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Generalized Hardy Fields in Several Variables

LEONARDO PASINI

/ Preliminaries

Definition 1.1 A category 6 is said to be a smoothness category if the fol-
lowing conditions are satisfied:

(1) The objects of 6 are open subsets of finite dimensional real vector
spaces; the morphisms of 6 are certain differentiable functions and
the composition law of morphisms is the usual composition of func-
tions.

(2) If 0 is an object of 6 and Kis a finite dimensional real vector space,
then 6(0, V) is a linear subspace of the real vector space Cι(θ, V) of
all C1 functions from 0 to Fand contains all constant functions from
0 to V.

(3) If Vu ..., Vm and W are finite dimensional real vector spaces, then
6(Fi ® . . . ® Vm, W) contains all multilinear functions.

(4) Let 0i and 02 be open subsets, respectively, of the finite dimensional
real vector spaces Vλ and V2. A function/: θx -• 02 is in 6(0 1 }02) if
for any x G θx there is an open subset θx £ θγ, containing x such that
f\exee(θx,V2).

(5) If fx E β(0, Vx) and f2 G 6(0, V2), then x - (Λ(x)J2(x)) is in
6(0, F! x V2)

(6) I f/G 6(01 ?02) is a bijection from θx to 02, then/" 1 G 6(02,0i) if
Z " 1 is in C 1 (or equivalently if Dfx is nonsingular for any x G 0i).

From the definition we deduce immediately that 6(0,R) is a ring with the
point wise defined operations. Moreover, for any smoothness category 6, it is
possible to prove the implicit function theorem ([5]):

Theorem 1.2 Let θ be a neighborhood of (xo^o) in 1RΛ+1 and let f G
6(0,R) withf(xo,yo) = 0 and (δf/δy)(xQ,y0) Φ 0. Then, there are neighbor-
hoods U ofx0 in R" and g G 6(C/,R) with g(x0) = y0 andf(x,g(x)) = 0 for
each x G U.
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Examples of smoothness categories are: the categories Qk(k = 1,... ,00)
of Ck functions; the category Cω of analytic functions; the Holder categories
ek+a(k E N + , 0 < a < 1); the Lipschitz categories Qk~; the category β Ω of
Nash functions. The category CΩ turns out to be the intersection of all smooth-
ness categories and, moreover, to be differentially stable.

2 Q-Hardy fields in several variables Let O be a point of (Rn)+ = R" U
[a], n E N + and a $. R", the one point compactification of the euclidean
space RΛ. Let F be a filter of sets of (Rn)+ with a basis B of open connected
subsets of R", which converges to O. We denote by G(F,O) the ring of F-germs
of real-valued functions defined over RΛ.

Definition 2.1 An element ψ of G(F, O) is said to be of class C if there exists
a function / such that:

(1) feψ,
(2) / G C (X, R) for a certain XEF

Moreover, we said that ψ E G(F, O) is semi-algebraic if it contains a semi-
algebraic function ([2], [3]). We denote respectively by Ge(F,O) and
Ge s.a. (/̂  O) the subrings of G(/J O) formed by the elements of class C and by
the semi-algebraic elements of class β.

Definition 2.2 By a "C-field (respectively semi-algebraic β-field) in O for F "
we mean a subfield K of the ring GC(F9 O) (respectively Gβ s.a. (F, O)).

Definition 2.3 By a "C-Hardy field in ^-variables in O for F " we mean a
subfield # of the ring Ge(F, O) such that: if ψ E K, then ^ G #, where fa =
[δf/δXi]F for / = 1,... ,n and/G ψ.

In the last case we assume C to be a differentially stable smoothness cat-
egory. In particular, the class of semi-algebraic 6-Hardy fields coincides with
the class of CΩ-Hardy fields. In fact, if AT is a semi-algebraic C-Hardy field,
each of its elements is C°° semi-algebraic, and hence Nash ([2], [3]).

From now on we denote by K any field belonging to one of the classes
defined above.

Proposition 2.4 The set P = {φ EK\ there exist fE ψandXEB such that
f(x) > 0 for all x E X] is a total ordering on K.

Proof: Pis obviously closed by sum and product inK. Let ψEKand φ Ψ 0; there
will be then 7 E ^Γsuch that ψ y = 1 in K, that is if fE ψ and g E 7, f(x)g{x) =
1 holds identically over ZΆXEB. Hence/(JC) Ψ 0 for all xEX. Moreover, we
can choose X such that / is continuous over X.

Since X is a connected subset of RΛ, one of the two inequalities f(x) > 0
or/(x) < 0 holds identically over X. Hence ψ E P or -φ E P.

