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Variations on a Thesis: Intuitionism

and Computability

CHARLES MCCARTY*

1 Prelude The theme of this paper is Church's Thesis (or CT) as it is nor-
mally understood by intuitionists and by logicians concerned with constructivity.
This is to be distinguished from the more familiar "quasi-empirical" statement
of the same name —that

every mechanically computable function is general recursive.

Rather, we will use CT to denote one or another version of the intuitionistic
mathematical statement that

every total natural number function is general recursive.

There are three variations. The first is an extended argument for a reap-
praisal of the status of CT within intuitionism. Traditionally, the intuitionists'
attitude toward CT has been strongly negative; it was thought that Church's The-
sis was obviously false. The fact that it is consistent with the main bulk of con-
structive mathematics was either to be deplored or ignored.

We think this attitude unfortunate. As it seems to derive a good part of its
impetus from an unnecessary identification of intuitionism with reductive intui-
tionism, we devote the bulk of the first variation to suggesting that reductive
intuitionism might itself be either deplored or ignored.

Of course, the idea that CT is obviously false can be reinforced from other
quarters. Logicians often appeal to a kind of hypothetico-deductivism and argue
that CT is false because its mathematical consequences are largely untoward. The
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idea of the second variation is that the testimony of negative consequences is
inconclusive; CT entails some highly attractive results. We will describe the
proofs of three: Brouwer's Theorem for constructive information systems, the
categoricity of intuitionistic first-order arithmetic and the existence of a small
complete category.

Third, classical mathematicians can and have entertained any number of
their own variations on (the empirical form of) Church's Thesis, each arising
from a description of an abstract mechanical computing device. The proofs that
many of these variations are extensionally coincident provide a form of evidence
for CT. Clearly, an intuitionist can consider the same variations and can even
accept the associated evidence for ordinary CT, since all the proofs involved are
constructive. However, this sort of evidence is inconclusive; its persuasive force
is limited by the severe logical constraints set upon classical mathematics.

There are reasonable variations on CT which the intuitionist can entertain
but which are classically unavailable. These also come from making more subtle
alterations on Turing's concept of machine. We will show that these coincide
with standard Turing machines only under assumptions which are independent
of the axioms of traditional intuitionistic mathematics. Therefore, the intuitionist
has ready access to intelligible and rigorous versions of the notion of computable
function which fail to coincide extensionally with those of Church and Turing.

2 Variation I: How to be an intuitionist

2.1 Orientation Before setting off officially, it would be best to say some-
thing about our basic orientation. This will preclude later misunderstanding.

I am an intuitionist, at least as far as mathematics is concerned. But that
does not mean that I am a constructivist, at least in the sense in which the title
is usually conferred. Unlike the constructivist, the intuitionist prefers a mathe-
matics at variance with the classical. To put it another way, I live my mathe-
matical life in happy sympathy with Brouwer's idea that there is great virtue in
the investigation of certain forms of mathematics which differ radically from
comfortable traditions. Brouwer's alternative mathematics is based upon prin-
ciples which are neither merely nonstandard nor momentarily exhilarating, as
have been various axioms of large cardinals. Admittedly, if these principles are
taken in a superficial way, they will seem absurd; in fact, they seem to offend
one's most ingrained mathematical sensibilities. But this appearance is completely
superficial and dissolves under the more subtle logical methods of the intui-
tionist. In this context, one does well to recall Hobbes' definition of paradox as
an opinion not yet generally received.1

I would not deign to argue that an intuitionistic approach to mathematics
is the only correct one. For starters, it is difficult to see how such an argument
could proceed. The standard of correctness for the steps of the argument would
have to be determined at the outset. But, to do that, we would already have to
decide whether intuitionistic or classical standards are the more appropriate. My
immediate goals are much more limited—to argue that intuitionistic mathematics
is as scientifically functional and foundationally attractive as any of the classical
alternatives. For that, it will suffice to point out the lively mathematical vistas
incorporated within intuitionism's foundational view. The bulk of the present
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paper is devoted to some sketches of intuitionistic landscapes in the region of
computation theory.

Although my sympathies lie with Brouwer, my loyalties need not be wholly
undivided. I cannot agree with him that many of the innocent mathematical
assertions of classical mathematicians are either meaningless or false. There is,
of course, the naive reinterpretation of classical mathematics on which the tra-
ditional logical signs are replaced by their intuitionistic counterparts. Needless
to say, this interpretation makes classical mathematics demonstrably false. On
the naive interpretation, the axioms of intuitionistic mathematics contradict clas-
sical theorems.

Even so, I can still exercise a form of criticism. According to the way in
which I would prefer to understand classical mathematics, it is lacking neither
truth nor sense but only imagination. I prefer to see classical mathematics as
intuitionistically true and intelligible by giving it a Gόdel-Gentzen interpreta-
tion and mapping it semantically into the hereditarily stable portion of the intui-
tionistic mathematical universe. Suffice it to say that, under stabilization, the
positive classical connectives

. . . v . . . and . . . 3 . . .

are replaced by their doubly negated counterparts

— i — 1 ( . . . v . . . ) a n d - > - » ( . . . 3 . . . ) .

The logical result of the replacement is that interpreted statements of classical
mathematics turn out to be true but only boringly so —thanks to the fact that
stabilized expressions are prohibited any meaningful interchange with the sorts
of computable mathematical evidence which form the very essence of the intui-
tionistic approach. (The relation between a completely stabilized object and the
evidence for its existence is always trivial. In the terminology soon to be intro-
duced, if P and a are hereditarily stable and if p is any probject (proof object)
showing that P(a), then we can assume that/? = 0). By contrast with the regions
of the intuitionistic universe which contain the exciting prospects to be surveyed
in Variation II, the domain of hereditary stability is a mathematical suburbia
which is ponderously dull. (Full technical details of the interpretation can be
gleaned from [1], [10], or [28].)

2.2 Reductionism and realism There are at least two approaches to the foun-
dations of intuitionistic mathematics. One is broadly "reductionist" while the
other is —for lack of a better term—"realist". Reductionism has been very popu-
lar, especially among the ontologically thrifty and semantically conservative. For
such individuals, it offers an attractive countenance in league with a whiff of
racy excitement. Until quite recently, the goal of a great many of the investiga-
tions into the foundations of constructive mathematics has been the improve-
ment of the intelligibility and maintenance of the attractions of the reductionistic
approach.

The desire for reductionistic intuitionism gets its urgency from the desire
for a full, higher-order mathematics which does not rely for its foundations upon
stock Platonistic metaphysics. The statements of mathematics are to be reduced
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to more-or-less everyday statements about more-or-less ordinary mathematical
proofs together with our knowledge of and capacities for manipulating them.
The propositions expressed by sentences of intuitionistic mathematics are not
properly interpreted as making the usual pronouncements about numbers, sets
and functions, conceived as the somewhat unworldly denizens of an extraworldly
reality. Instead, they are supposed to tell complicated but sundry tales about
constructions—those operations which we can and do perform in building (what
purport to be) representations of numbers, sets and functions. To quote
Dummett,

On an intuitionistic view . . . , the only thing that can make a mathe-
matical statement true is a proof of the kind we can give: not, indeed, a
proof in a formal system, but an intuitively acceptable proof, that is, a cer-
tain kind of mental construction. [Mathematical objects] exist only in virtue
of our mathematical activity, which consists in mental operations, and have
only those properties which they can be recognized by us as having. ([5], p.
7)

Reductionistic intuitionism, if attainable, would be a form of scientific antireal-
ism\ the metaphysical urge to posit lonely, timeless and causally inert realms of
mathematical fact is supposed to vanish with the success of the reduction.

As with other reductionistic proposals, such as psychological behaviorism,
reductionistic intuitionism is purported to entail a form of semantical antireal-
ism. It is thought that the principle of bivalence and the logical law of the
excluded third (or TND) would fail to be universally valid. The reasons for the
failure are thought to be simple and straightforward. According to the reduc-
tionist, the usual statement of Riemann's Hypothesis (RH) is a mere shorthand
for a statement about proofs. For example, the textbook formulation of RH is
short for something like "A proof of RH is available to me".2 So, RH will be
true only if there is available a proof of RH and likewise for its negation.
Replacing φ in TND,

Φ V -iφ,
by RH, we obtain

RH v -iRH.

Intuitionistically as classically, a disjunction will be true only on the condition
that one of its disjuncts is. Therefore, for RH v -iRH to be true, we need have
at our disposal either a proof of Riemann's Hypothesis or a refutation of it. As
it happens, we have neither. Hence, the law of the excluded third fails.

No one has supposed that the route to reductionism is clear sailing but
many have thought that the trip would be a success. We would prefer not to be
so sanguine: the route is fraught with hazards the rigors of which are not univer-
sally appreciated. The next few sections afford a chart of the most prominent
obstacles, those associated with (i) mathematical solipsism, (ii) idealization, (iii)
intuitionistic proof, and (iv) intuitionistic truth. It is not our contention here that
the difficulties are insurmountable. After all, unattainability does not always
constitute an absolute prohibition: there is still a great deal to be learned from
attempts to approximate the impossible ideals of the Hubert Programme.
Rather, it is our contention that reductionism is so troubled that alternative
approaches to intuitionistic foundations be preferred.
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A principle of total disclosure demands that we explain the immediate bear-
ing of our remarks about reductionism. A reductionistic form of intuitionism
is obviously inconsistent with well-diluted forms of CT. To enhance the plau-
sibility of CT, one needs to argue the unacceptability of reductionism. The elimi-
nation of the possibility for unrecognized mathematical truths has to form a
plank in the reductionist platform. Were there unrecognized truths, they must,
according to the reductionist, be true in virtue of something other than our exist-
ing constructions. They could only be true in virtue of the subsistence of an inde-
pendent realm of mathematical fact. So, when the intuitionist says that RH is
true only if there is available a proof of RH, he means that there is a proof avail-
able to me of RH —one which I can take in and recognize as such. In fact, the
idea is better expressed were we to say that RH is true only if there is a proof-
available-to-me of RH. In order to rule out the possibility for unrecognized
mathematical truths, the reductionist must insist that there be no such thing as
a proof which might (or might not) be available to me and which serves as the
truth condition for a mathematical statement. As far as proofs go, there are only
those I can completely construct.

Now, consider a constructive theory of elementary syntax, say, Robinson's
Q formalized in intuitionistic predicate logic. Let ^ be a standard formal the-
ory which is intuitionistically sound and extends Q. Since each $ formula which
is intuitionistically provable (and here we mean 'informally provable') can be
recognized as such, we are able to enumerate the Godel numbers of the prov-
able formulas. That is, there is an intuitionistic number-theoretic function/
whose range is the set of codes of provable formulas. The existence of /is incon-
sistent with the following weak form of CT, which we will call 'JFCF:

Every number-theoretic function is definable in 3\

Given ^CT,/is definable in $ and we can take Bew(m) to be the formal
expression for the relation

lnf(n) = m.

Since $ is sound and extends Q, we are right to appeal to the formal fixed-point
theorem and obtain a formula φ such that

φ ~ iBewQφ]).

The reasoning of the First Incompleteness Theorem will now lead, from the
assumption that intuitionistic methods are sound, to the conclusion that they are
unsound. Therefore, since intuitionistic methods are (we presume) correct, there
is a function / which is demonstrably not ίF-definable and £FCT is false, given
the basic assumptions of reductionism.3

2.3 Mathematical solipsism In reductionism, as in old-fashioned forms of
perceptual idealism, we find an unfortunate affinity for solipsism. Once we show
how the affinity arises from the constraints upon the availability of proof, we
can argue for the need to avoid solipsism and point out the difficulties inher-
ent in doing so.

As we said, intuitionistic antirealism depends upon the doctrine that the
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only intuitionistically legitimate concept of proof is that of available proof. In
the rejection of

RH v -iRH,

our testimony concerning the existence of proofs of RH had to be taken as gos-
pel. It would be very natural to move from "the only proofs are those available
to me" to "mathematics, like raw feelings or hidden longings, is essentially a pri-
vate matter". Indeed, the move may even be necessary. If the complete reduc-
tion of intuitionistic mathematics is to succeed, then there cannot be legitimate
mathematical properties of mathematical items which go unremarked. Conse-
quently, one cannot identify the available proofs of intuitionistic mathematics
with ordinary physical objects open to public display, such as actual inscriptions
of proofs in monographs or textbooks. We have no difficulty in admitting the
possibility that physical objects participate in abstract facts which go wholly
unremarked. We can even imagine that, like a settee or a tugboat, such an object
might exist in complete independence of its availability to us and that it might
stand in unavailable abstract relations to other such objects.

Nor could we fall back upon the possibility that proofs —and constructions
in general — could belong to the same attentuated sort of public objects as sym-
phonies, laws, and poems. And for much the same reasons: abstract relations
can subsist among these kinds of objects as readily as they can among pieces of
furniture and with as little regard for our abilities to construct or manipulate
them. For example, the fundamental laws of our mathematics may have the
property of consistency but, famously, we may —due to the fact that they are
consistent — be totally incapable of recognizing them as such.

