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Functional Completeness and

Non-tukasiewiczian Truth Functions

HERBERT E. HENDRY

A three-valued truth function is a function from {T, I, F}to {T, I, F}. We
define a fukasiewiczian function as a three-valued truth function that can be
defined by composition from 71 and D, where:

>l r 1 F|~N
T|T I F|F
I\ 17 T I |I
F| T T T|T.

It is well known that {7, D} is functionally incomplete, i.e., that not all
three-valued truth functions are tukasiewiczian. (For example, it is easily
verified that no function having 7 as its value when its arguments are classical
is fukasiewiczian.) It is also known that the addition of Stupecki’s function T

T

T{1
111
Fl1I

to {7, D} results in a set that is functionally complete [2]. The question arises
whether this is an accidental feature of T. The purpose of this note is to show
that it is not.*

Theorem 1 For every non-Lukasiewiczian function f, the set {7, D, f}is
functionally complete.

*The author is indebted to the editor for the observation that £, provides a counterexample
to the generalization of Theorem 1 and for several other improvements.
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A pure function is a function that always assumes a classical value when
each of its arguments is classical. Inspection of the tables for 71 and D makes it
evident that all Lukasiewiczian functions are pure. It is less evident that the
converse is also true.

Lemma All pure functions are Lukasiewiczian.

In addition to 71 and D the proof will appeal to the familiar £ukasiewiczian
functions & and v and to the less familiar £ukasiewiczian functions fr, fI, fF,

and f+ where fr(p) = 1(p D p), fi(p) = [(p 2 p) & (p D p)], fr(p) =
Cp O p), and f+(p) = (p & 1p). Thus: _‘

| | n ]| A
T T | F | F F
I F | T F I

F| F | F T F.

Let f be any pure three-valued truth function of degree n, and consider an
arbitrary row i from the table that defines f.

Pi-.-Pn | fPr, .- Pn)

a:l 0‘:" ﬁ (row i)

We can write a representative formula R; for row i where R; has the value 8 on
row i and the value F on every other row:

Case 1. B=T. Let R;=(V(py) &...& V(py)), where V(p;) is fr(p;), fi(pj), or
fr(pj) according as pj is T, I, or F.

Case 2. =1. From the assumption that f is pure it follows that at least one of

ap, ..., 0 is 1 So let R; = (V(py) & ... & V(py)), where V(p;) is fr(p;), f+(p})
or fr(p;) according as p; is T, I, or F.

Case 3. B=F.LetR; =71(p, D py).

It is now clear that f can be defined as(R;v . .. v R,;) where Ry, . . ., R, are
the representative formulas for the m(= 3") rows of the table that defines f.
Thus fis ukasiewiczian.

We are now in a position to prove the theorem. Let f be any non-
Yukasiewiczian function of degree n. We have just seen that f must be impure.
That is, there are classical values «y, . . ., o, such that the value of f(p,, . . .,pn)
is / where the values of p,, . . ., p, are respectively «, . . ., a,. Then, for each j
let p;" be (p D p) or I(p O p) according as o; is T or F. It is clear that the value
of flp¥, ..., p¥) is uniformly I and, thus, that Stupecki’s T can be defined in
terms of the extended set {71, D, f}by T(p) = f(p}, ..., p¥). But, as remarked
earlier, {7, D, T} is functionally complete. So the theorem is established.

It was noted earlier that inspection of the tables for 71 and D makes it
evident that the converse of the lemma also holds. So:



538 HERBERT E. HENDRY

Theorem 2 A function is Lukasiewiczian if and only if it is pure.

Thus there is an easy test for deciding whether a function is definable from 7
and D.
These results cannot be generalized to the n-valued systems £, of

Lukasiewicz. The truth values of £,, are 1, . . ., n and the £,-functions are those
that can be defined by composition from 71 and O where

TUi=(m-i)+1
and

(iDj)=max[1l,(G-i)+1].

Counterexamples to the lemma and therewith the second theorem can be
found in any £, where »n is odd and greater than 3. For it is easily verified that
under these conditions {1, (n + 1)/2, n} is closed under 71 and D. Thus no
function having, for example, the value 2 when its arguments are from
{1, n + /2, n} is definable in £,. But some of these functions are pure. So
neither the lemma nor the second theorem holds for £,,.

£, provides a counterexample to the first theorem. For the addition of
f3(i) = 3 together with f4(;) = 4 to {7, D} yields a functionally complete set
while the addition of either one alone does not. This is an immediate con-
sequence of a theorem proved by Clay [1].

REFERENCES

[1] Clay, Robert E., “Note on Stupecki T-functions,” The Journal of Symbolic Logic,
vol. 27 (1962), pp. 53-54.

[2] Stupecki, Jerzy, “The full three-valued propositional calculus” in Polish Logic: 1920-
1939, ed., S. McCall, Oxford University Press, Oxford, England (1967), pp. 335-337.

Department of Philosophy
Michigan State University
East Lansing, Michigan 48824





