Notre Dame Journal of Formal Logic Volume 21, Number 3, July 1980 ## Functional Completeness and Non-Łukasiewiczian Truth Functions ## HERBERT E. HENDRY A three-valued truth function is a function from $\{T, I, F\}$ to $\{T, I, F\}$. We define a *Łukasiewiczian function* as a three-valued truth function that can be defined by composition from \neg and \supset , where: | ⊃ | T | I | F | | |---|---|---|---|---| | T | T | I | F | F | | I | T | T | I | I | | F | T | T | T | T | It is well known that $\{\neg, \supset\}$ is functionally incomplete, i.e., that not all three-valued truth functions are Łukasiewiczian. (For example, it is easily verified that no function having I as its value when its arguments are classical is Łukasiewiczian.) It is also known that the addition of Słupecki's function T to $\{\neg, \supset\}$ results in a set that is functionally complete [2]. The question arises whether this is an accidental feature of **T**. The purpose of this note is to show that it is not.* **Theorem 1** For every non-Łukasiewiczian function f, the set $\{ \neg, \neg, f \}$ is functionally complete. ^{*}The author is indebted to the editor for the observation that \mathcal{L}_7 provides a counterexample to the generalization of Theorem 1 and for several other improvements. A *pure* function is a function that always assumes a classical value when each of its arguments is classical. Inspection of the tables for \neg and \supset makes it evident that all Łukasiewiczian functions are pure. It is less evident that the converse is also true. **Lemma** All pure functions are Łukasiewiczian. In addition to \neg and \supset the proof will appeal to the familiar Łukasiewiczian functions & and v and to the less familiar Łukasiewiczian functions f_T , f_I , f_F , and f_+ where $f_T(p) = \neg (p \supset \neg p)$, $f_I(p) = [(p \supset \neg p) \& (\neg p \supset p)]$, $f_F(p) = \neg (\neg p \supset p)$, and $f_+(p) = (p \& \neg p)$. Thus: Let f be any pure three-valued truth function of degree n, and consider an arbitrary row i from the table that defines f. | $p_1 \dots p_n$ | | $f(p_1,\ldots,p_n)$ | | | |------------------|------------------|---------------------|---------|--| | - | • | | | | | • | • | | | | | $\dot{\alpha_1}$ | $\dot{\alpha_n}$ | jβ | (row i) | | | • | • | | ` , | | | • | • | | | | | | | | | | We can write a representative formula R_i for row i where R_i has the value β on row i and the value F on every other row: Case 1. $\beta = T$. Let $R_i = (V(p_1) \& \dots \& V(p_n))$, where $V(p_j)$ is $f_T(p_j)$, $f_I(p_j)$, or $f_F(p_j)$ according as p_j is T, I, or F. Case 2. $\beta = I$. From the assumption that f is pure it follows that at least one of $\alpha_1, \ldots, \alpha_n$ is I. So let $R_i = (V(p_1) \& \ldots \& V(p_n))$, where $V(p_j)$ is $f_T(p_j)$, $f_+(p_j)$ or $f_F(p_j)$ according as p_j is T, I, or F. Case 3. $$\beta = F$$. Let $R_i = \neg (p_1 \supset p_1)$. It is now clear that f can be defined as $(R_1 \vee \ldots \vee R_m)$ where R_1, \ldots, R_m are the representative formulas for the $m(=3^n)$ rows of the table that defines f. Thus f is Łukasiewiczian. We are now in a position to prove the theorem. Let f be any non-Łukasiewiczian function of degree n. We have just seen that f must be impure. That is, there are classical values $\alpha_1, \ldots, \alpha_n$ such that the value of $f(p_1, \ldots, p_n)$ is I where the values of p_1, \ldots, p_n are respectively $\alpha_1, \ldots, \alpha_n$. Then, for each j let p_j^* be $(p \supset p)$ or $\neg (p \supset p)$ according as α_j is T or F. It is clear that the value of $f(p_1^*, \ldots, p_n^*)$ is uniformly I and, thus, that Słupecki's T can be defined in terms of the extended set $\{\neg, \neg, f\}$ by $T(p) = f(p_1^*, \ldots, p_n^*)$. But, as remarked earlier, $\{\neg, \neg, T\}$ is functionally complete. So the theorem is established. It was noted earlier that inspection of the tables for \neg and \supset makes it evident that the converse of the lemma also holds. So: **Theorem 2** A function is Łukasiewiczian if and only if it is pure. Thus there is an easy test for deciding whether a function is definable from \neg and \supset . These results cannot be generalized to the *n*-valued systems \mathcal{L}_n of Łukasiewicz. The truth values of \mathcal{L}_n are $1, \ldots, n$ and the \mathcal{L}_n -functions are those that can be defined by composition from \neg and \supset where $$\exists i = (n-i)+1$$ and $$(i \supset j) = \max[1, (j-i)+1].$$ Counterexamples to the lemma and therewith the second theorem can be found in any \mathcal{L}_n where n is odd and greater than 3. For it is easily verified that under these conditions $\{1, (n+1)/2, n\}$ is closed under \neg and \supset . Thus no function having, for example, the value 2 when its arguments are from $\{1, (n+1)/2, n\}$ is definable in \mathcal{L}_n . But some of these functions are pure. So neither the lemma nor the second theorem holds for \mathcal{L}_n . L_7 provides a counterexample to the first theorem. For the addition of $f_3(i) = 3$ together with $f_4(i) = 4$ to $\{\neg, \supset\}$ yields a functionally complete set while the addition of either one alone does not. This is an immediate consequence of a theorem proved by Clay [1]. ## REFERENCES - [1] Clay, Robert E., "Note on Słupecki T-functions," The Journal of Symbolic Logic, vol. 27 (1962), pp. 53-54. - [2] Słupecki, Jerzy, "The full three-valued propositional calculus" in *Polish Logic: 1920-1939*, ed., S. McCall, Oxford University Press, Oxford, England (1967), pp. 335-337. Department of Philosophy Michigan State University East Lansing, Michigan 48824