Of course, were we to take on idealism, a form of reductive intuitionism
about the physical world, the objections would disappear along with the objects.
Were we to be reductionists about ordinary objects, they could possess no
unrecognizable features. We could then construe the proofs as a portion of the
realm of ordinary macroscopic beings without our previous worries. However,
the deficiencies of such a tactic are manifest —the maneuver simply begs the
question by seeking to reduce all the difficulties which we think attend mathe-
matical reduction to those which we know to crowd around perceptual idealism.
Alternatively, one might hazard the suggestion that spatial, geometrical, tem-
poral, logical, and cardinal properties of public objects are not mathematical
and so stand in need of no reduction. However, intuitionistic mathematics could
be of little interest if its coherence were to rely upon an insistence that, when
I say

I know two different proofs of the Artin-Schrier Theorem,

I am not applying the mathematical concept of two.
As in the quotation from Dummett, the proper objects of intuitionistic

mathematics are supposed to be mental entities. Constructions are thought to
be mental operations and their mental effects, among them the thought processes
of constructing proofs and the results obtained. If we subdivide the mental into
the intensional and the phenomenal, then the phenomenal seems to afford the
only category in which to place the constructions. As the intensional encom-
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passes the objects of belief, thought, and desire conceived as such, the reduc-
tion of mathematics to this sort of object cannot succeed. Again, we allow that
beliefs —as intensional items —have properties, such as consistency and coher-
ence, which may literally be impossible to detect. For instance, there are second-
order inferences which hold among our thoughts which we not only fail to draw
but are incapable of drawing.

Second, if we identify proofs with objects of thought, we seem to be faced
with a classical problem one might call 'the third construction'. Objects of
thought stand in logical relations and satisfy coherence conditions which are set,
not by other objects of thought, but by the laws of mathematics and logic.
Proofs of the trisection of the angle by Euclidean means cannot be thought
because they are impossible, as Lindemann's proof showed. The thought that
induction up to e0 is not formalizable in arithmetic is constrained to follow log-
ically from the thoughts that arithmetic obeys GόdeFs Second Incompleteness
Theorem and that e0-induction suffices to give a consistency proof for arith-
metic. The fact that there is such a logical relation would be, on the view we are
presently assaying, nothing more than the existence of a construction as an
object of thought. The fact in question is now to be explained with reference
to a logical relation holding among four objects of thought: the three thoughts
and the construction. But this relation obtains in virtue of a logical constraint,
which must, in turn, be understood in terms of the existence of a further con-
struction. And so on.

Now, we seem to be left with only one alternative: that constructions are
themselves phenomenal objects akin to pains and afterimages. Their intrinsic
properties are only those which they seem to have and these are solipsistic:
unshared, unsharable and, on some outlooks, incommunicable. As is well
known, Brouwer encouraged just this sort of mathematical solipsism. He
declared intuitionistic mathematics to be the record of the fruits of the creative
activity of a single individual. Constructions are phenomenal objects which, in
the mind of the mathematician, make up a kind of Lego set, pieces of which can
be assembled and displayed on the inner visual field. Ultimately, the facts of
mathematics are just those which he can put together from his fundamental ele-
ments.

It is clear that we ought not to follow Brouwer. As Kreisel has emphasized,
the dialectic of the intuitionist has both positive and negative tropes. The positive
pertains to the development of intuitionistic mathematics in se. The negative is
outward-looking; it is the critical side of intuitionistic mathematics, the one that
inter alia opposes classical logical laws with counterexamples. It is obvious that,
if reductionism were to dissolve into solipsism, the negative doctrine would be
insupportable. Indeed, intuitionism could be nothing but a rare form of insanity.
Anyone who questions commonly accepted scientific truths, especially laws of
logic, and proceeds to set up idiosyncratic standards of validity in their place
and does so by harkening to their own inner voice, would rightly be counted
insane.

Worse, from the vantage point of solipsism we cannot see why mathematics
ought to be the way it is. One of its prominent features is that inter subjective
agreement has a paramount place. Mathematics and mathematicians exhibit a
very low tolerance for dissension over the basic mathematical principles and
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objects. (The poor fortunes of intuitionism afford a veritable case study in math-
ematical intolerance.) Generally, proofs are inadmissible until they have been
vetted by the relevant experts and, should a purported proof be seen to fail of
validity, strenuous efforts are made either to "patch it up" or discard it alto-
gether. Solipsism, the identification of constructions with phenomenal objects,
does not seem to offer any explanation for this phenomenon. If proofs are
anything like sensations, then we ought, it seems, to tolerate all kinds of dis-
agreements over their phenomenal properties. Indeed, we might even tolerate
considerable differences as to whether some object is or is not a proof, just as
we would allow someone to hold that tickling can be painful.

2.4 Idealization As we said, the reductionist must insist that there is no such
thing as a proof which is not a proof-available-to-me, one whose existence and
basic properties are settled primarily by my say-so. One could well object to the
reductionist that there certainly are proofs —in the usual sense of the term —
which are not available to me. My mathematical ambit would be narrow indeed
if it were restricted to propositions whose proofs I can literally carry out. I know
that the Adjoint Functor Theorem is true but this knowledge cannot involve the
ability to produce a proof of it at the drop of a hat. I know that there is a proof
of Poincare's conjecture in dimension four but I know little or nothing of its
details. Appel and Haken devised a computer-assisted "proof" of the Four Color
Theorem; I could not, in any real sense whatsoever, produce such a proof in
toto.

Consequently, there is a demand on the reductionist to admit a liberal
interpretation of the "proof-available-to-me" concept. But the reasoning of the
counterexample sets limits on its legitimacy. As we said, to argue convincingly
that RH is intuitionistically untrue, the reductionist must accept as evidence for
the nonexistence of an intuitionistic proof of RH the testimony of individuals.
And that testimony is only that there is no proof available.

The trend of thought suggests that one allow a proof to count as available-
to-me in the liberal sense when I am able to access the proof in some regular,
assured fashion. There must be some procedure which I could in fact carry out
and which would certainly lead to a condition in which the proof would be avail-
able in the strict sense. In the case of the Poincare conjecture, I can read and
study the proof in a research report. In the case of the Four Color Theorem,
the sense in which I could carry out the computerized procedure which would
bring me to a full cognizance of the proof is, admittedly, somewhat more attenu-
ated. One would have to make the further allowance that I could do certain
things which can only be done, properly speaking, by some "idealization" of
myself. The sort of idealization we have in mind is encoded in the vision of a
supermathematician with enhanced memory and lifespan; one presumes that he
could carry out the computerized procedure which would constitute the strictly
available proof of the Four Color Theorem

It is a theorem of intuitionistic arithmetic that every natural number is
either prime or composite. Consequently,

either n is prime or n is composite
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is intuitionistically true. This is so even if 6n' is an Arabic numeral for the pre-
cise number of quarks in the universe. But it is certainly not true that I have
either a proof-available-to-me, even in the liberal sense, of

n is prime

or one of

n is composite

for this particular n. As we suggested, the way out of the potential dilemma is
for the reductionist to allow that there are proofs-available-to-me which I could
not, in any practical sense whatsoever, carry out. The relevant proof-available-
to-me for this case is the proof of one or the other disjunct which is potentially
available in virtue of my actual knowledge of some primality algorithm. Given
my grasp of the algorithm, I could, if I lived longer and had a larger memory,
give a proof of one or the other disjunct. So, the proofs-available-to-me liber-
ally are actually those which are strictly available to the aforementioned super-
mathematician, a mathematically more substantial version of myself.

Saul Kripke, in [18], has maintained a highly skeptical attitude toward such
idealizations. He holds that we really know very little about the mathematical
behavior of my more long-lived and retentive counterpart. Kripke's suggestion
seems to be that we would likely find such a being cognitively impenetrable. Like
a mathematical version of the Cumean Sybil, his faculties would be so advanced
relative to our own that we could have little insight into their workings.

No doubt, the correctness of Kripke's attitude would spell doom for the
reduction. In order to reduce truths of mathematics to statements about my
knowledge, I would have to know a goodly amount about the abilities of the
"super version" of me. To see this, return to the presumptive counterexample
to TND. If

n is prime

can be intuitionistically true in virtue of a proof which only my counterfactual
counterpart could carry out, then we could make the same allowances for RH.
As a result, we might consider RH to be true in a similar way. It might be that,
if I had greater mathematical staying power, then I could prove RH. In fact,
we can imagine that, with enough processing power, RH would be as easy for
me to prove as is Euclid's Prime Number Theorem.

Without question, this allowance would violate the ban on unrecognized
mathematical truths, provided that the mathematical potential of my counter-
part were not in some way given to me. The reductionist must, therefore, insist
that anything provable by my counterpart be somehow known to me. Presum-
ably, this knowledge would be mine in virtue of my grasp of an effective pro-
cedure like a primality algorithm, which I know would produce the appropriate
proof when put into the hands of the super mathematician.4

Any threat of circularity could be avoided were this further knowledge non-
mathematical. Unfortunately, this will be anything but the case. Thanks to the
efforts of computability theorists, the concepts of algorithm and effective pro-
cedure are now recognized as mathematical concepts. So, if the reduction is to
go through, reference to procedures or algorithms must also be analyzed away.
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On the face of it, algorithms are themselves abstract objects; they are recipes
to be compiled into the machine code of a mathematical automaton. We can-
not simply replace talk of algorithms by talk of operations which I can perform.
In the primality example, this was just the problem. We had to introduce the
smart counterpart, the super mathematician, just because there were certain
algorithmic procedures which I physically cannot carry out. Nor can we plau-
sibly say that a procedure is algorithmic just in case there is a recipe which some
counterpart or other of me could carry to completion on each input. After all,
there is an imaginable counterpart of me which can pick out, by following a
finite procedure, all and only those numbers which code truths of arithmetic.
But if this were what the intuitionist meant by 'algorithm', then

φ v -ι0

would be intuitionistically true for all arithmetic substituends φ.5

Even if the difficulty with "algorithm" is circumvented, my knowledge of
the properties of those algorithms and, hence, my knowledge of the behavior
of the counterpart will, in general, come to me in care of some (possibly highly
complex) mathematical proof. The fact that my counterpart can check that n
is prime may only be known thanks to a proof that involves the evaluation of
integrals or the sort of statistical reasoning which goes into Monte Carlo fac-
torization techniques. Noncircularity in the reduction will require that this proof
also be available to me in the strict sense. Moreover, there are still other con-
straints on the proof, an appreciation of which calls for a study of the intui-
tionistic proof concept itself.

2.5 Intuitionistic proof When the reductionist says that a mathematical
proposition like RH is intuitionistically true just in case there is a "proof" of it,
he could not have meant Classical proof. For one thing, the reductionist needs
the disjunction property:

φ v φ is provable only if either φ is provable or φ is

just to get his counterexample to TND off the ground. Famously, the disjunc-
tion property does not hold of classical provability: without mathematical assis-
tance, classical logic will give a correct proof of G v -iG, where G is a Gόdel
sentence for ZF set theory. So, if 'proof meant 'ordinary proof, we could not
presuppose that intuitionistic truth commutes with disjunction, viz., that a dis-
junction is provable only if one or the other disjunct is.

Naturally, by 'proof, the reductionist means 'intuitionistically correct
proof. But this is just where the interlocutor —the person to whom the reduc-
tionist presents the proof and who admits that he knows no proofs for RH —
ought to balk. The casual recipient of the counterexample reasoning will have
very little inclination to accept the idea that RH has no intuitionistically correct
proofs, short of knowing a good deal more about intuitionistic proof. For all
he knows, RH might have an intuitionistically acceptable disproof which is only
two lines in length.

To a constructivist in the style of Errett Bishop, one whose mathematical
results are consistent with classical mathematics, the appropriate notion of proof
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will not pose such a problem. For him, if neither RH nor -iRH are provable
classically, then they fail to be provable constructively. So, a moderate famil-
iarity with classical mathematics would suffice to convince the interlocutor of
the cogency of the counterexample reasoning. But there is little consolation in
this for the intuitionist who follows Brouwer. He is on the lookout for theorems
which contradict those of classical mathematics, at least on its naive interpre-
tation. The intuitionist claims to be able to prove that no real-valued function
of a real variable is discontinuous and that there is, up to isomorphism, a unique
model of first-order arithmetic. For such a concept of proof, the nonspecialist
would be ill-advised to agree that RH is intuitionistically untrue.

The reasoning of the counterexample only becomes probative once there
is an explanation of the concept of intuitionistic proof according to which a good
part of the traditional intuitionistic corpus can be verified. The account of the
concept must appear in a particularly sharp form. Otherwise, reductive intui-
tionism will fall prey to the defects of other reductionistic persuasions — spe-
cifically, of psychological behaviorism.

The greatest obstacle to the reduction of mental states to behavioral
proclivities is the sheer variety of behavior associated with any particular state.
Consider a specific state of imagining, say, imagining of the taste of last Christ-
mas's pudding. Even though the state is specific, the behaviors which could be
thought to manifest and constitute the state defy finite specification. While
imagining the taste, I might be staring into a grocery window and hungrily scan-
ning a stack of canned puddings. Or, I might just have been reading about the
famous Christmas repast at Tom Cratchit's. Or about the very different
Christmas gathering described by Joyce in Portrait of the Artist. There is an
unimaginable variety of ways in which I could act (or fail to act) and on account
of which it would be acceptable to say of me 'he is imagining the taste of last
year's Christmas pudding'. In part, behaviorism fails because specific thinkings,
hopings, desirings, imaginings, and a host of other quite particular mental
goings-on do not reduce to any specific forms of behavior. They are only loosely
associated with an unregimented motley of external activities.