Let *R be an enlargement of R in the sense of nonstandard analysis. We
fix an element ξ E (*R)Π in the monad m(F) of F: m(F) = Π{*X\XE F}.
Such an element exists by the properties of enlargements and the transfer the-
orem. Moreover, by transfer, if ψ E G(F9O) and/j,/ 2 E ψ9 then 7i,*/2 are
defined and coincide on any x E m(F).
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We define now a function φ: G(F,O) -> *R by: φ(ψ) = */(£), for/E ψ.
By the transfer theorem φ is a homomorphism from G(F,O) to *1R and

φ|jr is an injective order-preserving homomorphism.

3 Theorem on the real closure

Theorem 3.1 There exists a real closed field belonging to the same class of
K and containing K.

We denote by φ(K) the real closure of φ(K) in *R. The set of fields L
extending K, and belonging to the class of K such that φ(L) c φ(K)9 is in-
ductive, by Zorn's Lemma it contains some maximal element M. Theorem 3.1
is then a consequence of the following theorem. (For a similar result about
Hardy fields on real closed fields see [6].)

Theorem 3.2 φ(M) = φ(K).

Proof: Let c G Φ(K) - φ(M) be algebraic of minimal degree, m, over φ(M).

We suppose c> 0; c is a zero of a polynomial *P(f ,jθ = *£o(£) + +
*gm-i(ξ)ym~l + ym, with [&(*)] G Mfor i = 0,... ,m. Let Q ( * , J O = ̂ ( x ) +
2^(^)7 + + mym'x and hence * Q ( £ » = *gx (ξ) + 2*^2(ξ> + . . . + mym-\

For any Jc where the coefficients are defined Q(x,y) is the derivative of
P(x>y) with respect to y. Since *β(ξ,c) ^ 0 we may suppose *Q(ξ,c) > 0. Let
rfi,... ,rfΛ5 with rf, ̂  d) for / Φ jy be the distinct roots of *Q(ξ9y) in φ(K).
Since deg *Q(ξ9y) = m - 1, d, G φ(Λf), for / = 1,... ,A:.

Therefore rf7 = *A, (ξ), with [Λ/(Jc)] G M. Since c is algebraic over φ(M),
there are [u(x)], [v(x)] G M such that: *u(ξ) < c < *v(ξ), *u(ξ) > 0 and
%(ξ) £ l*u(ξ)Mξ)] for i=l,...9k.

Proposition 3.3
(1) *Q{U) > Ofor every ye *R in [*u(ξ), *v(ξ)].
(2) *P(ξMξ)) < 0 and *P(ξMξ)) > 0.

Proof: (1) Let y0 G *R with *Q(ξ,j0) ^ 0 and ^ 0 G [*w(f),*t;(()]. By the in-
termediate value property, since Q(ζ,c) > 0 there is z G *IR, *w(ξ) < z ̂  *v(ξ)
and *β(ξ,z) = 0. Since φ(K) is real closed, z G φ(iΓ), contrary to the choice
of *u(ξ) and *v(ξ). (2) follows from (1); apply the mean value theorem to
*P(ξ,y), bearing in mind that *P(ξ,c) = 0.

Proposition 3.4 There exists X G B such that for all x G X:
(1) Q(x,y) > 0 for every realy G [«(*), v(jc)].
(2) P(jc,«(x)) < 0 andP(x9v(x)) > 0.

Proof: (1) Since the roots of *Q(ξfy) in φ(3f) are in φ(M), we have *Q(ξ,j) =

Ή Π <* - •Λ/({))l>( βo(ί) + *«i ( £ > + + yr) with αo(f) + % (ξ)y + ...+
7=1

j Γ > 0 for all j> G *IR, since it is the product of monic irreducible polynomials
in φ(K) [y]. Then, the coefficients *&(£) of *Q{ξ,y) are entire rational expres-
sions of the *hj(ξ) 's and the *at(ξ) 's.
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Hence, there exists X G B such that for all x G X:

(I) Q(x,y) = mf[{y- hj(x)yj(ao(x) + ax{x)y + . . . + yr) and
7=1

(II) ao(x) + ax (x)y + . . . + yr > 0 for any y in R.

The formula a(z): vy(z0 + ZiJ> + . . . + yr > 0) holds in ΊR for zt =

By the quantifier elimination for the theory of real closed fields, there exist
a finite number of finite systems Sj(z) of the form /\ (pu(z) = 0 Λ qv(z) >

u,v
0) withpu(z) and qv(z) formal polynomials with integer coefficients such that,
if L is any real closed field, α 0 , . . . , αr-i Ξ L, a (a0,...,ar-χ) is true in L iff one
of the systems Sj(z) holds at zt = at.

