let P be foreign to (VX)A. = ~(f(P) D f(P)) D A(P/X) by T3(c).
Hence, F(VX)(~(f(X) D f(X)) D A) by T6(d). Hence, by T1(i), F(VX)
~(f(X) Df(X)) D(VX)A. Hence, F(¥x) ~ (f(x) D f(x)) D(VX)A4 by T10(g)

and T2(b). Thus, since = ~~(Vx) ~ (f(x) D f(x)) D (¥Vx) ~ (f(x) D f(x)) by
T2(@), (a) by T2(b) and T1(b).

(b) Proofis by (a) and T3(a).

Next we prove presupposition-free varieties of the familiar principles
Universal Instantiation and Existential Generalization.

T13 (a) SV {E!P} F(VX)A4 D A(P/X). [T1(d), T3(a)]
(b) SU{EIP} FAWP/X)DEX)A. [T13(a), T3(e)]

Finally, we state that the isomorphism relation has the necessary proper-
ties for the proof of the soundness and completeness theorems.

T14 (a) Sis isomorphic to S.
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(b) IfS'is isomorphic to S, then S is isomorphic to S'.
Proof: These are T2.1.3(a), (b) of [7]. The theorems are proved there.

1.3 The soundness of F3 Demonstration of the Soundness Theorem for
F3 is rather straightforward, but somewhat tedious. It is, though, fairly obvious
because of the simplicity of our deductive apparatus.

T15 If A isan axiom of F3, then so is any parametric variant of A.

Proof: By cases; it involves just tedious substitutions.
T16 If A isan axiom of F3, then A is valid.

Proof: By cases for each of A1-A9. The generalization axiom is proved with
the aid of T15.

T17 If S is tv-verifiable, then S is syntactically consistent.

Proof: Let the column consisting of 4, A,, . .., A, be a proof of ~(p D p)
from S, and suppose S is true on some tv-pair («,X). It is easily shown by
induction on i that for each i from 1 through n, A; would be true on (a, X).
Hence, in particular, 4, (= ~(p D p)) would be true on («,X). But this is
impossible. Hence, S is true on no tv-pair, and is therefore not tv-verifiable.
Thus, T17 by T7(b).

T18 If FA, then A is valid (FA). (Weak Soundness)

Proof: Suppose FA. Then {-A} is syntactically inconsistent by T7(h), and
so, by T17, {-A} is not tv-verifiable. Thus, A4 is valid by T7(i).

T19 (a) If S' is isomorphic to S and S’ is syntactically consistent, then S is
syntactically consistent.

(b) If S' is isomorphic to S and S' is syntactically inconsistent, then S is
syntactically inconsistent.

Proof: See T2.2.6(a){(b) of [7].

T20 If S is semantically consistent, then S is syntactically consistent.

Proof: Suppose S is syntactically inconsistent. Then by T19(b), so is every
set to which S is isomorphic. Hence, by T17, none is tv-verifiable. Hence, S is
semantically inconsistent.

T21 IfS F A, then S EA. (Strong Soundness)

Proof: Suppose S FA. Then S U {-A4} is syntactically inconsistent by T7(h).
Hence, by T20, S U {-A4} is semantically inconsistent. Thus, S F A.

1.4 The completeness of F3 The proof of the Completeness Theorem
employed here is of the Henkin variety. Thus, we will proceed toward the
construction of a maximally consistent set of wffs from any syntactically con-
sistent and infinitely extendible set of wffs. First, we define the Lindenbaum
extension of a syntactically consistent set of wffs.
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Let S be a syntactically consistent set of wffs. Let 4, be the alpha-

betically n'" wff of F3. Let the Lindenbaum extension of S be U Sy 5S.)

n=0
where:
(i) So=S,and
Sp-1 Y {4,3,if S,-; U {4,} is syntactically consistent
@) Sp(n>0)=

Sp-1,if S,y U {4, } is syntactically inconsistent.

Then show in the usual way that: (a) for each n from 0 on, S, is syntactically
consistent; (b) S., is syntactically consistent; and (c) S., is maximally con-
sistent. Thus,

T22 The Lindenbaum extension of a syntactically consistent set of wffs
of F3 is a maximally consistent set.

T23 Let S be a maximally consistent set of wffs of F3. Then, for any wff A
of F3, exactly one of A and —A is derivable from S.

Proof: “At most one” is by the syntactic consistency of S and T7(e). “At
least one” is by a supposition to the contrary, the maximal consistency of S,
and T8.

T24 If S is syntactically consistent, then at least one of S U {~(3x)(f(x) D
FONY and S U {3x)(f(x) D f(x))} is syntactically consistent.

Proof: Suppose both § U {~3x)(f(x) D f(x)} and S U {(3x)(f(x) D
f(x)} are syntactically inconsistent. Then S F —-3x)(f(x) D f(x)) and
S F = ~@x)(f(x) D f(x)) by T7(f). Hence, S = ~@x)(f(x) D f(x)) by A9,
T1(d), and T1(e). Hence, S is syntactically inconsistent by T7(e).

