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Connection Structures

LOREDANA BIACINO and GIANGIACOMO GERLA

Abstract B. L. Clarke, following a proposal of A. N. Whitehead, presents
an axiomatized calculus of individuals based on a primitive predicate "x is
connected with y". In this article we show that a proper subset of Clarke's
system of axioms characterizes the complete orthocomplemented lattices,
while the whole of Clarke's system characterizes the complete atomless
Boolean algebras.

/ Introduction In [2] and [3] Clarke presents an axiomatized calculus of in-
dividuals based on a primitive predicate "x is connected with y". Such a calcu-
lus represents a revised version of the proposal made by Whitehead in Process
and Reality and is similar to the calculus proposed by Leonard and Goodman
in [5].

In this article we show that a proper subset of Clarke's system of axioms
characterizes the complete orthocomplemented lattices, while the whole of
Clarke's system characterizes the complete atomless Boolean algebras.

2 Connection structures Let R be a nonempty set and C a binary relation
on R, set C(x) = [y G R/xCy] and suppose the following axioms are true of
every x9y E R:

Al xCx;
A2 xCy => yCx;
A3 C(x) = C(y)=>x = y.

We call regions the elements of R and, if x,y G R and xCy, we say that x is
connected with y. If X is a nonempty subset of R, we say that x is the fusion of
X just in case for every y ELR, xCy iff for some zGX, zCy; in other words, x
is the fusion of x provided that

(1) C{x)=U[C{z)/zeX).

The fusion of the nonempty subsets of R is assured by the following axiom.
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A4 X g R and X Φ 0 =» there exists x E R such that x is the fusion of X.

If A1-A4 are satisfied, we say that (R = (R,C) is a connection structure.
By A3 and A4 there is a unique fusion of a nonempty class X of regions; we

denote it by f(X). A3 implies that the relation < defined in R by

(2) x<y**C{x)^C(y)

is a partial ordering. If x < j> we say also that x is contained in j or that x is a
subregion oϊy. If a region z exists such that z^x and z ̂  Λ we say that x over-
laps y and we write xOy. Observe that the system obtained by adding to Al-
A4 the axiom "the overlapping relation coincides with the connection relation"
is equivalent to the system of axioms proposed in [5].

Notice that (i?,<) admits a maximum 1, namely the fusion of R. If x Φ 1
we define the complement —x of x by

(3) -x = /({z E R/z is not connected with x}).

(That is, C(-x) = U {C(z)/z is not connected with x}.) Notice that, if xφ I,
the set [z E R/z is not connected with x] is nonempty; indeed, since C(l) = R
and C(x) Φ C(l), there exists a region j> not connected with x.

Lemma 1 /far every pair of regions x and y the following hold:
(a) xOy => xCy;
(b) (R9 < ) Λ&s # minimum only in the case R = {1}
(c) for every x Φ 1, x is not connected with —x;
(d) for every x Φ 1, -x Φ 1.

PAΌO/: Assume that C(z) £ C(ΛΓ) and C(z) £ C(y). Since z E C(z), from
C(z) ^ C(ΛΓ) it follows that zCx and therefore that x E C(z). From C(z)^C(y)
it follows that xE C(y) and this proves (a). To prove (b), assume that an ele-
ment 0 exists such that C(0) c C(x) for every xG R; then A: E C(0) for every
Λ: E i? and C(0) = R = C(l). By A3 we have 0 = 1. To prove (c), assume that
xC — x; then, since xGC( —X) = U {C(z)/z is not connected with x], a suitable
z exists such that x E C(z) and z is not connected with x, a contradiction. Fi-
nally, since xC\ for every x E /?, (d) is a consequence of (c).