The reductionist for intuitionism must face the same specificity problem.
Corresponding to the truth of an individual mathematical proposition and con-
stitutive of its content must be a specific range of intuitionistic proofs. But, on
the face of it, such specificity will be elusive. Intuitionistically as well as clas-
sically, there are any number of ways in which one might know via proof that
Z (mod/?) is a field if p is prime. One way is to work laboriously through the
computations requisite to showing directly that addition and multiplication
modulo p satisfy the field axioms. Or reference could be made to the fact that
(/?) is a prime ideal in the ring Z. Altogether, the cogent alternatives are myriad.
It begins to look highly unlikely that the intuitionistic reductionist can circum-
scribe intuitionistic proof conditions for the statement that Z (mod/?) is a field.
One need only consider the vast number of mathematical notations in which
such a proof might be expressed: there are the languages of algebra, number the-
ory, set theory; there are the objects and arrows of the category of commuta-
tive rings. Which of these many would one have to know in order to know that
Z (mod/?) is afield?

Early intuitionists such as Brouwer and Heyting were well aware of this sort
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of variety. Brouwer insisted that no rigorous specification could be given of
legitimate intuitionistic methods of proofs. But for intuitionism to succeed in
its reductionistic form, some specification has to be provided: the reductionist
must demonstrate that the fundamentals of mathematics are organized in ways
that those of folk psychology are not. The precision of mathematical statement
has to be preserved. Usually, the reductionist will ask us to grant that there is
something in common to all intuitionistically correct proofs of a specific math-
ematical statement. Specifically, we are asked to allow that there be some cen-
tral or direct kind of proof a potential ken of which would be the quintessence
of the mathematical statement.

Michael Dummett [6] and Dag Prawitz [29] have suggested that there is a
discriminable concept of just this sort of direct or, in their terms, canonical
proof. These are to be particularly elementary proofs represented in a particu-
lar notation. They are intended to afford the touchstone of intuitionistic truth;
all correct intuitionistic proofs are thought to be in some fashion normalizable
to proofs of this kind. (Dummett and Prawitz have in mind the normalization
sequences which feature in the proof of the normalization theorem for natural
deduction.) So, if we accept the doctrine of canonical proofs, proposition/? is
true when there is available to me (or perhaps to my counterpart) a canonical
proof of p.

Obviously, in order to communicate the concept, the canonical proofs must
be circumscribed. Presumably, this will be accomplished via some kind of recur-
sive definition, the prospects for which are improved by likening the statements
of intuitionistic mathematics to the formulas of a formal system. Any formula
is a recursive construction from the logical signs and the basic formulas which
express the system's primitives. Normally, the collection of primitives will be
finite. As a result, any such system will represent a finite number of primitive
mathematical concepts; every other concept of the system is expressed in terms
of compositions of the primitives with logical signs. So, the concepts and state-
ments of the formal language can be arranged in the well-founded subformula
order. Consequently, a recursive specification of the "proof conditions" of a for-
mula could well succeed: once we specify what counts as a correct intuitionis-
tic proof of the basic formulas and explain how proof conditions interact with
the logical operators, we have a potential explanation of the proof conditions
of any formula. In this way, the reductionist's debts to intelligibility are paid in
full and the reasoning of the counterexample will go through.

Again, things cannot be as simple as they seem. First, a difficulty appears
the minute we return to the comparison between reductive intuitionism and
behaviorism. The latter fails, in part, because those concepts which purport to
be the "primitives" of purely mentalistic discourse cannot be logically ordered.
The concepts associated with belief, desire, intention, and volition seem neither
inter definable nor reducible to some more fundamental mentalistic notions. To
put it another way, we cannot explain what would count as the behavioristic ana-
logue for * Susie believes Ortcutt to be a spy' without referring to other concepts
which must themselves be explicated in terms of belief.

The reductive intuitionist hopes to skirt this pitfall by insisting that the log-
ical and definitional network which binds intuitionistic mathematics together is
fundamentally different from that of folk psychology. Indeed, he would like to
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insist that it bears the structure of a formal system. But, for this to be credited,
we would have to allow that every concept of intuitionistic mathematics be
definable from some finitely circumscribed collection of primitives. The meta-
mathematical facts of the matter seem to discount any possibility for this sort
of organization. For one thing, the Fixed Point Lemma inherent in the usual
proofs of the Gόdel-Tarski incompleteness theorems is intuitionistically prov-
able. It follows immediately that any formal system which suffices to encode the
concepts of a relatively impoverished arithmetic is expressively incomplete.
Hence, there ought to be many mathematically respectable concepts which can-
not be expressed in any proposition which gets a canonical proof.6

Second, despite the vividness of the analogy between normalized deductions
and canonical proofs, the latter cannot constitute any sort of formal system or
reasonable segment thereof. A formal system is an abstract mathematical struc-
ture, identical qua structure to a real-closed field or a Turing machine. It could
not, therefore, lie at the terminus of a successful, noncircular reduction of math-
ematics. Next and notoriously, proofs in formal systems usually support a ready
distinction between proof "in itself" and proof "available to me". In any ordi-
nary formalism, there will be proofs whose complications outstrip my faculty
of appreciation. It seems that the ability to recognize canonical proofs must also
be attributed to my enlarged counterpart, the intuitionistic supermathematician.
And, once again, if we are not to lose the concept of intuitionistic truth alto-
gether, this ability of the counterpart can only be a faeon de parler for my pos-
session of an algorithm which would serve to pick out the canonical proofs if
I had the capacities of the counterpart.

As you recall, we left a discussion of the supermathematician in medias res;
this is an apposite time to return. As we said, when the reductionist explains the
concept of intuitionistic proofs as applied to disjunctions, he needs to avail him-
self of the notion of a grasp of an algorithm. In general, a proof-available-to-me
of a disjunction will be the firm grasp of a procedure which, I am assured, my
counterpart can use to yield up a canonical verdict upon one or the other of the
disjuncts. Now, it ought to be clear that the assurance which is a feature of my
firm grasp might be spelled out in terms of my knowledge of a proof, so long
as the statements which appear in that proof are less complex than the disjunc-
tion in question. On the analogy with formal systems, the target disjunction
must, in the well-founded ordering of all statements, appear farther up the sub-
formula tree than any statements which appear in the proof. Otherwise, one
could never explain what it is for a disjunction to be true.

This constraint is severe and it is fairly clear that relatively few disjunctions
will actually satisfy it. One need only think of the relative difficulty of proofs
for the correctness of quantifier elimination algorithms. Indeed, there can be no
a priori limit set upon the complexities of the concepts which feature in the cor-
rectness proof. Were the constraint to be taken seriously, it seems likely that the
total number of intuitionistic truths would be amazingly small. There would
remain relatively few disjunctions whose truth could be known in such a re-
stricted way.

Lastly, one ought to raise a question about our assurance that every cor-
rect intuitionistic proof can be "normalized" into a canonical proof. If we cannot
be so assured, then canonical proof cannot be any sort of legitimate candidate
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for "proof-available-to-me". If I cannot turn the ordinary sorts of constructive
proofs into canonical proofs, the real proof-conditions of intuitionistic state-
ments might lie outside my ken. At worst, it would be possible to have an ordi-
nary, correct but noncanonical proof of a statement without being in a position
to recognize that statement as true.

Under the preferred analogy between intuitionistic theories and theories in
formal systems, the requisite assurance would be afforded by some kind of nor-
malization theorem. But, as normalization theorems lead directly to consistency
proofs (simple inspection is all you need to see that 0 = 1 has no normal deri-
vation in arithmetic), these proofs cannot themselves be represented in the for-
mal system which is their object, as long as that system is sufficiently strong and
satisfies the conditions of the Second Incompleteness Theorem. Therefore, assur-
ance takes the form of mathematical knowledge which cannot itself be repre-
sented in terms of a knowledge of canonical proofs. The tempting replies—that
the assurance is either nonmathematical or somehow "direct and unanalyz-
able" — are wholly unconvincing.

2.6 Intuitionistic truth

2.6.1 Time and truth If the truth conditions of RH are given by the report,

I have a proof-available-to-me of RH,

then we are ready to apply temporal discriminations to the truth of RH. Just
as with present-tense sentences reporting on the current position of Mars or the
ripeness of an apple, the displayed statement seems to contain a suppressed 'now'
which is available for modification into 'then' or 'hence'. We can sensibly assert
that RH was true or will be true or is not yet true, or was true last Tuesday. If
it were thought that RH would certainly be proved at some stage in the future,
we could indicate as much by saying that RH is not true now but will certainly
become true. As for matters of time, the reductionist rendering of RH contains
no more lofty a claim than 'Dear, I think I left the stove on' or 'The Yankees
will win the series in six'. We could allow that RH might become true tomor-
row and that it would be alright to say 'Yesterday, RH was not true but today
it is'. Prima facie the possibility is opened that a mathematical proposition might
even cease to be true —perhaps because all proofs have been lost and no mem-
ory of them remains. For all we know, there may have been statements in the
missing books of Euclid's oeuvre whose proofs have never been rediscovered.
At the very least, we would need a special explanation (perhaps another dose
of supermathematical idealization) in order to bar this possibility.

Like J. S. Mill, the reductive intuitionist also takes mathematical truths to
be contingent. Unlike Mill, he takes them to express contingent facts about
human history. To take a specific example, it may have been a matter of pure
chance that Eudoxus-or anybody-proved the prime number theorem, the one
attributed to Euclid. It seems perfectly possible that the theorem might fail to
be humanly provable. (We can imagine that humans are far less adept mathe-
matically than they actually are.) Hence, on the intuitionist view, the prime num-
ber theorem is not a necessary truth —it might well not have been true. Heyting
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[12] seemed to embrace this idea wholeheartedly; he even referred to intuitionis-
tic mathematics as "empirical".

As Frege pointed out, one gets a conceptual headache trying to make this
sort of empiricism fit pedestrian mathematical theories. Although it might be
easy to admit of a universe in which the gas laws are suspended, it is hard to
make any sense of a universe in which the laws of primitive recursive arithmetic
fail to hold. Dummett, in [6], made a suggestion which looked to eliminate the
temporal relativity of the reductionist concept of truth together with attendant
headaches. Instead of equating RH with

I have (now) a proof-available-to-me of RH,

one might equate it with

I can produce a proof-available-to-me of RH.

The latter sort of statement, just as the former, is to be true in virtue of the
actual production-by me or a counterpart - of a suitable proof. But, unlike
the former, it is to be considered timelessly true; once the actual production
has occurred, it is seen to have been true always. If acceptable, Dummett's pro-
posal would obviate reluctance toward tensed mathematics. Were RH to receive
a constructive proof tomorrow, it would be true today; it would have been true
in 43 Be.

Putting aside the question whether there really are in mathematical parlance
any of the sort of statements Dummett imagines, we can see that the suggestion
will not do. To make the counterexample to TND stick, the reductionist has to
claim that RH is not now true. But, if RH is timelessly true a la Dummett, he
cannot support the claim that RH is not now true by referring to the present-
day dearth of proofs. To certify that RH is not intuitionistically true, he would
have to show that RH will never be proved. Short of giving a full-scale indepen-
dence result, this is something he cannot do. Worse, Dummett's proposal again
opens up the possibility for unrecognized mathematical truths. Mathematical
facts could obtain not in virtue of our current abilities, even if idealized, but in
virtue of our future ones. But these may be as dark to us now as sheaf theory
would have been to Raymond Lull.

2.6.2 Nothing could be further from the truth The weight of received phil-
osophical opinion seems to be behind the notion that the scheme of disquotation,

Tr(0)iff0,

is a necessary feature of any successful account of truth. But none of this can
be effective with the reductionist; unrestricted disquotation would undermine
the counterexample to TND. First, since φ in the above scheme can be any state-
ment, from general disquotation follows disquotation for negated statements,

Tr(-.φ) iff -iφ.

Second, even if the biconditional expresses only material equivalence, we can
negate both sides to obtain

- Tr(φ) iff -10.
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It follows immediately that

if - Tr(φ) thenTr(-iφ).

So, once we successfully argue that the left disjunct of

RH v -iRH

is not intuitionistically true, we know automatically that the right disjunct, -iRH,
holds. Therefore, the reductionist must refuse to allow that negation commutes
with the truth predicate. In particular, he must not accept that

if ->Tr(φ) thenTr(-.φ).

Disquotation cannot govern the reductionistic truth concept.
One ought not conclude that only one half of the disquotation principle,

the right-to-left or "quotation" direction:

if φ, then Tr(φ)

conflicts with reductionistic strictures. Some considerations, equally weighty, can
be lodged against the other or "disquotation" half:

if Tr(φ), then φ.