Next, we define the Z-extension of an infinitely extendible set of wffs.
Let S be an infinitely extendible set of wffs of F3. Let £ consist of all
the individual parameters of F'3 foreign to S.

Case 1. S U {~@x)(f(x) D f(x))} is syntactically consistent. Then the
Lindenbaum extension S, of S U {~@x)(f(x) D f(x))} is to be the Z-
extension of S.

Case 2. S U {~@x)(f(x) D f(x))} is syntactically inconsistent. Then, let
S§0=S U {@xX)(f(x) D F(x)}

S™n >0)=S8""1 U {E!P,, (Bu(Pu/X,) 1 (VX,)B,)}, where P, is the alpha-
betically earliest member of X foreign to E!P, (By(P,/X,) 1
(VX)By), ..., ElPy_y, (Byoy(Pp_y/Xp-y) T (VX ))B,_,), and
(YX,)B,, and (VX,)B, is the alphabetically n'" quantification
of F3

and let S* = |J S”.
n=0

Finally, let S_, the Lindenbaum extension of S . be the Z-extension of S.
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T25 Let S be infinitely extendible; let X consist of all the individual param-
eters of F3 foreign to S; and let S, be the Z-extension of S.

(a) If Sis syntactically consistent, then S, is maximally consistent.

() If~3@x)(fx)D f(x)) e S, then S, is omega-complete relative to @.
© If~@x)(f(x) D f(x)) ¢ S, then S, is omega-complete relative to Z.

Proof: (a) Let S be syntactically consistent.

Casel S U {~3Bx)(f(x) D f(x)} is syntactically consistent. Then by T22,
S, is maximally consistent.

Case2. S U {~@3x)(f(x) DO f(x))} is syntactically inconsistent. There are
four parts:

(I) Show S°is syntactically consistent. By T24.

(I) Show S” (n > 0) is syntactically consistent. Suppose S” is syntac-
tically inconsistent. Then by T7(c)-(d), there is sure to be some i (i > 0) such
that S° U {E!P,, (B{(P/X) 1 (VX)B)),..., E'P;, (Bi(Pi/X;) 1 (VX))B))} is
syntactically inconsistent. Thus by T7(f), S° U {E!P,, By(P,/X,) 1 (VX)B,, . . .,
EP;_y, Bi 1(Pi_1/Xi—1) 1 (VX;-)B;_y, E!P;} = —(B;i(P;/X;) 1(VX;)B;). Call the
set before the turnstile “S’~! U {E!P;}”. Thus, by T9(c),

(@) S'"'U {E!P;} - By(Py/X;) and
(i) $'' U {E!P;} = ~(VX))B;.

Now, pursuing (i),lwe find that S*~1 U {(VX,)ELX; }. F (VX)) B;, by T10(a).
Thus, by T2(f), S~ F (VX)E'WX; I (VX;)B;. But §'°! - (VX;)E!X;, by A8
and T1(d). Thus,

(i*) S'~! - (VX;)B; by T1(e) twice.

Next, pursuing (ii), it is found that S~ FE!P; I -(VX;)B;, by T2(f). Let Y be
an individual variable foreign to —(V.X;)B;. Then, (E!'Y I ~(VX;)B;)(P;/Y) is just
(E!P; 1 —(VX;)B;). So, S~ + (E'Y I ~(VX;)B;)(P;/Y). Therefore, since P; is
foreign to S'~! and to —(VX;)B;, it is found by the definition of ‘I, T6(d),
and T1(i), that S~! F (VY)E!Y D (VY)(E!Y D —(VX;)B;). But S'7!
(VY)E!Y by A8 and T1(d). So, Si-t F(VY)(E!Y D —(VX;)B;) by Tl(e). How-
ever, ‘™1 U {(YY)(E!Y D ~(VX))B))} F (IY)E!Y D ~(VX;)B; by T10(e).
Thus, S"! + (3Y)E!Y D —(VX;)B;, by T3(b). Remember though that
{@x)(f(x) D f(x))} C8°CSi-1 Hence, Si-! F (3Y)E!Y by Tl(c), T10(h),
and T1(e). Thus,

(ii*) S~ F—(VX;)B; by T1(e).

Thus, by (i*) and (ii*), S* ! is syntactically inconsistent by T7(e).

Now, the same argument repeated i — 1 more times will show that S° is
syntactically inconsistent, which contradicts Part 1. Thus, S” (n = 0) must be
syntactically consistent.

(III) Show S is syntactically consistent. This is done in the usual way by
supposing ST is not syntactically consistent. Hence, by T7(d) at least one finite
subset S’ of S would be syntactically inconsistent. Hence, there would
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be an n such that every member of S’ would be in S”, and this set will also
be syntactically inconsistent by T7(c). But this contradicts Part II. Hence,
S is syntactically consistent.

(IV) Show S_, is maximally consistent. By (III) and T22. Hence, (a).