To prove that, in a sense, the connection structure theory coincides with the
orthocomplemented lattice theory, we associate with every connection structure
(R, C) an algebraic structure (£,<, —) as follows. Given any arbitrary element
0 not in R, we set L = R U {0} moreover we set 0 < x for every x E R, - 1 = 0
and — 0 = 1 . Also, recall that an orthocomplemented lattice is a lattice L equipped
with a unary operation — :L-+ L such that

LI — x = x; L 2 X Λ - X = 0; L3 x < ;><=> -x > -j>;

we assume also that 0 ̂  1, i.e. in L there are at least two elements.

Proposition 2 The structure (L,<, —) associated to a connection structure
(R, C) is an orthocomplemented complete lattice', the join in L of a nonempty
subset of R coincides with its fusion. Moreover, ifx,y E R, then

(4) xCy**xφ-y.
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Conversely, let (/,,<,—) be a complete orthocomplementedlattice, setR=L —
{0} and define C by (4). Then (R, C) is a connection structure whose associated
orthocomplemented lattice is (L,<, —).

Proof: If X is a nonempty subset of L it is immediate that the join vX coincides
with the fusion of X - [0] if X Ψ {0} and with 0 otherwise. This proves that
(L,<) is a complete lattice. To prove (4), assume y Φ 1 and xCy; then, since
y E C(x), from C(x) Q C( —y) we have it that yGC( -y) and this contradicts
Lemma l(c). This proves that C(x) is not contained in C(— y) and therefore
x φ -y. Conversely, if x φ -y then C(x) is not contained in C( —y) and, by (3),
xCy.

In the case y = 1, since — y — 0, (4) is obvious.
Now, we will prove that (L,<,-) is orthocomplemented. In the case x E

{0,1}, ZJ, L2, and L3 are obvious. Assume that x£ {0,1} and j> ̂  {0,1} then
to prove L3 we observe that

x<y**C(x) ^C(y)**{zeR/z£ -x] Q {zGR/zφ -y]
« U G R/Z < -y) c ( z e R/z < -*} *=> -j> < -* .

To prove L7 notice that, since x is not connected with —JC, by (4) we have

(5) x < — x .

By applying (5) to the region — x we obtain that —x < x. Thus, by L3,
x > — x and therefore x = — x .

L2 follows from Lemma l(a) and (c).
Conversely, let (L, <, - ) be a complete orthocomplemented lattice, define

in R = L — [0] the relation C by (4) and let x,y E Z?. To prove that xCx, observe
that from x < —JC it follows that X = X Λ X < X Λ - X = 0.

A2 follows from the equivalences

xCy**xφ -y** -x^ —y*=* -x£y*=*yCx.

To prove A3 notice that C(x) c C(y) ** [z E R/z £ -x] ^ {z E Λ/z ^ -^} <=>
{zEi?/z< -JC} ^ {zEi?/z< -j>} **-;>:< -x«=>x< j .

Thus, the order defined in (R, C) coincides with the order of the lattice L and
this proves A3.

To prove A4, let X be a nonempty subset of R and x = vX; we will prove
thatxis the fusion of X; i.e., C(x) = U{C(z)/zGX}. Indeed, sincex>£for
every zGX, C(x) Ώ U {C(z)/z E X). Conversely, assume that y E C(x) and
that y φ. C(z) for every z E X Then j is different from 1, x φ —y and z ̂  - ^
for every zGX. This contradicts the fact that x is the lower upper bound of X.

It is immediate that the lattice associated to (R, C) coincides with L. Since

-jί = v(zG R/z ^ -x) = v ( z G R/z is not connected with x],

the orthocomplement — x in Z coincides with the complement defined in (R, C)
by (3).

3 The points in a connection structure A point of a connection structure
(R, C) is defined by Clarke as a nonempty subset P of R such that
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(i) xeP,γEP=>xCy
(ii) xEP,yEP9 xθy =>XΛyEP

(iii) xEP, y>x=*yeP
(iv) xyyGP^xeP or ye P

As usual, we say that a point P belongs to a region x and write Pex provided
that x G P; moreover we denote by Π the set of points of (R, C). Clarke pro-
poses the following axiom:

A5 xCy => a point P exists such that Pex and Pey.