These will be considerations of a more formal nature.
Reductionists agree that, if intuitionistic truth is not itself decidable, that

is, if it is not the case that every proposition is either intuitionistically true or
it is not, then, it is at least positively decidable. In other words, if there should
be a proof of a proposition, then we have the means to register the availabil-
ity of that proof. This is yet another way of stating the requirement that there
be no unrecognized mathematical fact. Also, the idea that intuitionistic truth
might admit of articulate mathematical treatment is accepted as coherent, at least
pending further investigation. It would not be inappropriate, then, to ask that
truth be given expression within a formalized version of an intuitionistic theory
which is recognizably sound and extends elementary syntax. But, if this is
allowed, then the "disquotation" half of the disquotation scheme yields con-
tradiction. (A note for afficionados: disquotation plus the decidability of the
proof predicate entails the Brouwer-Kripke Scheme, which many have thought
objectionable.)

First, we are assuming that Tr is expressible as a one-place predicate which
holds (or fails to hold) of numerical codes of closed formulas of the system.
Then, we make the seemingly reasonable and modest assumptions that the "dis-
quotation" part of disquotation (call it Ό') holds

if Tr(φ), then φ,

along with the fact that this last is itself intuitionistically true:

Tr(Tr(φ)^φ),

and, finally, that formal derivability preserves truth at least in the case of some
individual formula-types. In particular, we assume that

if D h ->φ and Tr(D), then Tr(-ιψ).
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It is a simple manipulation to show that these three assumptions are incon-
sistent. First, since the system in which we are working extends elementary syn-
tax, there is a formula ψ which fixes the predicate

T r ( - i . . . ) .

It follows immediately that

Dh -ψ.

Then, from the other two assumptions, one can easily show that

Tr(-ψ),

and, since ψ is a fixed point, that

φ follows from the second and third assumptions.

Therefore, the three assumptions are jointly inconsistent. It is worth pointing
out that a recourse to some sort of type theory does not seem to circumvent this
dilemma, as the reader can easily confirm.7

It is something of a puzzle then that there remain independent considera-
tions for insisting upon disquotation. Not the least among these is the fact that,
intuitively, disquotation ought to be intuitionistically true. If we read the logi-
cal signs with a constructive gloss, then from the fact that φ is intuitionistically
true, we can discover a proof of φ. Hence, φ should follow from the assertion
that φ is true. For the converse, we know that, intuitionistically, φ can hold only
in virtue of a proof for φ which we can, at least in principle, discover. But find-
ing this proof is just getting into a position in which we see that True(φ) holds.

It behooves the reductionist to explain the proof conditions of negated
statements in such a way that the failure of disquotation becomes intelligible.
Usually, some notion of necessity is put to work to fulfill this obligation. Spe-
cifically, the reductionist differentiates between ->Tr(φ) and Tr(-ιφ) by saying
that the former reports that no proof of φ is now available, while the latter
makes the intuitively stronger claim that a proof of φ is shown to be mathemat-
ically impossible. To be more precise, the reductionist will explain that -κ/> is
intuitionistically true when one has an effective procedure which maps any pos-
sible proof of φ into a proof of an obvious absurdity such as 0 = 1. An appar-
ently less stringent condition is associated with -ιTr(φ): an empirical claim like
Tr(φ) is false when it fails to correspond with the supposedly manifest facts of
my mental history.

For this explanation to buttress the counterexample, the word 'possible' in
the phrase 'any possible proof must get a nonvacuous modal twist. If the reduc-
tionist meant by 'possible proof, merely 'proof-(now)-available-to-me,' then the
prospects of the counterexample of TND would evaporate. The reductionist
needs to grant that either RH now has an available proof or it does not. If the
former, then RH is intuitionistically true. If the latter, then we have ready-to-
hand an effective procedure for mapping all available proofs of RH into any
value we please. If there are no available proofs, then any effective procedure,
say λx.O, will suffice. It would then follow that ->RH is intuitionistically true.
(Incidentally, the reductionist can hardly refuse to accept the instance of TND
which just appeared, viz., that RH either has an available proof or not. The
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reasoning of the presumptive TND counterexample relied upon the assumption
that one can accurately determine, for any proposition, whether or not a proof
of it is available.)

So, the words 'possible proof must not mean 'proof-available-to-me'. Nor
can it be short for 'proof which would be available to one of my supermathe-
matical counterparts but not, perhaps, to me.' Recall that I could only claim
access to the mathematical pronouncements of my counterparts on the basis of
my own mathematical abilities. As we said, a proof will be possible for my coun-
terpart just in case it is available-to-me in the extended sense where that, in turn,
consisted in general of my possession of an algorithm. If 'possible' meant 'proof
available to me in the extended sense', then we can return to the argument of
the preceding paragraph. That argument's only substantial assumption was that
one could decide whether a proof of RH was available or not. But this assump-
tion is in place regardless of our understanding of 'available'. Whether strict or
extended, one can —according to the reductionist — always tells when a proof is
available and when it is not.

The reductionist seems to be relying upon a concept of mathematically pos-
sible proof which he has yet to explain in fully reduced terms. It may not, how-
ever, be necessary to chase this concept any further, as there is a more telling
problem, one which will attend any view calling upon a fairly strict distinction
between "mathematical" and "empirical" statements. According to the reduc-
tionist, mathematical negation (the one marking a reduction to absurdity) can
sensibly attach only to mathematical statements — those which fit into the rubric
governed by reductio proofs. Empirical negation is semantically distinct and
attaches only to correspondingly empirical statements. There must be some man-
ner of semantic divide between the two.

Quite simply, the problem is that no one —from the days of Hume's
Enquiry up through Language, Truth and Logic—has ever been able to draw
a clear and convincing line to separate the mathematical from the empirical. For
one thing, the status of a whole raft of reasonable assertions like

Brahms wrote no more symphonies than there are roots to a general quintic
polynomial

and

The number of planets is not such that, when added to two, it yields seven

seem to defy ready classification. In each case, the reductionist would have to
explain which of the two negations was appropriate.8

We are now skirting the edge of an admission which, if granted, would dis-
bar reductionism altogether. Throughout his work, Brouwer presupposed that
mathematical proofs and other forms of evidence possess a discernible struc-
ture which can itself be put to honest mathematical work. It is doubly significant
that Brouwer's idea of evidence comes to the fore quite plainly in his most
"Brouwerian" contributions: in the proofs of Brouwer's Theorem and of the Fan
Theorem and in the foundations of the theories of the creative subject and of
choice sequences. We like to think that this idea —that mathematical evidence
is itself suspectible to full-scale mathematical analysis —is the very heart of intui-
tionism. Our treatment of the issues surrounding "possible proofs", solipsism,
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and algorithms strongly suggests that this is something reductive intuitionism
cannot encompass. The coherence of reductive intuitionism seems to require that
mathematical evidence fail to be mathematical. Again and again, the reductionist
is forced to boil intuitionistic mathematics down to concepts such as "phenom-
enal construction" and "possible proof" which do not themselves admit math-
ematical characterization. This is especially clear in the case of intuitionistic
truth. The facts about mentalistic proofs, to which mathematical facts are sup-
posed to be reduced, are not mathematical. It is not just that they lack a smooth
mathematical treatment; we have no idea how to begin to sort them out.

Perhaps we should say that intuitionistic reductionism fails for the same
sort of reason behaviorism did. In the latter case, the "logical texture" of claims
about stimulus and response did not match that of claims about beliefs and feel-
ings. So also in the former: statements about mental phenomena lack the sort
of "logical texture" required if they are to replace statements of mathematics —
even of intuitionistic mathematics.

Maybe this is all to the good. As far as intuitionism is concerned, reduc-
tionism has always been a public relations failure, for at least two reasons. First,
it abandons intuitionism to some very bad company. It makes a respectable form
of mathematics out to be just another "form of antirealism" akin to fictional-
ism or instrumentalism or finitism. As a result, intuitionism has borne a guilt
by association which has curtailed its appreciation.

Second, reductionism fosters the invidious idea of a deep and fundamen-
tal rift lying between intuitionistic mathematics and its classical counterpart. On
most of the charts, the divide is seen to run between the solid ground of clas-
sical, realist semantics and the marshy, vaprous zone of antirealism. The former
contains the prosperous regions populated by solid and successful mathemati-
cal citizens such as Tarskian model theory and Montague semantics, the latter
a neighborhood where property values are markedly lower, elbow-to-elbow with
philosophical pariahs like subjectivism and idealism.

So much for reductionism; the realist has no such problems of public
image. He thinks that our maps of intuitionistic territory are due for the sort
of revision detailed in the section to follow.

2.7 How to be an intuitionist

2.7.1 The status of bivalence It is not difficult to sever the supposed con-
nection between intuitionism and antirealism by showing that intuitionistic math-
ematics is independent of the failure of bivalence. It is worth noting that failure
of bivalence alone cannot serve the semantical needs of even an emasculated con-
structivism, since it cannot account for all of the classical laws which the con-
structivist believes will fail. For example, there is the "law of constant domains":

LCD Vx{Px v Q ) ^ (VxPx v Q).

Here, Q is supposed not to contain x free. LCD is classically correct—it features
in the usual proof of the prenex normal form theorem —but it is constructively
invalid. The intuitionist may use the usual interpretation of predicate logic over
locales to prove that the acceptance of LCD forces the acceptance neither of
TND nor of bivalence. Consequently, if the failure of bivalence were to express



INTUITIONISM AND COMPUTABILITY 555

the "semantical essence" of intuitionism, the failure of other laws would require
new and nonessential semantical dispensations. (To dispel possible misunder-
standing, we must say that the intuitionist need not, in order to avail himself
of this reasoning, take the interpretation of logic over locales to be in any way
standard. All he needs is the proof that Heyting's predicate logic is sound with
respect to the interpretation over a locale given by a two-element set. The
required proof is intuitionistically correct.)

Even a cursory glance at Kleene's realizability interpretation [17] suffices
to show that the intuitionist can live a full mathematical life without the fail-
ure of bivalence. There is no mathematical reason not to use classical logic as
a metalogic in which to set up the realizability interpretation. If one does so,
each individual instance of the law of bivalence is realized. Even so, one can
show that the law of excluded third is not (realizably) valid and that many of
the familiar axioms of Brouwerian intuitionism, among them Brouwer's The-
orem and the Uniformity Principle, remain true.

In concentrating upon bivalence, it may be that logicians have missed the
truly essential point of difference between classical and intuitionistic mathemat-
ics.9 The mathematical core of intuitionism appears to be independent of what
many have taken to be its fundamental semantic feature, failure of bivalence.
The viability of Kleene realizability opens up the possibility that one can remain
a "full-fledged" metaphysical realist about mathematical objects and facts within
a thoroughly intuitionistic mathematical universe.

2.7.2. Presentability and truth Of intuitionism, Heyting wrote

While you think in terms of axioms and deductions, we think in terms of evi-
dence; that makes all the difference. ([11], p. 13)

As we said, the hallmark of intuitionistic semantics ought to be the fact that it
takes the abstract form of constructive mathematical evidence as a subject for
mathematical inquiry and a crucial element in the truth conditions of mathemat-
ical statements. As a result, truth conditions can themselves be given a clear
mathematical formulation. To preserve these ideals, we adopt an antireductionist
stance. We take the objects of intuitionistic mathematics to be objects sui
generis, among them are numbers, sets, and functions. They need not be mental
entities; they are not to be conceived as essentially mind dependent. The intui-
tionistic facts in which they participate are echt facts. They are as objective as
mathematics itself; they carry on without our explicit intervention.

Accordingly, we study the foundations of intuitionistic mathematics much
as we do the foundations of a classical domain. In particular, we admit that we
already understand some constructive mathematics on its own terms and without
the need for reductive explanation. We admit that we already grasp the senses
of the intuitionistic logical signs without reconstrual. In devising and exploring
foundations for intuitionism, we hope to sharpen and broaden a preexistent
intuitive understanding.

With this in mind, we can begin. It is not mere wordplay to hold that, in
its foundations, intuitionism ought to be intuitive if anything is. So the foun-
dational concepts ought to be few in number. There seem to be two basic and
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traditional ideas: constructive truth and the presentability of existence. Upon
these, a large part of the intuitionistic corpus can be based.

The fundamental idea of constructive truth is that it is not fundamental;
it is defined in terms of other mathematical notions, in particular, in terms of
an abstract concept of evidence. This is embodied in the demand that, for propo-
sitions φ,

Tr(φ) hold if and only if 3/7 /?(=</>.

|= is the relation of constructive evidence. It holds between interpreted
propositions φ and objects p which are the mathematical forms of immediately
discernible reasons. Since these are generalizations of both ordinary construc-
tive proofs and so-called "data objects"—bits of computational information —we
call them proof objects (or just probjects for short). The terminology is supposed
to prevent possible confusions between probjects and formal proofs. In saying
that truth consists in the existence of a suitable probject, we are giving expres-
sion to the thoroughly intuitionistic picture of the realm of mathematical fact
as wholly delimited by an abstract representation of our facility with proofs,
computations, and other kinds of abstract mathematical evidence.

Like the members of groups and rings, probjects are best conceived of
structurally, as denizens of various applicative algebras. As an algebra, a col-
lection of probjects sports an operation of pairing which is total and an oper-
ation of application which may well be partial. If p and q are probjects, then
(p,q) is their pair and p{q) is the result of an application of p to q. Since we
can think of probjects applying to each other as function and argument, the
notion of probject preserves the innocent ambiguity exploited in using the sin-
gle word Construction' as the name for two seemingly different kinds of things:
objects and operations. Officially, probjects are both. The natural numbers are
assumed to be probjects as well; this is reasonable, since natural numbers are
the premier forms of mathematical data.10

In our view, it is not an extra constraint to insist that constructive truth be
a recognizable form of truth. Among other things, we require that truth be the
ultimate condition for the literal correctness of a statement. This requirement
is just the principle of disquotation, so maligned by the reductionist:

Tr(</>) ~ φ.