(b) Suppose ~@x)(f(x) D f(x)) € S Then by T12(b), S, F (VX)A for
every quantification (VX)A of F3. Hence, S_, is omega-complete relative to @.
(¢) Suppose ~(@x)(f(x) D f(x)) ¢ S- Let (VX)A be an arbitrary quantifi-
cation of F3. Show S, F(VX)A4 iff S, = A(P/X) for every P e . (i) Suppose
S, F(VX)4. By T6(b), S, F (VX)A4 D (E!P D A(P/X)), for every P. Thus,
S, FE!P D A(P/X) for every P. But for every P € =, S, I~ E!P by its construc-
tion and T1(c). So by T1(e) again, S, F A(P/X) forevery P e Z. (ii) Suppose
S.. FA(P/X) forevery Pe . Then S,, F A(P,/X), where P, is the n'" member
of Z. But S, = A(P,/X) 1 (VX)A by the construction of S and T1(c). So,
by T1(e), S., F(VX)A. Thus, (c).

We now show how to construct an existence-normal tv-pair («,2') on
which every member of S__ is true. Let (a, Z') be as follows: « assigns the value
1 to any atomic wff 4 such that S, F A (and hence, by the syntactic con-
sistency of S, not S, F~A4, and not S_, F -A4), and « assigns the value 3 to
any atomic wff 4 such that S_, -4 (and hence, not S F A4). By T23, these
are all the cases we need to consider. ' is either @ or the set = of T25(c).

Then show of any wff A of F3 that:

(i) if S, A4 (and hence, not S, F~4 and not S, F-4), ag'(4) =1
(ii) if S,, -4 (and hence, not S, F A4), az(A4) = 3.

Again, by T23, these are all the cases we need to consider.

Proof: The proof is by induction on the length, /(A), of A. The induction is
by cases, with atomic wffs forming the basis of the induction. The other cases
are negations, conditionals, and universal quantifications. In every case, we
first suppose that S, = A, and show that az'(4) = 1. Then we suppose that
S, F -4, and show that ay(-4) = 1. Concerning quantifications, there are
two possibilities: (i) ~@x)(f(x) D f(x)) € S,; and, () ~@Ax)(f(x) D
f(x)) ¢ So,. Under (i) it is shown that ay'((VX)B) = 1 for every quantification
(VX)B, since S, is omega-complete relative to @ and every quantification
(VX)B is true on (a,®), no matter the . Under (ii), we use the omega-
completeness of S, relative to ' (established by T25(c)), and proceed in a
way similar to that for negations and conditionals. The complete details are
in [1], pp. 146-148.

Thus, since every member of S is a member of S_,, and is, by T1(c),
derivable from S, every member of § is sure to be true on the existence-
normal tv-pair («,2"). Hence,

T26 If S is syntactically consistent and infinitely extendible, then S is tv-
verifiable.

T27 If A is valid (EA), then FA. (Weak Completeness)

Proof: Suppose A is valid. Then {-A} is not tv-verifiable by T7(i). Hence,
{—A} is syntactically inconsistent by T26. And so, by T7(g), 4.
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T28 To any set S of wffs of F3, there corresponds a set S' of wffs of F3
such that S' is infinitely extendible and S is isomorphic to S'.

Proof: SeeT2.3.10 of [7].

T29 If S is syntactically consistent, then there is an infinitely extendible and
syntactically consistent set of wffs to which S is isomorphic.

Proof: By T28 and T19(a).

T30 If S is syntactically consistent, then S is semantically consistent.
Proof: By T29 and T26.

T31 IfS EA, then S F A. (Strong Completeness Theorem)?°

Proof: Suppose S FA. Then by T30, S U {-A4} is syntactically inconsistent.
Hence, by T7(g), S FA.

We can summarize the preceding results as follows:

T32 (a) FAiff FA.
(b)  Sissyntactically (in)consistent iff S is semantically (in)consistent.

) SEAIfS EA.
We close with a compactness theorem:

T33 (a) S is syntactically consistent iff every finite subset of S is syntac-
tically consistent.

(b) S is semantically consistent iff every finite subset of S is semantically
consistent.

Proof: (a) By T7(d).
(b) By (a) and T32(b).

2 Earlier, following Strawson, we characterized the notion of presup-
position in the following way: A presupposes B iff A is neither-true-nor-false
unless B is true. We will re-express this as:

(i) A presupposes B iff B is a necessary condition for the truth of A and
B is a necessary condition for the falsity of A.

Also, we adopt the following informal definition of entailment:

(ii) A entails B iff the conjunction of A and the denial of B is inconsis-
tent.

We use these definitions because they seem to accord best with Strawson’s
discussion of these two topics.2! Now, according to Strawson, two statements
A and B are inconsistent if they cannot both be true together. Our character-
ization in Section 1 of a semantically inconsistent set captures this idea exactly.
And, when one denies a statement B, one has implicitly asserted that B is not
true—he has not necessarily asserted that B is false. Hence, we would represent
the denial of B as “~B”. Thus, we arrive at the following formal definition of
entailment (between two wffs) for F3:22

(iii) A entails B iff {A, —B} is semantically inconsistent.



