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Connection Structures

LOREDANA BIACINO and GIANGIACOMO GERLA

Abstract B. L. Clarke, following a proposal of A. N. Whitehead, presents
an axiomatized calculus of individuals based on a primitive predicate “x is
connected with y”. In this article we show that a proper subset of Clarke’s
system of axioms characterizes the complete orthocomplemented lattices,
while the whole of Clarke’s system characterizes the complete atomless
Boolean algebras.

1 Introduction In [2] and [3] Clarke presents an axiomatized calculus of in-
dividuals based on a primitive predicate “x is connected with y”. Such a calcu-
lus represents a revised version of the proposal made by Whitehead in Process
and Reality and is similar to the calculus proposed by Leonard and Goodman
in [5].

In this article we show that a proper subset of Clarke’s system of axioms
characterizes the complete orthocomplemented lattices, while the whole of
Clarke’s system characterizes the complete atomless Boolean algebras.

2 Connection structures Let R be a nonempty set and C a binary relation
on R, set C(x) = {y € R/xCy} and suppose the following axioms are true of
every x,y € R:

Al xCx;
A2 xCy= yCx;
A3 Cx)=C(y)=x=.

We call regions the elements of R and, if x,y € R and xCy, we say that x is
connected with y. If X is a nonempty subset of R, we say that x is the fusion of
X just in case for every y € R, xCy iff for some z € X, zCy; in other words, x
is the fusion of x provided that

1) C(x) =U{C(z)/z € X]}.

The fusion of the nonempty subsets of R is assured by the following axiom.
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Ad X S R and X + O = there exists x € R such that x is the fusion of X.

If A1-A4 are satisfied, we say that ® = (R, C) is a connection structure.
By A3 and A4 there is a unique fusion of a nonempty class X of regions; we
denote it by f(X). A3 implies that the relation < defined in R by

) x<y=C(x)c C(y)

is a partial ordering. If x < y we say also that x is contained in y or that x is a
subregion of y. If a region z exists such that z < x and z < y, we say that x over-
laps y and we write xOy. Observe that the system obtained by adding to Al-
A4 the axiom “the overlapping relation coincides with the connection relation”
is equivalent to the system of axioms proposed in [5].

Notice that (R,<) admits a maximum 1, namely the fusion of R. If x # 1
we define the complement —x of x by

3) —x = f({z € R/z is not connected with x}).

(That is, C(—x) = U{C(z)/z is not connected with x}.) Notice that, if x # 1,
the set {z € R/z is not connected with x} is nonempty; indeed, since C(1) = R
and C(x) # C(1), there exists a region y not connected with x.

Lemma 1 For every pair of regions x and y the following hold:
(a) xOy = xCy;

(b) (R,=<) has a minimum only in the case R = {1};

(c) for every x + 1, x is not connected with —x;

(d) forevery x #1, —x + 1.

Proof: Assume that C(z) € C(x) and C(z) € C(y). Since z € C(z), from
C(z) € C(x) it follows that zCx and therefore that x € C(z). From C(z) € C(y)
it follows that x € C(y) and this proves (a). To prove (b), assume that an ele-
ment 0 exists such that C(0) & C(x) for every x € R; then x € C(0) for every
X € R and C(0) = R = C(1). By A3 we have 0 = 1. To prove (c), assume that
xC — x; then, since x € C(—x) = U{C(z)/z is not connected with x}, a suitable
z exists such that x € C(z) and z is not connected with x, a contradiction. Fi-
nally, since xC1 for every x € R, (d) is a consequence of (c).

To prove that, in a sense, the connection structure theory coincides with the
orthocomplemented lattice theory, we associate with every connection structure
(R, C) an algebraic structure (L,<,—) as follows. Given any arbitrary element
0 not in R, we set L = R U {0}; moreover we set 0 < x for every x€ R, —1 =0
and —0 = 1. Also, recall that an orthocomplemented lattice is a lattice L equipped
with a unary operation — : L — L such that

Ll ——x=x; L2 xAn—x=0; I3 x=ye-—x=-y;
we assume also that 0 # 1, i.e. in L there are at least two elements.
Proposition 2 The structure (L,<,—) associated to a connection structure

(R, C) is an orthocomplemented complete lattice; the join in L of a nonempty
subset of R coincides with its fusion. Moreover, if x,y € R, then

()] xXCyex £t —y.
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Conversely, let (L,<,—) be a complete orthocomplemented lattice, set R = L —
{0} and define C by (4). Then (R, C) is a connection structure whose associated
orthocomplemented lattice is (L,<,—).

Proof: If X is a nonempty subset of L it is immediate that the join v.X coincides
with the fusion of X — {0} if X # {0} and with 0 otherwise. This proves that
(L,<) is a complete lattice. To prove (4), assume y # 1 and xCy; then, since
y € C(x), from C(x) € C(—y) we have it that y € C(—y) and this contradicts
Lemma 1(c). This proves that C(x) is not contained in C(—y) and therefore
x £ —y. Conversely, if x £ —y then C(x) is not contained in C(—y) and, by (3),
xCy.