As a consequence, truth commutes with the intuitionistic logical operators. The
recursion clauses associated with the semantical research of Tarski (cf. [37]),
clauses such as

φ Λ φ is true iff φ is true and ψ is true,

hold sway over intuitionistic truth just as much as over classical. (A number of
philosophers have troubled to point this out; cf [26].) So, Tarskian model
theory —even Montague semantics when properly understood — may be just as
intelligible, interesting, and fruitful as they are within the standard context. At
times, they can be even more interesting, as we shall see.

Next, there is the presentability of existence. There have been any number
of traditional formulations; most of them seem to involve the idea of "explicit
presentation": a constructive object can only be given to us as a real presenta-
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tion, that is, in terms of data which represent the object and which can be
appreciated computationally. Since the probjects will do the presenting, all prob-
jects must be finitary and the basic operations they represent must be, intuitively
speaking, computable.

Presentability is also allied to existential quantification. The intuitionist
understands 3n. φ(n) in such a way that, when it is true, there is a computation
leading to some specific n and a reason for claiming that φ(n). According to the
intuitionist, this is the only legitimate way in which a number can be "given".
When existential claims have free parameters, instances of the existentials must
still be "given" —in this case, it is in terms of computations on the parameters.
A contemporary rendering of the traditional idea is contained in the scheme

Vp(p N φ -> lq.ψ[q]) => 3rVp(p |= φ ->ψ[r(p)]).

This is the general presentability principle. It says that, if an existential claim
3qψ(q) about probjects is based upon the intuitionistic truth of φ, then instances
of the existential must be computed (using the r of the formula) from the truth
conditions of φ.

Heyting [11] insisted that intuitionism stood in no need of an extramathe-
matical foundation like that exemplified in the logical principles of Principia.
Heyting described intuitionistic mathematics as "antimetaphysical". In part, he
meant that, in explaining the nature of the intuitionistic discipline or in justifying
a mathematical axiom, we need no recourse to considerations either metaphysical
or psychological. If a piece of intuitionistic mathematics requires a semantical
justification, it is to be given in strictly mathematical terms by referring to
abstract evidence and its formal properties. So, in going from reductionist to
realist foundations, we think of ourselves not as turning away from the inten-
tions of the early intuitionists but as giving them useful mathematical
expression.11

From the principles of truth and presentability, we can deduce the general
form of an explanation of intuitionistic meaning. For example, we can now show
that if the content of a statement is to be given in terms of its truth conditions
it must be done as Heyting recommended, in terms of a recursive specification
of conditions on the evidence relation K The direct "proof" conditions of com-
plex mathematical statements must be set out in terms of the direct "proof" con-
ditions of their simpler constituents. (As will be clear from the forgoing, 'proof
is used advisedly. We think it less dangerous, when dealing with intuitionistic
mathematics, to speak of mathematical evidence rather than of proof.)

We will restrict ourselves to two examples, truth conditions for disjunctions
and for universal quantifications. According to disquotation and the definition
of constructive truth, we can assert that

3 p P N (Φ v Φ) & iqqVΦv^rr^yp.

By means of a slight detour through intuitionistic arithmetic, we find that

Vp[p)r (Φ v φ) -> 3<q9r) (q = 0 Λ r N φ) v (q = 1 Λr\=ψ)].

With a little help from the presentability principle, one then sees that there must
be a computable operation given by a probject s such that, for any p, if

P N (Φ vi/0,
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then, s(p) exists and gives a pair (s(p)0, s(p)x) such that either

s(p)o = 0Λs{p)i hφ

or

s(p)0 = 1 *s(p)ι \=φ.

The converse principle also holds: there is a computable operation represented
by the probject t such that, if (r9s) is the sort of pair just described, then t will
accept it as an input and will output a probject t((r,s)) which stands in the rela-
tion |= to (φ v φ).

The same sorts of consequences ensue in the case of universal quantifica-
tion. From presentability and the commutativity of truth, it is easy to derive the
familiar "proof conditional" explanation of the intuitionistic quantifier. (For the
sake of the present example, we assume that x ranges over the collection of prob-
jects itself.) If we make the uncontentious assertion that

Tr[Vxφ(x)] ~ VxTr[</>(*)]

and claim that truth be constructive:

Tr[φ] - a p p h φ ,

we can readily infer that

Tr[vxφ(x)] ~ Vxlpp \=Φ(x).

With presentability, we conclude that

Tr[Vxφ(x)] ~ 3<?Vx q(x) h φ(x),

which is an instance of Heyting's definition of intuitionistic truth.
So, given constructive truth and presentability, we deduce that there must

be a probject-definable, computable operation which calculates, from the truth
conditions of a disjunction, truth conditions for one or the other of the con-
junct s as indicated by operation. Moreover, there is a uniform procedure for
computing, from the truth conditions of a universal statement, the conditions
of each of its relevant instances. Similar conditions can be determined for all
the connectives. The readiest way of satisfying these is to adjust the collection
of probjects so that the computable operations described, e.g., the one taking
the evidence for a disjunction and converting it into evidence for one of the dis-
juncts, become the identity. The result of this transformation is just Heyting's
semantics [11] for the intuitionistic logical signs.

Three examples: implication, existential quantifier and universal quantifier,
serve to illustrate Heyting's ideas. Here, p and q are probjects, S names an intui-
tionistic set, and a ranges over the collection of entities from which members
of S are taken. Intuitionistically as classically, a set is given (for purposes of
semantics) by a direct specification of its membership conditions. So, S is spec-
ified by describing the conditions under which p |= a G 5, for various a.

1. p \= (φ -> ψ) iff, for all q, p(q) N ψ whenever p (= φ
2. (p,q) f= 3xsφ(x) iff, for some a, p f= a E 5 and q |= φ(a)
3. p |= Vx5φ(x) iff, for all a, p(q) \= φ(a) whenever q \= a G S.
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In more everyday parlance, 1 says that p is direct mathematical evidence
for a conditional whenever it is a computable operation which transforms math-
ematical evidence for the antecedent into evidence for the consequent. According
to 2, direct evidence for an existential claim about S is a package with two com-
partments, one containing a reason for believing that some a belongs to S and
the other containing evidence that a possesses the property in question. Finally,
by 3, the primary form of evidence for a universal claim is a computable oper-
ation which converts evidence that a belongs to S into evidence that a has the
desired property; the operation must be uniformly successful for every such a.12

As we said, this is a more general and regularized version of Hey ting's
1932 interpretation.13 Once we relativize to the set 91 of natural numbers, the
schemes take on precisely the cast which Heyting originally gave them, 91 is the
unique collection such that

p N a E 91 if and only if p = a E 91.

In other words, only the natural numbers can belong to the species ΐfl and a
direct proof that n is a natural number is abstractly represented by that very
number itself.14

After substituting 91 for S in 2 and 3 above and making the obvious
maneuvers, we arrive at 2N and 3^:

2N <P>q) N 3xNφ(x) iff p E 91 and q |= φ(p)
3N p \= VxNφ(x) iff p(q) f= φ(q) whenever q E 91.

Of course, 2N is just another expression of the leitmotif of presentability.
At bottom, the only writ for claiming the constructive truth of existentials is
habeas corpus: one must yield up both a specific natural number and a demon-
stration that it has the property in question.

The relevance of disquotation to Church's Thesis should now be obvious.
From it and Heyting's explanation comes a proof that every number-theoretic
function is computable. If we assume the first line below, then the others fol-
low on seriatim, (x and y range over 91; p and q over the collection of prob-
jects.)

1. Vχlyy=f(χ)

2. lpp)=Vx3yy=f(x)

3. 3pVxp(x)ι)F(p(x)o=f(x))
4. lpvxp(x)o=f(x)
5. 3q(=λx.p(x)0)f=q\ΐfl.

Every operation given by a probject is computable, so every function
on 91 can be effected by applying to the members of 91 a computable opera-
tion.

Contrary to the intimations of [1] (v.i.), the onus is now upon any intui-
tionist who despairs of Church's Thesis not to explain how he can "live with"
it, but rather, how he plans to live without it! As we have understood it,
'Church's Thesis' refers to all instances of the scheme

Vx3lyφ(x,y) -> 3e Vx[{e] (x) I Λ φ(x,{e} (x))].
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With Heyting's explanation in place, this boils down to

[*] Vq((q: ΐfl ^ ΐfl) -+3e q[ΐfl = {e}).

The essence of the probject is its presentability, its computability. The intui-
tionist, on our interpretation, has set himself the task of devising a completely
mathematical semantics. The present-day status of the Church-Turing concept
of computable function is reasonably secure; it stands relatively unchallenged
as a mathematically rigorous and successful explication of the intuitive comput-
ability concept. So it falls to the realistic intuitionist who harbors qualms about
CT to explain how he is to succeed and yet resist [*]. To put a fine point on it:
the intuitionist needs some mathematical account of computability to get his
mathematics off the ground. Without doubt, the notion of recursive function
is the most successful notion of computability extant. The intuitionist who rejects
CT has some explaining to do. Even if one cares to avoid the barefaced truth
that computability is the central issue of intuitionistic foundations, the respon-
sibility to CT cannot be avoided.15

The realist is free from the philosophical ills which beset reductionism. For
example, considerations of computability suffice to give counterexamples to
TND. Intuitionistic logic alone prohibits the possibility of a "straight" counterex-
ample to an instance of TND, since logic proves that it would be absurd to deny
any instance of TND:

N -1-1(0 V -10).

But, to show that TND is not universally valid, we need only make the uncon-
tentious assumption that noncomputable properties of the natural numbers are
readily definable. Let JC be one of these. Since probjects are computable, there
is no probject q such that, for every « E 9 l , q(n) — 0 or q(n) = 1 and

V/i G Vlq(n) 0 <* 3C(π).

It follows immediately from the semantics of disjunction and universal quan-
tification that

-iV/z G 91(JC(Λ) v -I3C(Λ)).

Hence, TND is not intuitionistically valid.
Finally, we can now "turn around and go back": from the presentability

principle, the constructive definition of truth, and Heyting's schemes, we can
derive the form of Tarski's recursion clauses. This confirms that our intuitionistic
notion of truth engenders none of the headaches brought on by its reductionistic
counterpart. For example, if we apply the presentability principle to Heyting's
explanation of implication,

p¥(φ-+ψ)<* Vq(q N Φ^p(q) N ψ)

we can show that

Tr(0->ψ) iff Tr(0)-Tr(i/O.

In short, with computability in the background, Tarski's "definition of classi-
cal truth" and Heyting's "definition of intuitionistic truth" are equivalent. It



INTUITIONISM AND COMPUTABILITY 561

would not be unfair to say that Heyting's semantics is just "Tarski plus com-
putability" (although this is in no way to belittle Heyting's original achievement).

4 Variation II: Life with Church's Thesis Beeson's "Living with Church's
Thesis", the fourth chapter of [1], is a fine example of constructivism noir. It
is a whirlwind tour through recursive mathematics (drawing special attention to
analysis), the prime motive of which is the fostering of a negative attitude toward
the sort of mathematics we favor. Two of the chapter's presuppositions are of
particular concern. First, Beeson assumes that Church's Thesis is indeed some-
thing to be "lived with", as if it were a particularly gruesome style of mathemat-
ical deformity. In surveying results in recursive analysis, he enjoys characterizing
seemingly nonintuitive theorems as "bizarre", as if they were obviously repul-
sive and freakish. Within such an atmosphere, it is easy to start thinking of CT
as an unfortunate feature of the constructive logical environment, something
with which the intuitionist has to "cope".

Needless to say, this view should leave the intuitionist puzzled. For any-
one who is already aware that intuitionistic and classical analysis must be very
different, there is little entertainment in Beeson's sideshow. Unless one has
already adopted a thoroughly classical standpoint, the results of recursive anal-
ysis hardly appear abnormal.16

Second, Beeson supposes that we will be shocked by the scenes in his gal-
lery or disappointed by the seemingly adverse climate of recursive mathemat-
ics. But we ought to refuse this kind of response; shock or disappointment would
only show that inappropriate standards have been adopted. It is inappropriate
to rate intuitionism on its congruence with classical analysis. Intuitionists have
developed an analysis of their own. They are not trying to capture classical the-
orems but to find new, characteristically intuitionistic ones. So there is no contest
with classical mathematics on its own ground.

In assessing the potential of intuitionistic mathematics, we ought to be on
the lookout for more appropriate comparisons. At the very least, this will afford
a more well-rounded view of the subject. When we look, we find regions of clas-
sical mathematics that share central intuitionistic concerns, those devoted to the
understanding of the finitary and the computable. These are the areas in which
intuitionism ought to excel.

The theorems whose proofs we will sketch come from two of these areas:
model theory for first-order arithmetic and models of the lambda calculus. These
are strikingly positive consequences of forms of CT and associated principles.
In presenting them, our goal is the elimination of invidious comparison; we do
not pretend that it can be achieved so briefly and so cheaply. A more lengthy
advocacy would be called for. But there are many other results from areas as
diverse as set theory and combinatorics which might have been mentioned and
which cannot be encompassed in the space here.