562 ROBERT J. COSGROVE, JR.

On the basis of (iii) it is a simple matter to show that 4 entails B iff B is a
semantic consequence of {A}. We will show below (T42) that 4 entails B iff
(A 1 B) is valid. Hence, just as in C2, we can represent the entailment of B by
A by the validity of an appropriate conditional in the object language.

Next, we provide a formal definition of presupposition for F3 that is
similar in structure to that of entailment.

(iv) A presupposes B iff {J,(4) v J5(4), ~J,(B)} is semantically incon-
sistent.?3

It was mentioned in Section 1 that the table for ‘-’ is precisely the table one
wants; this is claimed to be so on the basis of our informal definition of ‘pre-
supposes’ ((i) above). We will show below (T43) that A presupposes B iff
(A = B) is valid. Hence, we will have demonstrated that our formal definition
of ‘presupposes’ (= (iv)) is faithful to the informal one (= (i)).

We begin with some auxiliary lemmas: some will be directly useful in the
proof of T42 and T43; several though, are included to display some of the
features of F3. Again, when convenient, only the numbers of the theorems
needed for the proof will be listed to the right of the theorem.

T34 (a) IfSFHAVB, thenS FBvA.

() IfSHAorSFB, thenSFHAVB.
() IfSEFAvBand S F~B, then S FA.
(d IfSFAvBand S bF~4, then S FB.
() S FAv-A forany wff A of F3.

Proof: (A vB) D (BvA)isvalid. Hence (a) by T32(a), T1(b), and T1(e).

(b) Suppose S FB. Then S (4 D B) D B by TI(f). Suppose S FA. Then
S A v B by TI(f) and (a).

(¢) Suppose S (4D B)DBand S - ~B. Then S F~(4 D B) by T2(n).
Hence, S A4 by T2(0).

(d) By (a) and (¢).

(e) By A3, TI(d), and (a).

T35 (a) IfS F A, then S FJ,(A). [T2(1), T2(p)]
(b) IfS FJ,(A),then S FA. [T2(0)]
(¢©) IfS FJ3(A), then S F~A. [T2(0)]

T36 (a) S FJi(A)v~Ji(A4). (i=1,2,3)
(b) S F~J(A)=-J;(A). (i=1,2,3)

() SF-A=~J,(A).

(d SFA->B)=(~4-B).

(e) S FMU->B)=((J,(4) vJ;3(4)) 1J,(B)).
() S FJA)VI(A)iffS F(Av~A).

@ SF(A->B&B->C)D(A4-0).

Proof: (a)-(g) By the validity of the appropriate wff, T32(a), and T1(b).

T37 If A is a semantic consequence of S, then A is a semantic consequence
of any superset, SU S', of S.

Proof: By T32(c) and T1(b).
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T38 A entails B iff B is a semantic consequence of { A}.

Proof: By the definition of ‘entails’ (= (iii)) and the definition of ‘semantic
consequence’.

T39 (a) S 4~ (pDp).
(b) S FA-((A4)vI3(4)).
() SFA-(Av~A).

Proof:. (a)-(c) Like that of T36(a) above.

T40 (a) S (A4~ B) D (B D J,(A)).
(b) S (A4~ B)D(~Ji(B) DJ5(4)).
(©0 SEA->B)DMAIB).

Proof: (a)«(c) Like that of T36(a).

T41 (a) IfSFA—->Band S F A, then S FB.
(b) IfS FA - B, and either S F-BorS b ~J,(B), then S - J,(A).
() IfSFA->B thenSHAIB.

Proof: (a) Suppose S A —>BandS FA.Then S FJ,(A) by T35(a). Hence,
S F J,(A) v J3(A) by T34(a). Hence, S = J,(B) by Tl(e), and so, S - B by
T35(b).

(b) Suppose S A — B. (i) Suppose further that S = —B. Then S F ~J,(B)
by T2(1). Hence, by T2(n), S F J,(A). (ii) Suppose instead that S F ~J,(B).
Then by T36(c), T5(d), and (i), S FJ,(A).

(c) Suppose S A4 = B. Then by TI(b), S U {4} F(J,(A) vJ5(A4)) DJ,(B).
But S U {4} F A4 by TI(c); hence, S U {4} F J,(4) by T35(a). Hence,
S U {4} F J,;(A) v J5(A4) by T34(b). Hence, S U {4} F J,(B), by Tl(e).
Thus, S U {4} F B by T35(b), and so, by T2(f), S A 1 B.

T42 (a) A entails Biff A 1B.
(b) Aentails Biff A1B is valid.

Proof: (a) Suppose A entails B. Then, by T38, B is a semantic consequence
of {A}. Hence, by T32(c), {4} F B. Thus, F4 I B by T2(f). Suppose on the
other hand, that =4 I B. Then, by T4(c), {4} b B. Hence, B is a semantic
consequence of {4}, by T32(c). Hence, by T38, A entails B.

(b) By (a) and T32(a).

T43 (a) A presupposes B iff A = B.
(b) A presupposes B iff A = B is valid.