The proof of (II) follows, then, by noting that a finite system /\ (pu{*a0

( £ ) , . . . ,*<*,_! (f)) = 0 Λ qυ(*a0{ξ),... ,%-ι (I)) > 0) holds in *R iff there is

X(ΞB such that Λ ( A ( β o W . ,βr-i(fl) = θ Λ ^ ( α o ( x ) , . . . ,α r-i(*)) > 0)

holds in R for all xGX. Moreover, we can choose XG B such that for all xGX:

(III) hj{x)£ [w(JO, t (Jc)] withy = 1,... ,k;
(IV) Q(x,u(x))>0.

If Q(*o,yo) * 0 for x0 GXandyo G [u(xo),v(xo)], then Q(jfoji) = 0
for some J Ί G [U(X0), V(X0)] that is, yx = hj(x0) by (I) and (II), contradicting

(HI).
(2) This follows from Proposition 3.3(2).

Proposition 3.5 There exists only one function y(x) defined over X such that
for all x G X: u(x) < y(x) < v(x) and P(x,y{x)) = 0.

Proof: By the intermediate value property and Proposition 3.4(1), there is a
uniquey(x) G [u(x),v(x)] such that P(x9y(x)) = 0.

Then, for any xeX: P(x,y(x)) = 0 and (6P/dy)(x,y(x)) Φ 0. Hence, by
the implicit function theorem for the category C, which characterizes the field
Kf for any x0E:X there are neighborhoods Uχ0 Q X and / G (B (Uχ0, R) such that
/(So) = y(*o) and P(x,f(x)) = 0 for all x G U^. Since u(x)9 v(x),f(x) are
continuous on UχQ, θXo = [x G ί/*0|κ(JF) <f(x) < v(x)} is an open subset of
R" containing x0 and/(x) = y(x) for all x G θXo.

Thus j>|0_ (x) G C(^ 0 ,R) and, by Definition 1.1(4), we have y(x) G
β ( * , R ) .

Since *P(ξ,^) is irreducible, the smallest subring of G(F,O) containing M
and [y(x)] is a field whose elements are of the form q([y(x)]) with q(y) G
M[j>] and deg q(y) < m. The elements of M([y(x)]) are then of class C. The
same is true for the semi-algebraic case because of the definition of the func-
tion y(x). If /Γis a C-Hardy field, M[y(x)] is also differentially stable. Since
y(x) G e°°(jc,R), for a l lxeX: (δy/δx^ix) = -((δP/δx/)(Jc,^(x))/(δP/δr)
(x,^(x)); hence [^(x)], G M([y(*)]), for / = 1,... ,π.

Since Φ|M([̂ (*)]) ̂ S a n order-preserving embedding, by Propositions 3.3(1)
and 3.5, it follows that φ([y(x)]) = c. Since [y(x)] £ M, this contradicts the
maximality of M and proves Theorem 3.2.
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4 Characterization of the real closure We denote by GC(F, O) the subring
of G(F, O) of germs of continuous functions, and by GC(<F>o">κ the relative alge-
braic closure of K in GC(F, O).

Theorem 4.1 Let M be any real closure of K belonging to the class of K.
Then:M=GC^O)K.

Proof: Obviously Λ/c GC{F,O)K^ L e t [ y ^ e GC(F,O) and let P(y) G K[y]
be monic, with P([y(x)]) = 0. Then, there is X G B such that y(x) is continuous
over X and P(x9 y(x)) = 0 for all j c G l Since M is real closed and P(y) G
M[y], X G B can be chosen so that, in addition, the following hold for all
x<ΞX:

P(χ,y) = Π (y - hΛ*))Sj Π l(y + **(*))2 + bhm
y=i /=i
with pairwise distinct hj(x)'s

bi(x) ΦO for i = l , . . . , r .

A: A:

Then for all Jc G X we have: J J (^(Jc) - hj(x)) = 0, and then X c (J

^ ( j ( ^) - hj(x)). Since Mis ordered, by Proposition 2.4, we can choose XE
B so that in addition Z(y(x) - hj(x)) Π Z(y(x) - Λ/(Jc)) Π JΓ = 0 fory * /.
The set Z(y(x) - hj(x)) Γϊ Xis closed in X9 which is connected.

Hence X^ Z(y(x) - hj(x)) for somey G {1,... ,k], that is [y{x)] G M.
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