4.1 There are no nonstandard models No classical first-order theory with
infinite models determines its models up to isomorphism. There is nothing one
could say in the language of Dedekind-Peano arithmetic which would preclude
its interpretation over a nonstandard model. From this sort of fact, Skolem con-
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eluded that, paradoxically enough, the quintessence of arithmetical structure
could not be expressed in a first-order language suitable for expressing the
axioms of arithmetic. Skolem went on to conclude, as well, that the very notions
of finite and infinite were mathematically insecure. David Hubert had thought
that classical logic and mathematics were the only things which could prevent
our eviction from "Cantor's paradise"; Skolem worried that, with classical logic
and metamathematics, we would not be sure that we had ever moved in.

The intuitionist need have no such concerns. On the assumption of Weak
Church's Thesis (or WCT),

every number-theoretic function is —• —ι recursive,

he can prove that there are absolutely no nonstandard models of arithmetic. We
understand this as metamathematical confirmation of Brouwer's insistence that
the intuitionist, thanks to the way in which he conducts his mathematics, has
a firmer grasp (perhaps the only adequate grasp) of the natural number concept.

Theorem Given WCT, there are no nonstandard models of arithmetic.

Proof: Let ΐfl be the standard model of intuitionistic first-order (or Heyting)
arithmetic. Let OH be a nonstandard model. As in the classical case, there are
simple facts which follow directly from the axioms of arithmetic and suffice to
show that ΐfl must be an initial segment of 311.

Again, as in classical arithmetic, we can avail ourselves of the existence of
provably inseparable sets. Let φ(x) and ψ(x) be the ordinary Σ{ expressions for
the predicates

[x)(x)U{x](x) = 0

and

[x] (x) U{x] (x) = 1,

respectively. The extensions of these formulas cannot be recursively separated
in 91; this we can prove in Heyting arithmetic.

Since 9ΐl is nonstandard, there is an a €Ξ ΐftl such that a exceeds any stan-
dard n. It is a theorem of Heyting arithmetic that

VΛΓ-i-iVy < x(φ(y) v ->Φ(j)).

Once we interpret this in 3ϊl, instantiate to a and remove (temporarily) the lead-
ing -1-1, we obtain

[*] Oft N vy < a(φ(y) v -^φ(y)).

Since a exceeds every standard number, we know that, for all n E 91,

311 \=Φ(n) vSϊlN -«Φ(/i).

Finally, we assume CT,

every natural number function is recursive.

Then the 0, 1-valued function / defined by the scheme

f(n)=0* 3ttf=φ(/i)
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is recursive. Since φ and ψ are Σ\,f separates their standard extensions recur-
sively. This is a contradiction.

Obviously, a contradiction can be expressed as a negative formula. So, we
can add judicious double negations to CT and to [*] and the reasoning just
described will be preserved. Therefore, given WCT, M cannot be nonstandard.

Markov's Principle (MP) is the assertion that

every nonempty decidable subset of ω has an element.

In symbols, MP is often represented as

\yn(φ(n) v -><£(«)) Λ -iV/ι-iφ(/?)] => 3nφ(n).

A version of MP will play a large role in matters under discussion in Variation
III. For now, it suffices to note that MP is independent of intuitionistic set the-
ory and that, using it, one can derive from the preceding result the stronger con-
clusion that Hey ting arithmetic is categorical.

This result can, in turn, be sharpened to the point at which there appears
a single arithmetic sentence which is categorical. It then follows that construc-
tive validity is nonarithmetic. (cf. [21].) With reference to Beeson, it is note-
worthy that the proof in this section was inspired by a nonfreakish bit of classical
recursive mathematics, Tennenbaum's Theorem on nonstandard models, from
[38].

4.2 Brouwer's Theorem and information systems Naturally, one of the great
attractions of a type-free lambda calculus is type freedom. A domain over which
the calculus held sway would be egalitarian: there will be no class distinctions
between function and object. The operation of application will be indifferent
to the "order" of its arguments. To model such a domain it would be ideal to
have a set X of which the function space X => X is a natural substructure; that
way, the functions from X =» X could be identified with objects from X.

From the standpoint of model theory, the great attraction is also the great
drawback. Using classical reasoning, Cantor proved that there are no nontrivial
sets X for which X => X has these sorts of properties — at least when X => X is
the set of all functions from X into X. Dana Scott showed us how to overcome
the difficulties by solving equations of the form

(X => X) c X

and even

X= (X^> X)

in such a way that X^ Y is a "suitable" function space (cf. [34]). Solution sets
can always be found within various categories of domains. (For our purposes,
a domain will always be a consistently complete, ω-algebraic cpo.) In the case
of domains, the "suitable" function space is that fragment consisting of the con-
tinuous domain maps. This collection is always "thin enough" that the isomor-
phism equations can be solved while staying "fat enough" that all the lambda
terms get interpreted as the abstracts of actual functions.

The difficulties presented by models of the untyped lambda calculus are
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inherently classical. This should be no surprise —in the notion of probject, a con-
vergence of operation and argument was "built in" from the start. Cantor's gen-
eral theorem is intuitionistically false and the intuitionist can assume outright
that there are fairly ordinary sets X such that

X = (X=>X)

where the latter is the complete function space of X. To show that all this is so,
one can prove a "Brouwer's Theorem" for domains, i.e.,

Every function between domains is continuous.

More recently, Scott has given us [35] a premier way in which to present
a category of domains: as completions of information systems. For the sake of
uncluttered exposition, we will restrict attention to information systems drawn
from subsets of ω.

Definition A triple

S = </, h, Δ>

is an information system when J is a decidable collection of finite subsets of
ω, h is a decidable binary relation holding between finite subsets of ω, and Δ is
a distinguished finite subset of ω, all satisfying the axioms to follow. (We are
thinking of the finite subsets of ω as given by natural numbers. In the last four
axioms, n9 m, and p are presumed to be members of /.)

Al n Q m and m G / implies that n G J
A2 for all n, [n] G J
A3 n h m and n G J implies that (n U m) G J
A4 n\- m and m \- p imply that n \- p
A5 n \- A
A6 n ς= m implies that m \- n
A7 n \- m and n \- p imply that n \- (m U p).

The connection between information systems and domains is perfectly
plain: every information system is a "domain skeleton", the collection of finite
elements of a domain which arises through a "Cauchy completion" process.

Definition If S is an information system and/is a sequence of members of
/, then/is an element of S provided that, for every n9

(/(θ)U/(i)U...u/(/!)) e/.

Let 3D be the collection of elements of S. On X) there is a partial order which
obtains when one element "approximates" another: we say t h a t / c g whenever

V/i3/π(g(0) U g( l ) U . . . Ug(m)) \-f(n).

Proposition On the assumption that S is an information system, the set of
elements 3D is a consistently complete, ω-algebraic cpo.

Proof: For definitions and proofs, the reader can consult [35] or [19].

As far as information systems are concerned, the functions of interest are
those which are continuous on the associated collection of elements. Intuitively,
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a function is continuous when it respects the topology defined by the finite
elements:

Definition The finite elements of an information system S are the constant
functions

[n] = λx.n

whenever n E /.

Definition If 3) and δ are the sets of elements of information systems and
F: £> -> δ then F is continuous provided that, i f / E 3) and [n] c F(f), then

3m [m] C / Λ [n] cF([/w]).

Theorem (assuming CT and Markov's Principle) IfT> and δ are sets of ele-
ments of information systems and F: 3) -> 8, /ΛeA? /^ /$• continuous.

Proof: Take 3) to arise from the information system S and let Fmap 3D into δ.
As one can see immediately, to show that F is continuous it suffices to check
that, for a n y / E 3) and n,

F(f)(0) |-/i=> 3/π/(0) hmΛF(m)(0) h π.

We let p be a total recursive function such that, for each / E ω, ρ(i) is an
index for a sequence g(i) of finite elements determined by {/}. We let Wi be the
r.e. set which is the range of {/} together with Δ and let W^ri) be its ftth
member.

g ( 0 ) = Δ

i χ [g(n)\JWi(n) if (g(n)U tyin)) e J

\^g(n) otherwise.

For each /, g(i) is a member of 3) and, so, F({ρ(i)}) is defined and belongs to
δ. By CT, F({p(i)}) is a recursive sequence whose index can be computed effec-
tively from /. Let θ(/) be such an index.

Another application of CT proves that the set

/„ = {/: f θ ( / ) } ( O ) h / i }

is r.e. and extensional. By the Myhill-Shepherdson Theorem (which is itself a
consequence of MP), there is a finite initial segment s of/such that s E In. The
union of the range of s gives us a finite element m such that

/(0) h m

and

F(m)(0) h/i.

This completes the proof of the theorem.

Corollary There is a set χ such that

x = (x =* x)
where *=»' indicates 'complete function space'.
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Proof: Scott's D^-construction is intuitionistically correct and results in a
domain D^ which is isomorphic to the set of all continuous functions from A*,
into Doo. Since we can assume that every function is continuous, D^ is iso-
morphic to the set of all functions

4.3 Small complete categories A category is small when its collection of
objects comprises no more than a set. It is cartesian closed when it has finite
products and exponential objects —as defined by the adjointness conditions
which capture the abstract relation between cross products and function spaces
in Set. It is complete when closed under arbitrary limits, including products
indexed by all the objects of the category itself.

A small category of this kind would be just the ticket for interpreting the
types of the polymorphically typed lambda calculus, P(λ). The latter is a typed
formalism which seems profligate about the sorts of types it will countenance.
In particular, it will permit types which are the results of "products" over the
entire collection of types. For example, a polymorphic identity function will have
type

nίζΞT(t=>t)

where Γis the collection of all types.
Classically, no very serious category can be small and complete. Moreover,

one's immediate impression is that the task of modeling such a construct will be
nontrivial. Reynolds, in [32], has shown that first impressions are well confirmed
by proving that there are no standard classical models whatsoever for P(λ). But
Reynold's argument requires an intuitionistically incorrect form of Cantor's The-
orem, so it cannot be constructively reconstrued.

Once again, the modeling situation for P(λ) is, by intuitionistic lights,
totally different. As far as we know, this was first realized in [27]. It follows
from an extended version of CT, Markov's Principle, and a plausible principle
of uniformity (v.i.) that the collection of presented sets is equivalent to a small
cartesian closed category which is complete.

Definition A presented set is any triple (A9X9 h) where A is a set with stable
equality, X is a stable subset of ω, and h is a function mapping X onto A. Once
again, a notion is stable when it is closed under -i-i.

Let ECT be the following extended form of CT. Here, A and B are (the
first components of) presented sets (A,X,h) and (B, Y,k).

If Fmaps A into B, there is an index e such that [e] is defined on X and,
for all n E X, k({e] (/?)) = F(h(n)).

CT is an obvious consequence of ECT; just consider ω as the presented set
(ω,ω,id).

The Uniformity Principle (UP) is stated for sets A which are quotients of
some power set. For any such A, UP is

Vx E Am E ωφ(x,n) => 3n E ωVx E Aφ(x,n),
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The initial negative response to UP is easily overcome. By explaining the way
in which probjects present powersets, the anticlassical quantifier exchange in UP
can be made perfectly intelligible. UP and ECT both hold in the ordinary Kleene
realizability universe.

Theorem There is a small cartesian closed category which is complete.

Proof: Unfortunately, there is not space here to give the proof in complete
detail. We must console ourselves with the aspect of the proof which features
Church's Thesis. It is obvious that the natural category of presented sets is equiv-
alent to the small category of modest sets, consisting of partial equivalence re-
lations on ω which are stable. Hence, it suffices to show that the category of
presented sets and set functions is complete and cartesian closed. Here, we will
demonstrate that this category is closed under the formation of (full) function
spaces.

To that end, let (A,X,h) and (B, Y,k) be arbitrary presented sets. We wish
to prove that, if C is the collection of all functions from A into B, then there
is a set Z and a function j such that (C,ZJ) is presented.

Let Z be the set of natural numbers to which e belongs just in case, for all
n , m E X,

{ e } { n ) ϊ / \ { e } { n ) E Y Λ ( h ( n ) = h ( m ) ^ { e } ( n ) = [ e ] ( m ) ) .

Given Markov's Principle and the fact that -ι-ι commutes with Λ, we see that
Z is a stable subset of ω.

For each e E Z, we can take j(e) to be the relation

l<h{n),k{{e] (/i))>: nϊΞX).

j(e) is a functional relation and obviously takes A into B. The statement that
j maps Z onto C is equivalent to ECT. This shows that (C9ZJ) is a presented
set and that the category of presented sets is closed under exponentiation.

5 Variation III: Dedekind finite machines Nonintuitionistic Church's Thesis
is said to get indirect support from the claim that

every plausible and mathematically cogent formulation of the concept
"mechanically computable function on the natural numbers" is equivalent
to "function computed by a Turing machine."

As we ought to distinguish this from Church's Thesis itself, we will call it
'Church's Hypothesis' or 'CH' for short. Classical mathematicians have given
evidence on behalf of CH by formulating variants of and alternatives to Tur-
ing's original concept of algorithm and implementation and then proving that
the vast majority of these turn out to delineate the same class of functions.