Proof: (a) Suppose A presupposes B. Then {J,(A) v J3(A4), ~J,(B)} is
semantically inconsistent. Hence, so is {/,(A) v J3(A4), -J,(B)}. Thus, by
T32(c), {J,(A4) v J3(A4)} FJ,(B). Hence, by T2(f), H(J,(4) vJ3(4A) 1J,(B).
Hence, by T36(e) and T5(d), F4 — B. Suppose for the converse that -4 — B.
Then by T36(e) and T5(c), H(J,(A4) v J5(4)) 1 J;(B). Hence, by T4(c),
{J1(A) v J3(A)} | J,(B). Hence, by T32(c), J,(B) is a semantic consequence
of 1J,(4) v J5(A4)}. But ~J (B) is logically equivalent to -J,(B). Hence,
{J1(A4) vJ3(A4), ~J,(B)} is semantically inconsistent, and A presupposes B.

(b) By (a) and T32(a).
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T44 If A presupposes B, then A entails B.

Proof: Suppose A presupposes B. Then by T43(a), F4 — B. Hence, by
T41(c), FA 1 B. Hence, A entails B by T42(a).

Theorems 42 and 43 are the results promised in the opening paragraphs
of this section. T44 establishes a connection between presupposition and the
more familiar notion of entailment; the relation between entailment and pre-
supposition is found to be an inclusion relation. That is, if A presupposes B,
then A entails B, but the converse does not hold in general. Thus, we have
verified our earlier claim that presupposition and entailment are distinct
relations.

This logic is quite neutral with respect to any particular theory of pre-
suppositions. In view of T43, we can gain some insight into the notion of
presupposition. By T43 and T39(a), we find that every sentence presupposes
every valid wff. This fact may be uninteresting, but it is, nonetheless, to be
expected. For, if ever a valid wff were not true, we would certainly be hard-put
to say what the truth-value of, say, an atomic wff is. We would hesitate to say
it is either true or false, no longer knowing what to expect!

It is an immediate consequence of our definition of presupposition that
every sentence presupposes its own bivalence—that it is either true or false.
Now, no matter whether we express the bivalence of 4 as (J;(A4) v J5(A4)) or
as (A v ~A), we see by T39(b)-(c) and T43 that every sentence does pre-
suppose its own bivalence. This is most natural, for if this presupposition is
not satisfied (i.e., if A is not bivalent), A is neither-true-nor-false.

Informally, it has been recognized that if 4 presupposes B and B is not
true, A is neither-true-nor-false. By T40(a)-(b), T41(b), and T43, we see that
this is provable (valid) in F3. Also, since the presuppositions of a sentence are
a subset of the entailments of a sentence (this by T44), we look for analogues
of modus ponens and modus tollens for ‘>’. These are stated respectively in
T41(a) and T41(b).

Turning now to ‘=, (4 = B) is useful for saying that A presupposes only
B.?* Intuitively, A = B is true iff B is both a necessary and sufficient condition
for the truth or falsity of 4. Then we can prove that:

T45 (a) IfSEA=Band S B, then S F=J,(A) vJ;(A).
(b) IfSFA=BandS B, thenS HAv~A.

() IfSFA=BandS F A, then S FB.

(d IfSEFA=BandS FJ,(A),then S --B.

() IfSEA=BandS FJ,(A), then S =~J(B).

) IfSEA=BandS FJ,(B),then S FAv~A.

(g IfSFEA=BandS FJ,(B),thenS FJ,(A) vJ5(4).
(h) IfSEFA=Band St -B, then S FJ,(A).

() IfSFA=Band S &--J,(B), then S J,(A).

() IfSFA=BandS t~A, then S FBand S FJ,(B).
k) IfSEA=BandS J5(A),then S -Band S - J,(B).

Proof: (a)-(k) By the validity of an appropriate conditional, T32(c), T5(a),
and T1(e) or T4(a).
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Informally, T45 shows that F3 reflects the following claims:

if A presupposes only B, and B is true, then A4 is either true or false (a, b, f, g);
if A presupposes only B, and A4 is true, then B is also true (c);

if A presupposes only B, and A is neither-true-nor-false, then B is not true (d, e);
if A presupposes only B, and B is not true, then A is neither-true-nor-false (h, i);
and, if A presupposes only B, and A4 is false, then B is true (j, k).