Notice that A5 together with (i) assures that two regions are connected iff
they contain a common point. In particular, every region contains at least one
point.

The following proposition shows that, in a sense, the system A1-A5 char-
acterizes the complete Boolean algebras.

Proposition 3 If a connection structure (C,R) satisfies A 5, then the connec-
tion relation coincides with the overlapping relation. Moreover, the orthocom-
plemented lattice associated to (C9R) is a complete Boolean algebra. Conversely,
every complete Boolean algebra is associated to a suitable connection structure
satisfying Λ5.

Proof: By Lemma l(a), we have only to prove that xCy implies xOy. Now, if
xCy, a point Pexists such that xE Pandy G P In the case x = 1 or y = 1, it
is obvious that xOy. Assume x Φ 1 and y Φ 1 and set u = -x v —y. It is u Φ 1,
otherwise —xv—yeP and so, by (i), either xC — x or yC — y and this con-
tradicts Lemma l(c). Thus it is u Φ 1, since u > — x and u > —y, we have that
-u < x and -u < y; i.e., xOy.

To prove that the orthocomplemented lattice L associated to (R, C) is a
Boolean algebra, we prove that the map h: L -+ (P (Π) defined by setting h (0) =
0 and h(x) = [PE U/Pex], for x Φ 0, is an injective homomorphism from the
orthocomplemented lattice L into the Boolean algebra (P(Π).

Assume that x,y G R; then the equality h(x vy) = h(x) U h(y) is an im-
mediate consequence of (iv) and (iii). Moreover, from (iii) it follows that
h(x Λy) Q h(x) Γ\ h(y). To prove h(x Λ y) 2 h(x) Π h(y), assume that
P G h{x) Π h(y), i.e. x,y G P; then, since xCy, we have also xOy and (by (ii))
P G h(x A y). Both the equalities h(x v y) = Λ(ΛΓ) U A (7) and Λ(x Λ J ) =
h (x) Π Λ (y) are immediate if x = 0 or y = 0.

To prove h(—x) = —Λ(A:), assumexΦO.xΦl andPGh( —x); then, since
Λ: is not connected with — x, by (i) we have P £ h (x). Conversely, if P φ. h (#),
since c v -x = 1 G P, then (iv) entails that - x G P and therefore PE h( -x).
If x = 0 or x = 1 it is immediate that h (-x) = -Λ (AT) .

To prove that h is injective, assume h(x) = A(j>): if x = 0 then Λ(j) =
Λ (0) = 0 and by A5 y = 0. If x = 1 and >> Φ 1 then every point of — y is not in
y and this contradicts the fact that h(y) = h(x) = Π. In the same way we pro-
ceed if y = 0 or y = 1. Assume that both Λ: and j> are different from 0 and 1 and
x £ y or, equivalently, x φ — y . Then, since xC — .y, by A5 a point P exists such
that x,-y G P. Hence, Peh(x) and P£h(y) and this contradicts the hypoth-
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esis that h(x) = h(y). Consequently x <y, in the same manner one proves that
y < x and therefore x = y. This proves the first part of the proposition.

Assume now that L is a complete Boolean algebra; then, since L is an or-
thocomplemented lattice, by Proposition 2 a connection structure (R, C) is as-
sociated to L. To prove A5, observe that in every Boolean algebra

Λ:ΛJ> = 0=> — A: v — y — 1

=* y = ( - * v -y) Λ y = ( - x Λ y) v (-y Λ y) = -x Λ y => y < - # .

This means that in (/?, C) the relation C coincides with the relation O and the
points of (R, C) coincide with the prime filters of L. As a consequence, A5 be-
comes a well-known property of Boolean algebras.

Notice that Axiom A2.Γ given in [3] becomes

A6 There is no atom in (/?,<).

As a consequence the following proposition holds.