Of course, this sort of evidence can never be wholly conclusive in support
either of CH or of Church's Thesis. From a foundational point of view, it
appears especially incomplete; there are seen to be obvious variations on Tur-
ing's ideas which have yet to be fully investigated. We find these variants by
enforcing changes in the fundamental notions by which a concept of computable
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function is presented. Arguably, the most important of the notions is finiteness.
All of the different presentations of abstract computing device take the notion
of "finite" completely for granted; the resulting theories appear not to hang upon
any particular analysis of the concept. There is continual reference to finite
states, finite controls, finite lists of instructions, finite alphabets, and infinite
tapes. It becomes natural —even necessary—to ask, "What happens to Church's
Hypothesis once the notion of finite is itself replaced by an alternative? Is the
resulting concept still extensionally equivalent to the one with which we started?"

Even classically, the answer to the last question can be 'No'. In the appro-
priate model-theoretic setting, it is possible to overturn CH.17 A set is Dedekind
finite (or D-finite) when it is isomorphically incomparable with any of its proper
subsets. With a countable axiom of choice, one can prove that D-finite num-
bers correspond with the standard finite numbers. This proof requires choice
essentially: there is a forcing model of ZF plus choice for finite sets in which the
collection of D-finite numbers is the universe of a nonstandard model & for
arithmetic. By the proof of Tennenbaum's Theorem on nonstandard models
[38], there is in d a D-finite number E which indexes a D-finite Turing machine
such that the natural number function computed by that machine is total but
nonrecursive. Therefore, there is a plausible and cogent alternative to the stan-
dard concept of Turing machine which disagrees sharply with it. We can even
give the concept a precise "machine-theoretic" description: it comes about by
generalizing Turing machines to allow programs, tape inscriptions, and runtimes
of D-finite length but to demand that inputs and outputs be of finite length only.

To the intuitionist, the tactic of moving to a nonstandard model of arith-
metic is not obviously available; as we saw, Weak (intuitionistic) Church's Thesis
implies that there are no nonstandard models. Still, there is a similar line of
investigation open to him. As we shall see, there are any number of recogniz-
able finiteness concepts. Of these, we shall use four: strictly finite, subfinite,
semifinite, and D-finite in examining variations on Turing machines. It is a testa-
ment to the subtlety of intuitionistic mathematics that the four can be distin-
guished pairwise. As it is nowise clear which of these, if any, represents a
"correct" account of the intuitive finiteness concept, none is especially "non-
standard." Hence, it is all the more important that the intuitionist determine
precisely how these alternatives to finiteness affect the concept of Turing com-
putability.

For each of the four, there are concomitant ideas of "finite" machine. In
the case of D-finite machines, the appropriate instance of Church's Hypothesis,

Every D-finite Turing machine is equivalent to a finite Turing machine.

proves to be both "constructively consistent" (i.e., it does not entail TND) and
independent of intuitionistic set theory. This follows from the fact that it is a
consequence, individually, of both intuitionistic CT and the second-order form
of Markov's Scheme. Hence, the intuitionist can have recourse to a concept of
mechanical computability which differs markedly from the standard. A measure
of the difference is that fact that there is a Heyting-valued model of set theory
in which the collection of D-regular sets (the "Dedekind" analogue of recogni-
tion by a finite automaton) fails to be countable.
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5.1 A number offlnites Throughout this section, sets which are in any sense
"finite" will be subsets of ω. This restriction should not engender undue concern;
using Kleene realizability, it is easy to prove that such a restriction need not be
stultifying. In the usual realizability universe, there is an uncountable collection
of D-finite sets of natural numbers which are pairwise distinct in cardinality (cf.
[19]).

A fairly complete catalogue of intuitionistic finiteness concepts can be had
by consulting [9]. As we said, four concepts suffice for present purposes. The
first of these is strict finiteness. We will say that a set is strictly finite if it can
be enumerated by a natural number, thought of as the initial segment of num-
bers below it:

Definition S ^ ω is strictly finite iff there is an n E ω and a surjective func-
tion / such that /: n -> 5.

But, as it happens, strict finiteness is too stringent a condition to impose
upon a set if we are merely concerned to secure its size relative to individual nat-
ural numbers. A less demanding alternative is that of sub finite'.

Definition 5 ^ ω is sub finite iff there is an n E ω and a partial surjective
function / such that /: n -+ S.

In other words, a set is subfinite when it is the functional image of a sub-
set of a finite set. Obviously, the class of subfinite sets is closed under subsets
but the class of strictly finite sets is not. For expressing concepts like "finite ele-
ment" (in a lattice) and "finitely generated", subfiniteness may be the most
appropriate of the four notions. Classically, finiteness coincides with subfinite-
ness. But this is a coincidence of logic and has little to do with mathematics: the
claim "all subfinite sets are finite" implies the full law of excluded third.

Among intuitionistic notions of finite currently in vogue, Dedekind finite
is the most relaxed; if a set is finite, subfinite, semifinite (or even bounded or
almost bounded), then it is Dedekind finite. If we take "infinite set" to mean
"set of which the collection of natural numbers is a (functional) subset", then
to say that a set is Dedekind finite is to say, quite straightforwardly, that it is
not infinite. Officially,

Definition S <Ξ ω is Dedekind finite (or simply D-finite) just in case there
is no injective function mapping ω into 5.

The 'Dedekind' title is conferred with due respect for historical proprieties.
Intuitionistically, a set is D-finite in our sense just in case it is finite in the orig-
inal sense of Dedekind.17 However, the class of D-finite sets can now be a
proper extension of the class of finite sets, even in the presence of the axiom of
countable choice. One rather formal way to see this is to note that a general
equation between finite and D-finite sets would imply the full quantified TND.
A more intuitive way of coming at the distinction is by thinking of the relevant
probjects as bits of "computational information" encoded by the two notions.
Seen in this light, to be finite is to come accompanied with a probject which is
a natural number yielding cardinality information. On the other hand, for a set
to be Dedekind finite is for that set to come equipped with a "precluder": an
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operation which precludes the possibility that any given recipe will describe a
function which maps ω faithfully within the set. But there is no way of comput-
ing cardinality information continuously from precluders and, since our logic
is computationally sensitive, we cannot conclude that all D-finite sets are finite.
One can embrace all sorts of choice principles, including countable choice, with-
out blurring the distinction. Metamathematics confirms the intuitive impression
of the probjects: under Kleene realizability, Dedekind finite subsets of the nat-
ural numbers whose membership conditions are stable (i.e., closed under -ι-ι)
correspond precisely to the classical isolated sets while finite sets correspond sim-
ply to classical finite sets. Since there are nonfinite isolated sets (cf. [3], [33]),
the realizability interpretation forces a firm extensional distinction between the
two notions.

Lastly, there is a finiteness concept which, as we shall see, features promi-
nently in Dedekind finite machine theory:

Definition S <Ξ ω is semifinite just in case it is -ι-ι finite.

Intuitionistically, the extensions of our four notions make a tower: every
strictly finite set is subfinite, every subfinite set is semifinite and each of these
is, in turn, D-finite. None of the inclusions can be reversed.

5.2 D-finite automata But, before going into Turing machines per se, we
prefer to test the waters by devising a D-finite alternative to the theory of reg-
ular events. This proves not to be a detour, but a revealing propaedeutic to a
more general theory of D-finite machines.

Definition As usual, an acceptor 3TC is defined to be a quintuple

y(l = <Q,Σ,δ9q0,F),

where Q is a set of states, Σ is the input alphabet, q0 E Q is the initial state,
f c Q is the set of final states, and δ is the transition function. All these notions
and those of acceptance for 911, acceptance language L(9ϊl), and equivalence of
acceptors get standard definitions, as in [13].

Definition An acceptor is finite (or a DFA) whenever it is deterministic and
its set of states Q is strictly finite. An acceptor is D-finite (or a DDF A) iff it is
deterministic and its set of states is D-finite. It is said to be semifinite (or con-
stitute an SDFA) iff it is deterministic and its set of states is semifinite.

Definition A set of words over the alphabet {0,1} is D-regular iff it is the
acceptance language of some DDFA.

The principal result on the D-regular concept connects D-finite acceptors
to ones which are semifinite:

Theorem An acceptor is a DDFA iff it is equivalent to an SDFA.

Proof: Every SDFA is, by definition, a DDFA. For the converse, let 911 be a
DDFA. The sequence <Q/>/<ΞωU{-i} of sets of states is defined recursively by the
conditions:
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Qo= {Qo}

Each Qι is decidable and finite. (J{Q,: i G ω) is the collection of acces-
sible states of 911. Now, we set, for / E ω,

Ri = Qi\\JlQj:J<i}.

Ri is the collection of states which are "newly reached" at stage i, in other
words, the set of those states which are accessible from g0 by processing some
word of length / but which were not accessible by processing any word of shorter
length. All the /?, s are finite and decidable.

As Q is itself D-finite, it is impossible that /?, be inhabited for all /. Fur-
ther, since /?/ = 0 is always decidable, we have that [*] is true:

[*] -1-13/./?/ = 0 .

We then assume [**], where [**] is [*] less the double negative prefix:

[**] 3/./?f- = 0 .

The decidability of /?,- = 0 permits us to pick an m to be the least / such that
/?,. = 0 . We define S to be the finite set

\JlQi:i<m).

Let 91 be the DFA with S as its set of states, δ restricted to S x Σ as its
transition function and as final states the intersection of S with Sill's set of final
states. The initial state is unchanged. A simple constructive argument shows that
9ft and 91 are equivalent.

But this conclusion follows from [**], whereas we are only allowed to
assume [*]. Thankfully, the restoration of [*] to its rightful place in the argu-
ment affects only the size of S. Using [*], we can define 91 and prove it equiv-
alent to 9TI but we can conclude only that 91 is an SDFA.

Note [for the foundationally wary]: The proof of the theorem is readily formaliz-
able in a weak fragment of second-order Heyting arithmetic.

Corollary When 911 is a DDF A, L(9K) is -ι-ι regular.

Corollary Let 9TC be a DDFΛ. Then, //1/(911) is D-finite, it must be semi-
finite. As a result, no nonfinite D-finite set can be accepted by a DDF A.

Proof: This comes to us courtesy of the Pumping Lemma, by which we know
that any regular language is either finite or infinite. Hence, if a language is
accepted by a semifinite DFA and if it is not finite, then it is -i -«infinite. There-
fore, no nontrivial D-finite set can be D-regular.

Understandably, this result puts a limit on the sorts of sets which can be
D-regular but not regular. As the proof of the theorem shows, the passage from
D-finite to finite acceptors boils down to the transition from [**] and [*]. As
it happens, the correctness of the transition is equivalent to a well-known con-
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structive principle. Markov's Principle for sets (or MPS) is the claim that, for
all S c ω ,

[Vn(n G Sv -i/i e S) Λ (~«-<3Λ.AI G 5)] -* 3/Ϊ.Λ E 5.

My [23] is a sampler of the mathematical relations between forms of MPS and
the arithmetic on Dedekind finite sets. To cite a characteristic example, MPS
is equivalent, in intuitionistic set theory or higher-order arithmetic, to the
Myhill-Nerode Extension Lemma. MPS also keeps a high profile in the nonstan-
dard theory of automata:

Theorem MPS is equivalent to the statement that every DDFΛ is equiva-
lent to a DFΛ. Hence, MPS is equivalent to the statement that every DDFΛ
accepts a regular set.

Proof: Obviously, MPS will license the direct replacement of [*] by [**] in the
last main proof.

Conversely, assume that S is a decidable subset of ω:

V/I(/I G Sv -i/i G 5),

and that it is almost inhabited:

-I-I3/2.Λ G S.

Let OH be the DDFA wherein the set of states is the D-finite set

Q = {m: Vn < m-^n G S] U [x].

x is intended to be distinct from any member of {m: Vn < m-^n E S] and will
serve as a "trap state". We take 0 to be the initial state and let the transition
function be given by the recipe

Γ<7+1 i f ς r + l G Q

[x otherwise.

Finally, a state q of ΐf\ί will be final whenever it is prime.
9K, so defined, is a DDFA. The only words (over {0,1}) which 9K accepts

are of prime length. By assumption, Oϊl is equivalent to a finite DFA with n
states. Let/? be the least prime larger than n. Simple reasoning — starting from
the Pumping Lemma—shows that/? does not belong to Q. Therefore, in.n G S
and MPS is shown to be correct.

Note [more for the foundationally wary]: The equivalence of the theorem is
provable in any suitable fragment of second-order Heyting arithmetic.

As we mentioned, MPS is independent of intuitionistic set theory. A very
simple construction with topological models shows this: MPS fails over the
structure whose Heyting values are the open sets of the order topology on the
ordinal ω + 1. ([10] provides a concise introduction to the construction of
Heyting-valued universes.) Even though MPS is equivalent to some of the major
structure theorems on the D-finites, it can fail under intuitionistic conditions
which are still sufficient to guarantee for the D-finites a sensible arithmetic. For
example, the closure of the D-finites under arbitrary combinatorial operations



INTUITIONISM AND COMPUTABILITY 573

is a consequence of the double negation of MPS, which holds under the ω + 1
interpretation just described (cf. [23] for details). As a consequence, such an
intepretation validates a theory of D-finite machines in which machines can be
manipulated just as we do in the ordinary theory. But the extension of "com-
putable set" in the interpretation is extraordinary: the collection of D-regular sets
fails to be countable.