Now, beyond the facts that: (i) every wff presupposes every valid wff
(T39(a)), and (ii) every wff presupposes its own bivalence (T39(b), (c)), F3 is
neutral concerning the presuppositions of any particular statements. In general
then, in view of the strong soundness and completeness theorems for F3
(S F A iff S E A, not just FA iff FA), one can add as nonlogical axioms (or
axiom-schemata) statements which express one’s theory of presuppositions,
thereby obtaining a logic “containing” one’s theory of presuppositions. It is
possible, by the addition of appropriate extra axioms (and the expected re-
visions of the semantics), to state what the presuppositions of a particular
(kind of) statement are by means of ‘—’°, and that these are the only pre-
suppositions of that (kind of) statement by means of ‘=’. This logic is, for
example, neutral with respect to the Russell-Strawson debate on the truth-
conditions for statements containing singular terms. Either view can be
accommodated by the addition of one or two (rather obvious) axiom-schemata.
In particular, should one feel (contra-Strawson) that valid statements are the
only statements presupposed by any statement, one can represent this in the
logic (and not merely in the meta-language). One would add (4 = (p D p))
as an axiom, thereby obtaining as theorems all and only the theorems of
Meyer and Lambert’s system FQ.% If, in addition, one is prepared to assume
that: (i) every singular term has a referent, and (ii) every domain of discourse
is nonempty, one can represent these claims in the logic by the addition of
E!P, for every P. When this is added to the preceding axiom, the logic obtained
is just C2 with an extra one-place predicate constant ‘E!’. (These claims will
be proved shortly.)

Let me summarize some of the novelties of F3. F3 does seem to capture
many of the features of a Strawsonian notion of presupposition. For example,
the Kiparskys [4] have noted that presupposition is transitive, and that it is
constant under negation. That is, if A presupposes B and B presupposes C, then
A presupposes C; and, 4 presupposes B if and only if not-A presupposes B.
Both of these results are provable in F3; they are, respectively, T36(g) and
T36(d). Also concerning negation, Strawson [15] distinguished between the
contrary and the contradictory of a statement. This distinction is, I argue
([1], ch. 1), just the same distinction which van Fraassen [20] notes as,
respectively, the choice-negation and the exclusion-negation of a statement.
This distinction is made in F3 by means of ‘~’ and ‘—’. Both entailment and
presupposition are representable in F3 by the validity of a particular statement
(cf. T42 and T43). And, it was found that if A presupposes B, then A entails
B as well, but the converse does not hold in general (cf. T44). Several authors
have noticed that it is an immediate consequence of the definition of pre-
supposition that a statement presupposes its own bivalence as well as every
valid statement. (van Fraassen is one of these authors; see e.g., [18], p. 146.)
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Both of these facts are also provable in F3; they are proved at T39(a)-(c).
Finally, more than one writer has noticed that presupposition can be defined
in terms of what I have been calling ‘“‘entailment’; others, e.g., Keenan, call it
“logical implication”. Keenan says ([3], p. 45) that A presupposes B just in
case A logically implies B and the negation of 4 (~A) also logically implies B.
We find in F3 that both (A 1 B) & (A I B)I1(4—>B)and (4—~>B)I
((A1B) & (YA 1 B)) are valid in F3 and so, by T32(a), both are provable
in F3. That is, if A entails B and ~A entails B, then A presupposes B, and
conversely.

2.1 Some extensions of F3 We consider some extensions of F3 to other,
perhaps more familiar, logics. We will now prove some of the claims made in
the previous paragraphs.

First, we consider QC!, the system presented in [5]. This is, in all essen-
tials, Meyer and Lambert’s FQ of [8], for, as Leblanc notes: ‘“My main concern
here will be to outfit Lambert’s free logic FQ, rechristened for the occasion
QC!, with a truth-value semantics.” ([5], p. 154)

The axioms of QC! are:

Al! AD(BDA)

A2! (ADBDOC)YDW(ADB)DMAD0)
A3! (~AD~B)D(BDOA)

A4! A D(VX)A

AS! (VX)(ADB)D({(VX)A D(VX)B)
A6! (VX)A D(E!P D A(P/X))

A7! (VX)E!X,

and, any wff of the sort (VX)A, where A(P/X) is an axiom of QC! for some P
foreign to (V.X)A.%¢

Modus ponens is the one rule of inference.

The primitive wffs of F3 are the same as those of QC!. What I will now
show is that when

Al0 A= (pDp)
is added to the axioms of F3, for any set .S of wffs and any wff 4,
() SEFAiInF3+A10iffS FAinQC!.?

The proof of (1) is by cases. We need to show that: (a) all of the axioms
of QC! are provable in F3 + A10, and (b) all of the axioms of F3 + A10 are
provable in QC!. Toward (a) we notice that most of the axioms of QC! are
axioms of F3 + A10; only two (A2! and A6!) are not. A6! is provable in F3
(hence, in F3 + A10) by T6(b). A2! is, therefore, the only case remaining.

Suppose there is an existence-normal tv-pair («,Z) on which A2! =
(p D p) and —A2! are true. Then az(-A2!) = 1 and since as(p D p) = 1 for
every oz, 0z(A2!) = 1 or ag(A2!) = 3, by the truth-table for ‘=’. But, by
truth-tables we find that az(A2!) # 3. So, ax(A2!) = 1. But then ag(-A2!) =
3 # 1, contrary to our earlier assumption. So, there can be no ay on which
A2! = (p D p) and —A2! are true. Hence, {A2! = (p D p), ~A2!} is seman-
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tically inconsistent, and {A2! = (p D p)} E A2!. Thus, {A2! = (p Dp)}
A2! by T32(c). But since A2! = (p D p) is now (in F3 + A10) considered as an
axiom, we conclude that FA2! in F3 + A10. Hence, (a).