Proposition 4 The whole of Clarke's system of Axioms A1-A6 characterizes
the atomless complete Boolean algebras. The class of the open regular subsets
of a euclidean space with respect to the overlapping relation is a model of this
system.

4 Concluding remarks Recall that if T is a topology on a set X, the set
T* = [x E T/Λ: = (x) °] of the open regular subsets of A" is a complete Boolean
algebra with respect to the set theoretic inclusion relation. Namely, we have it
that, if Y is a nonempty subset of T*, then

v F = ((Uy)-)°, ΛY= (ΠY)°

and if x E T*, then the complement of x is the interior of the set theoretic com-
plement of x. Conversely, every complete Boolean algebra can be obtained in this
way (see Halmos [4]). Thus the system A1-A5 of axioms characterizes, in a sense,
the structure of the open regular subsets of a topological space. This is all right
since the regular open subsets are natural candidates to represent regions. Un-
fortunately, the coincidence of the connection relation with the overlapping re-
lation is rather unsatisfactory and far from the purpose of Whitehead and
Clarke. Indeed the relations "x is externally connected to y" and "x is tangen-
tial part of y" proposed in [2] and [3] are satisfied by no pair of regions and the
concept of "nontangential part" collapses into that of "part". As a consequence,
the question of a suitable modification of the system of axioms proposed by
Clarke arises. The new system should still admit as models the class of the
nonempty regular open subsets of a topological space (S,T). But in these models
the definition of the connection relation should be as follows:

xCy^xDyΦ 0.

The models obtained in this way satisfy Al and A2. Moreover, if the topo-
logical space is regular, the relation < defined by (2) coincides with the inclusion
relation and this gives, in particular, A3. Indeed, x <Ξ y implies x^y and there-
fore C(x) c C(y). Conversely, let C(x) Q C(y) and assume that x is not con-
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tained in y. Then an element p of S exists such that p E x and p φ. y. Let z be an
open neighborhood of/? such that z Π j> = 0 and set z' = (z) °. Then it is well-
known that z' is regular; moreover, z' E C(Λ:) and z' £ C(y), which contradicts
the hypothesis that C(x)QC(y). Then xQy and therefore j ί = ( | ) ° c ( j ) ° = y.

Now, in spite of the completeness of (/?,<), A4 is not satisfied and there are
subsets of R with no fusion. For example, assume that the topological space un-
der consideration is the real line, set X = {]0,1 - l/n[/n > 1} and assume the
existence of a region x for which C(x) = U {C( ]0,1 - \/n [ )/n > 1}. Then we
h a v e x 2 ] 0 , l - l A [ for every n > 1 and hence 1 e x . As a consequence, the re-
gion ] 1,2 [ is connected with x in spite of the fact that ] 1,2[ is not connected with
]0,l — \/n[ for every n > 1. Thus A4 should be weakened, assuming only the
completeness of (i?,<).

Finally, the definition of point and axiom A5 give rise to some difficulties.
Indeed, in view of A5, if p E S then the class P = [x E R/p E x] should be a
point of the connection structure (R, C). Unfortunately this is not true since (ii)
is not satisfied. Indeed, two nonconvex regions of a euclidean space can be tan-
gent in/7 and overlap in a region that does not containp in its closure.

Perhaps it is possible to avoid such difficulties by considering suitable bases
of filters rather than filters. For example, call representative of a point every class
p of regions such that, for every pair x,y of regions,

(i)' xep,yep=*xCy;
(ii)' xep,yep, xOy =• x Λ >> E /?;

(Hi)' (Vz E A xOz and yOz) => xCy.

Moreover, we can call point represented by p the class P = [x E R/x > z for
a suitable z E/?}. At least in the euclidean spaces, this definition of point seems
to work well. Indeed, it is matter of routine to prove that, for every p E 5, the
class of open convex regular subsets whose closure contains p satisfies (i)', (ii)',
and (iiiy and therefore represents a point P. With respect to this definition of
point, it is easy to see that A5 is satisfied.
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