To fill in the details, we let ω have the discrete topology and adjoin another
element called 6ω + Γ. The open neighborhoods of ω + 1 are stipulated to be
the sets

I U {ω+ 1),

where X is a cofinite subset of ω. This gives the standard order topology r on
the ordinal ω + 1. Preparatory to a study of the internal mathematics of V(r),
we present a general result:

Theorem Let A be a decidable, semifinite, initial segment ofω which has
0 as a member. The set

{0n: n<ΞA]

is D-regular.

Proof: If A is semifinite, then so is B = A U {a} where a E ω is not a member

of A. Let 311 be the D D F A where

Wl = (B9Σ,δ,q0,F)

and in which Σ = {0,1}, q0 = 0, while δ is given by setting, for x E A,

(x + 1 x+ 1 EA
Hχ,0) = { , .

\^a otherwise.
The only other value of δ is a. As A is itself decidable, δ is correctly defined.
We set F = A.

Clearly, the acceptance language of ΐftl is

{0": neA}.

It follows from the theorem that, to prove that there may be more than
countably many D-regular sets in V(r), it is enough to present a suitable col-
lection of decidable, semifinite initial segments on ω.

Theorem V(τ), as described above, contains a class of D-regular sets over
the alphabet {0} which fails to be countable. V(τ) does not satisfy MPS but does
satisfy its double negation.

Proof: For the sake of this proof alone, our reliance upon classical reasoning
will be unabashed.

Let/be any strictly increasing endofunction on ω and let Incr be the col-
lection of all such functions. Let Xj be the internal set whose membership con-
ditions are determined by the cofinal segments of ω above the values / :

Xf = {{n,{m: m >f(n)} U [ω + 1}>: n G ωj.
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Now, let Seg be the internal collection of such sets understood as "global ele-
ments":

Seg = l(Xf, ω U {ω + l}>:/is as above}.

Internally, Seg contains only decidable semifinite initial segments of ω. If
we now assume that

V(r) N Seg is countable,

then there is a V(τ)-internal object H such that

ω + l E | |//:ω^Seg| | ,

and

ω + 1 E ||vΛreSeg lnX = H(n)\\.

Therefore, for each of the strictly increasing ω-sequences /, we can (with
classical metalogic) select a least n G ω such that

ω + l G \\Xf = H(n)\\.

Let /be the function which makes this selection. If we assume that /identifies
increasing functions / and g, then we know that

It follows at once that one or the other of/and g agree at all but finitely many
of their inputs.

Now, we say thaif= g, for strictly increasing/and g, whenever they agree
at all but finitely many points. = is obviously an equivalence relation on Incr
and our reasoning has shown that J\= will map the quotient set Incr\^ mono-
morphically into ω. But this is impossible because Incr\= must contain uncount-
ably many distinct equivalence classes of functions.

Therefore, in V(r), the collection of D-regular sets fails to be countable.
A trivial calculation suffices to show that V(r) does not satisfy MPS but

does satisfy its double negation. From the latter principle, one can easily prove
the closure of the class of D-finite sets under all combinatorial operations.18

5.2.1 Dedekίnd-Turing machines We find the situation here very much the
same: MPS supports Church's Hypothesis for D-finite Turing machines and, in
structures which refute MPS, there need not be countably many D-recursive sets.
However, there is at least one difference; the relevant instance of Church's
Hypothesis,

every D-finite Turing machine is equivalent to a finite Turing machine,

is not equivalent to MPS; it follows from CT and does not imply MPS.

Definition 911 is a Turing machine when it is a quintuple

<Q,Σ,δ,tf0>A>,

where Q is a set of states, Σ is the input alphabet, q0 E Q is the initial state, h
is the halting state (which does not belong to Q), and δ is the transition func-
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tion. δ maps QxΣ into (QU {h}) x (ΣΌ {L,R}). These notions and those of
partial function computed by 9ϊl, r.e. set, and equivalence of machines get the
definitions familiar from [13].

Definition A Turing machine is finite (or a TM) whenever its set of states
Q is finite. It is D-finite (or a DTM) iff its set of states is D-finite. Lastly, it is
said to be semifinite (or constitute an STM) iff Q is semifinite.

Theorem A machine is a DTM iff it is equivalent to an STM.

Proof: Every STM is, trivially, a DTM. For the converse, we begin with the
DTM

ya = <Q9Σ9δ,qo,h)9

and define the obvious associated DDFA

9l = <ρU{/*},Σ,p,<7O,F>,

wherein p is such that, when q is not h, it maps (q,a) into the value given by
composing δ with the left projection and applying the composition to (q,a). If
q = h, then p(q,a) = h.

Using our proof of the equivalence theorem for DDFAs, we can construct
from dl an equivalent SDFA. The set of states from this acceptor can be used
to construct an STM which is clearly equivalent to 9H.

Because of the way in which the results of the preceding section have
entered into our current effort, we know immediately that

Corollary MPS implies that every DTM is equivalent to a TM. Hence, MPS
implies that every DTM accepts an r.e. set.

The converse of the corollary is intuitionistically correct if we agree that
the following form of CT is true.

CT Every total natural number function is recursive.

Let Equiv be the statement that

every DTM is equivalent to a TM

and let D be

every decidable, semifinite initial segment of ω is recursive.

Then, we can prove

Lemma Equiv holds iffΌ.

Proof: First, assume Equiv and let Q be a decidable, semifinite initial segment
of the natural numbers. As Q is semifinite, it is D-finite and we can easily con-
struct a DTM ΐf\ί with Q a collection of its states and such that ΐfϊί determines
membership in Q. Therefore, Q is recursive and D is validated.
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On the other hand, we can assume D and let

ya = (Q,Σ9δ9qθ9h)9

be an arbitrary DTM. By our earlier results, we may take it that Q is semifinite.
In fact, it would be correct to say that both Q and δ are decidable, semifinite
initial segments. Given D, Q and δ are recursive sets of natural numbers. It fol-
lows that the partial function computed by 3TC is Σ\-definable. Therefore, Equiv
holds.

As CT obviously implies Equiv, we have

Corollary CT implies that every DTM has an equivalent TM.

There are reasonable and well-behaved intuitionistic universes in which
Equiv fails. To name one, there is the V(r) structure described earlier. In this
structure, the collection Seg consists of decidable, semifinite initial segments,
all of which are nonrecursive. Here, the collection of sets accepted by D-finite
Turing machines must fail to be countable. This offers us a clear concept of
machine: we permit a Dedekind finite collection of states but require that the
rest of the parameters take strictly finite form. For this concept, we cannot prove
the corresponding instance of CH, even for regular events.

NOTES

1. I will not attempt exegesis of the philosophical views or mathematical results of the
historical Brouwer. I believe that, in describing intuitionism, we need be no more
exegetical of Brouwer than a contemporary set theorist would need be of Cantor.
As will be painfully clear, there are any number of points on which we would dis-
agree with the historical Brouwer. Solipsism and mentalism are only two.

2. Needless to say, the expression 'a proof of RH is available to me' is itself shorthand
for a fully reduced expression which does not contain the usual formulation of RH.

3. This argument also provides a counterexample to the weak negative form the ίTCT:
Every number-theoretic function is -ι-ιίF-definable. To some intuitionists, such
weak forms of CT are palatable, even if full CT is not.

4. The traditional intuitionists seemed to be willing to countenance a prospect which
would undermine the reductive use of the notion of the supermathematician.
Apparently, they allowed that what would count as a proof to me might not count
as such to my counterpart. For instance, assume that some mathematical knowl-
edge of mine had been obtained in virtue of my having a proof containing an essen-
tial subproof of an implication A -> B. Then, since my counterpart might recognize
more things as acceptable proofs of A than I would, my proof (which would be an
operation which, for me, converts proofs of A into proofs of B) might not work
for him. Hence, were this prospect to be a real possibility, I could have a perfectly
acceptable mathematical proof without having any assurance that my counterpart
would act accordingly. Were the counterpart idea to be of any reductive use, one
would have to banish any such possibility.

5. Were we to push the issue of algorithms far enough, we would come up against the
"Kripke-Wittgenstein" Paradox. For the intuitionist, there is no paradox —the
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reasoning employed by Kripke's "skeptic" is thoroughly nonconstructive. Our atti-
tude toward the "paradox" is described in [24].

6. The obvious rejoinder is not open to the reductionist. It cannot be claimed that
notions such as arithmetic truth, which we know to be inexpressible on the basis of
the Gόdel-Tarski Theorems, are not mathematically respectable. However, to see
why this is so, we will have to take up the concept of intuitionistic truth. This we
shall do at a later stage.

7. This argument is a version of the familiar Tarski "fixed-point" argument due, we
believe, to Kaplan and Montague [16]. We are ignoring some of the niceties of
arithmetization, viz., the intensional distinction between formal provability and its
coded analogue.

8. One is moved to point out that arguments have been presented for removing nega-
tion from intuitionistic mathematics altogether (cf. [11]). Nor is the interest of these
considerations merely historical or philosophical. It is known that intuitionistic
means suffice to prove the completeness of the negation-free fragment of Heyting's
predicate logic with respect to interpretations over Beth trees. No full completeness
theorem is obtainable by the use of strictly intuitionistic means.

9. Dummett seems to plump for the centrality of bivalence in his "Preface" to the
Truth and Other Engimas collection.

10. In speaking informally of 'probjects', I am gesturing toward the members of the
App models described by Feferman in [7] and discussed in [1].

11. This does mark a turning away from the view that intuitionism is a form of
"antirealism", the idea so thoroughly marketed by Dummett [6], Wright [41], and
others. On these accounts, all the heavy foundational work would be contracted out
to the epistemologists. Presumably, they would try to devise and to justify a proof
conditional semantics with the aid of a sanitized Wittgensteinian theory of knowl-
edge and meaning. Needless to say, this sort of foundation is not, by our lights,
" antimetaphy sical".

12. We are thinking of the logical signs in use on the right sides of 1, 2, and 3 as them-
selves intuitionistic. Our construal of this semantics is not intended to be reductive.
Without any strain other than peculiarity, one could take the signs in use to be clas-
sical.

13. Needless to say, I believe that the needed "regularization" of Heyting's work has
already been given by Kleene. The intuitionists who are so keen to reject Kleene's
interpretation as nonstandard or construtively incorrect may be somewhat overanx-
ious. Kleene's interpretation is so clear, clean, attractive, and subtle that anyone
would have to muster substantial reasons for rejecting it.

14. It should now be painfully clear why Brouwer was appalled by the prospect of logi-
cism. It is (intuitionistically) inconceivable that one extract an understanding of the
fundamentals of mathematics from a proper understanding of the logical signs. The
only way to come to an understanding of the intuitionistic signs is by way of a
knowledge of a nontrivial part of mathematics, namely, the mathematics of prob-
jects. Consequently, the last displayed line would be hopeless as a definition and
is not intended as such.

15.1 believe that the intuitionist can resist the demands of Church's Thesis. But he can-
not merely cite isolated pieces of traditional intuitionistic mathematics which appear
to contradict it (for example, the Fan Theorem or the Brouwer-Kripke Scheme) but
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has to provide an explication of the sense in which the functions of natural num-
bers computed by probjects are computable. To succeed, the explication must be
rigorous and yet differ in some respect from that of Turing and Church. If such an
explication does not exist, Church's Thesis is, for better or for worse, an inevita-
ble consequence of the intuitionistic standpoint. There are interpretations of intui-
tionistic mathematics which suggest means for circumventing CT in a
foundationally respectable fashion. One of these is realizability over the r.e. sub-
structure of the Scott-Plotkin graph model [34]. Here, Full CT is false but WCT
or Weak Church's Thesis is realized:

v/((/: 91 -> 9fl) -> -.-ia/i/191 = {«)).

This is a consequence of a form of 'every function on ΐfl is computable' which
retains many of its attractions while avoiding some consequences which have been
thought unfortunate. An interesting application of WCT awaits us in the next
section.

16. Beeson's actual discussion may not be as negative in intension as my presentation
might suggest. Beeson does allow that

the world under Church's thesis is an entertaining place, full of surprises (like
any foreign country), but not by any means too chaotic to support life.

However, he is not perhaps of one mind about this; he later suggests that the pur-
pose of his tour through foreign mathematical climes has a thoroughly negative
motivation:

The extensive presentation of recursive analysis is of interest here mainly because
it shows us what not to try to prove constructively.

Our view is quite the opposite: recursive mathematics is not just a travelogue; its
great interest arises, in part, because it shows us what to try to prove intuitionisti-
cally.

17. It is interesting to note that, in the presence of CT, individual D-finite subsets of
ω correspond with the isolated sets of classical recursion theory and the cardinality-
types of the D-finites coincide with recursive equivalence types which are the isols.

18. The use of subfiniteness is not as productive of true alternatives to the traditional
concept as is D-finiteness. A bit of simple constructive set theory will show that
every acceptor with a subfinite number of states is equivalent to a DFA. This fol-
lows from the fact that every decidable subset of a finite set is itself finite. It fol-
lows immediately from this that every Turing machine with a subfinite number of
control states is equivalent to a standard TM.
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