Now for (b)—the converse of (a)—the proof, again, is by cases. Al, A4,
A5, A6, and A8 are, respectively, Al!, A3!, A5!, A4! and A7!. The remaining
cases are A2, A3, A7, A9, and A10.

(i) A2 and A3. Interpret these as instructed in [5]. Both are valid in
QC'!; hence, both are provable in QC! by the completeness theorem
for QC!

(ii) A7. By the validity (hence, provability) in QC! of (4 D (B D C)) =
(B D (4 D)), A7 is provable in QC! by A6!

(iii) A9. This is shown to be provable in QC! by the same kinds of moves
as those in (i) above. Remember that A9 is of the form (4 D ~4) D
~A.

(iv) A10. A = (p D p) is valid in QC! (This is easily verified once it is
reduced to primitive notation.) Hence, as in (i) above, it is provable
in QC!

Hence, (b). Thus, (1).

Next we turn our attention to classical two-valued logic (C2) and establish
a rather intimate connection between F3 and C2. Add

All E!'P

to F3 + A10 as an extra axiom (for every P).?® Call this system “F3 + A10,
A11”. And, add A1l to C2; call it “A11!” there, and call the resulting system
“C2!”. The axiomatization of C2 that we will use will be that presented in
[7], §1.2. The names of these axioms we will preface with ‘C’ to distinguish
them from the other systems being considered, and we will add ‘!’ as a suffix
to each, indicating the addition of A1l to C2. Then CAI!-CAS! are just
A1!-A5!; CA6! is (VX)A DO A(P/X). The other is the usual generalization
clause, and the rule is modus ponens. For the semantics of C2!, add the follow-
ing clause to §1.3 of [7]:

(ix) E!Pis true on « for every individual parameter P.

Now we show:
(2) SFAin F3+A10,AlliffS FA4 in C2!.

The proof, again, is by cases. There is only one case to consider for the
necessity clause, since CAI1!-CAS! are provable in F3 + A10, A1l by (1).
CAG6! is provable in F3 + A10, A11 by A7, Al11, T1(d) and T1(e). The converse
is immediate in view of the fact that each of A1-A11 is valid in C2!. Hence, by
the strong completeness theorem for C2!, A1-A11 are provable in C2!.%°

Thus, we have shown a strong connection between F3 and C2, and we
have found that the semantic concept of presupposition is representable in the
object-language of F3. Finally, in view of the theorems proved in the first half
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of Section 2, and the remarks following those theorems, the concept of pre-
supposition representable in F3 seems to be a thoroughly ‘“Strawsonian”
semantic concept.

NOTES

1. See [8], p. 8, where Meyer and Lambert say that a logic that meets both of the follow-
ing criteria is universally free: “(1) no existence assumptions are made with respect to
individual constants, and (2) theorems are valid in every domain including the empty
domain.”

2. These may do duty for singular terms; they will occur only free in any well-formed
formula. Also, because of our definition of well-formed formulas, the individual vari-
ables will occur only bound in well-formed formulas.

3. Usually the superscript and subscript will be omitted in practice.
4. The intended reading of ‘E!’ is ‘exists’.

5. We will, henceforth, allow an expression to be its own name so long as no ambiguity
threatens.

6. For a more detailed treatment of these matters, cf., [7], p. 5.

7. The ordering in [7], p. 10, with the addition of ‘117’ for the code number of ‘E!’ will
suffice.

8. ‘I’ has some of the features of the two-valued implication sign that our ‘O’ lacks.
-A is the exclusion-negation of 4, while ~4 is the choice-negation of 4. (See [20],
pp. 37, 69, fn. 8; see also ibid., p. 154.) ‘J,’ is something like a truth-operator, ‘J3’
something like a falsity-operator, and ‘J;’ something like a neither-true-nor-false
operator. I do not wish to suggest, though, that ‘J;’ be interpreted as ‘it is true that’,
for there are some good reasons for not doing so. The view that I would like to defend
is that the truth-table for ‘it is true that A’ is the same as the table for 4. But this is
not a matter for this paper.

9. Al-A4 are Wajsberg’s axioms [21] for Lukasiewicz’s three-valued sentential logic. AS
and A6 are common to many axiomatic systems; it is easily verified that ‘X’ is sure to
be foreign to A in A6. A7 is a permutation of an axiom that first appeared—as far as [
know—in [8]. A8 also appeared in that paper. A8 asserts that everything exists, but as
Quine has reminded us ([9], p. 1), this doesn’t tell us very much about what there is.
There is some question about the independence of A9—I don’t know whether it is
independent. The converse of A9 is provable.

10. If = = @, every universal quantification is true on (a,Z) no matter the o; and, an
existential quantification is true on («,Z) only if £ # @. Thus, even if A(P/X) is true
on (a,X), it does not follow that (3X)A is also true on (a,Z). (3X)A is true on (a,X)
only if, in addition, P e Z. Because of this and the fact that ax(E!P) = 1 just in case
P e Z,and ax(E!P) = 3 just in case P ¢ 2, we will think of X as constituting the set of
designating singular terms. Hence, we can say that (VX)4 is true on (a,2) if and only
if every designating instance of it is true on (&, ).

11. Roughly, S’ is isomorphic to S if there is a one-to-one function R from the set consist-
ing of all the individual parameters in S into the set consisting of all the individual
parameters in S'. If S is infinitely extendible, then S is semantically consistent iff S is
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tv-verifiable. The need for the term ‘isomorphic’ arises from cases like the following:
{f(ay), f(a2), f(as), . ..,~(¥x)f(x)} is syntactically consistent and—in model-theoretic
semantics—found to be semantically consistent as well. However, the set is not tv-
verifiable. Thus, the lack of tv-verifiability should not amount to a lack of semantic
consistency. So, a remedy for such cases is needed. Several remedies are available; the
one chosen here is fully described in [7], pp. 11-12. For a brief survey of the alternative
“remedies”, see [6], pp. 6f.

The “lament” that I refer to is expressed by Russell in [11], p. 203: “There does not
even seem any logical necessity why there should be even one individual.... The
primitive propositions of Principia Mathematica are such as to allow the inference that
at least one individual exists. But I now view that as a defect in logical purity.”

For Russell’s views on this, cf. [10] and [11], ch. XVI. The view of Strawson’s
mentioned here is stated in [14]; [15], ch. 8, Pt. III, §7; and [16].

Incidentally, all the connectives in Woodruff’s paper [22] (except his ‘u’) are definable
in F3. The sentence connectives of F3 are not “truth-functionally complete”; that is,
not all possible propositional functions are definable using just ‘~* and ‘2’. Stupecki
notes [13] that the function which uniformly takes the value 2, no matter the value of
the argument, is not definable on this basis. This function is Woodruff’s ‘u’. The fact
that this function is not definable in F3 is not regarded as a defect, though, for it has
no plausible reading in English. But, since all the other connectives are definable in F3,
should one find the connectives of F3 intuitively unappealing, one can easily work
with other defined connectives, e.g., Bochvar’s connectives (as used, e.g., by Woodruff).

These are several of the points of difference between F3 and the (related) work of
others, e.g., [22], [17] and later papers of van Fraassen, and [2].

Cf. Note 10, above.

See [22], p. 127. By a consideration of cases, one comes to realize that this is precisely
the table that one wants for a “presupposition” connective. I will not pause for this
here. An argument to support the adoption of this table as well as all the other tables
is contained in [1], ch. 1.

The wff in (b) is more common as an axiom; cf. [8], [5], and [12]. We chose A7 and
not the wff in (b) as an axiom because it greatly simplifies the proof of (c) to do so.
And, in view of (a) and (d), no theorems are gained or lost by our choice.

I'am indebted to an anonymous referee for the proof of (h).

F3 is, therefore, not only “statement complete” (T27) but “argument complete”
(T31) as well. The supervaluation logic of van Fraassen [17] is statement-but not
argument-complete. There are, of course, other differences between F3 and the
“supervaluation logic” of Professor van Fraassen.

See e.g., [15], pp. 16-20, and p. 175. Remember, we are interested in a ““Strawsonian”
notion of semantic presupposition.

The earlier definition of entailment (semantic consequence) was more general; it was
for a set S and a wff A. (iii) can be regarded as a special case of the earlier definition
where S is a singleton.

{A v~A,-B} would work just as well.

As far as I know, the inclusion of this sentence connective (with its truth-table) as an
interesting connective, and the investigation of some of its properties, is unique to the
work presented here. It is distinct from -,
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[8]. FQ is the same as Leblanc’s QC! in [5]; see Note 27 below.

We distinguish these axioms from the axioms of F3 by ‘!’. The quantification in A4!
is vacuous.

“F3 + A10” is, of course, short for “the logic that results from the addition of A10
to F3”. The intuitive content of A10 is just this: for any wff A, 4 presupposes all and
only valid wffs. Semantically, the consequence of this is that every wff A is either true
or false. Deductively, it is that (4 v ~4) is now provable for every wff 4. One way of
viewing the Russell-Strawson exchange on the analysis of definite descriptions is that it
is an argument over differing theories of presuppositions. Russell might say that every
statement is either true or false, while this is not necessarily so on the “Strawsonian”
view. Hence, should one feel, along with Russell, that every statement is either true or
false, one ought to add A10 to the axioms of F3, but not otherwise.

One would add All to F3 + Al0 if one wanted one’s logic to be such that every state-
ment is either true or false (A10) and every singular term designates something. These
are just the usual presuppositions that are “packed-into” classical two-valued logic.

Once All is added to F3, A8 is redundant, for (VX)E!X is then an axiom by the
generalization clause in our axioms.

Leblanc, in [5], p. 157, defines “null assignments” as those under which E!P is false
for every P, and “standard assignments” as those under which E!P is true for every P.
Then, F3 + A10, Al1 provides proof of every wff true under every standard assignment.
Cf. [5], pp- 157, and 164-165.
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