In the case y = 1, since —y = 0, (4) is obvious.

Now, we will prove that (L,<,—) is orthocomplemented. In the case x €
{0,1}, L1, L2, and L3 are obvious. Assume that x & {0,1} and y ¢& {0,1}; then
to prove L3 we observe that

x<yeCxX)SCWy)={z€R/ZLt—x}cS{zER/1Z£ -y}
={z€R/z<—-y}c{z€ER/Z=< —x}o —y=<—x

To prove L1 notice that, since x is not connected with —x, by (4) we have
4 X< ——Xx.

By applying (5) to the region —x we obtain that —x < ———x. Thus, by L3,
x = ——x and therefore x = ——x.

L2 follows from Lemma 1(a) and (c).

Conversely, let (L,=<,—) be a complete orthocomplemented lattice, define
in R = L — {0} the relation C by (4) and let x, y € R. To prove that xCx, observe
that from x < —x it follows that x = xAx=<=xA —x=0.

A2 follows from the equivalences

xCyosxt —yeo—x#——yo—x#ysyCx

To prove A3 noticethat C(x) S C(y)={zER/z£ —x}S{zER/Z£ -y}
{ZER/z=< —x}2{(z2ER/IZ= -yl —-y<-—-XxoXx=).

Thus, the order defined in (R, C) coincides with the order of the lattice L and
this proves A3.

To prove A4, let X be a nonempty subset of R and x = v.X; we will prove
that x is the fusion of Xj;i.e., C(x) = U{C(z)/z € X}. Indeed, since x = z for
every z € X, C(x) 2 U{C(z)/z € X}. Conversely, assume that y € C(x) and
that y ¢ C(z) for every z € X. Then y is different from 1, x £ —yandz < —y
for every z € X. This contradicts the fact that x is the lower upper bound of X.

It is immediate that the lattice associated to (R, C) coincides with L. Since

—x=v{z € R/z < —x} =v{z € R/z is not connected with x},

the orthocomplement —x in L coincides with the complement defined in (R, C)
by (3).

3 The points in a connection structure A point of a connection structure
(R, C) is defined by Clarke as a nonempty subset P of R such that
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(i) xePyeP=xCy

(ii) xePye PR xOy=>xAy€EP
(iii) xeP,y=x=>y€P

@iv) xvyeP=>xePory€eP.

As usual, we say that a point P belongs to a region x and write Pex provided
that x € P; moreover we denote by II the set of points of (R, C). Clarke pro-
poses the following axiom:

A5 xCy = a point P exists such that Pex and Pey.

Notice that AS together with (i) assures that two regions are connected iff
they contain a common point. In particular, every region contains at least one
point.

The following proposition shows that, in a sense, the system A1-AS char-
acterizes the complete Boolean algebras.

Proposition 3 If a connection structure (C, R) satisfies AS, then the connec-
tion relation coincides with the overlapping relation. Moreover, the orthocom-
Dplemented lattice associated to (C, R) is a complete Boolean algebra. Conversely,
every complete Boolean algebra is associated to a suitable connection structure
satisfying AS.

Proof: By Lemma 1(a), we have only to prove that xCy implies xOy. Now, if
xCy, a point P exists suchthat xe Pand y € P. Inthecasex=1ory=1, it
is obvious that xOy. Assume x # land y # l andset u = —xv —y. Itisu # 1,
otherwise —x v —y € P and so, by (i), either xC — x or yC — y and this con-
tradicts Lemma 1(c). Thus it is # # 1, since ¥ = —x and ¥ = —y, we have that
—u<xand —u < y;i.e., xOy.

To prove that the orthocomplemented lattice L associated to (R,C) is a
Boolean algebra, we prove that the map 4 : L — ®(II) defined by setting 4 (0) =
@ and h(x) = {P € I1/Pex}, for x # 0, is an injective homomorphism from the
orthocomplemented lattice L into the Boolean algebra @ (II).

Assume that x,y € R; then the equality A(x v y) = h(x) U A(y) is an im-
mediate consequence of (iv) and (iii). Moreover, from (iii) it follows that
h(xAy) € h(x) N h(y). To prove h(x A y) 2 h(x) N h(y), assume that
Pe h(x)Nh(y),i.e. x,y € P; then, since xCy, we have also xOy and (by (ii))
P € h(x A y). Both the equalities A(x v ¥) = h(x) U A(y) and A(x A y) =
h(x) N h(y) are immediate if x =0 or y = 0.

To prove h(—x) = —h(x), assume x # 0, x # 1 and P € h(—Xx); then, since
x is not connected with —x, by (i) we have P & h(x). Conversely, if P & h(x),
since x v —x = 1 € P, then (iv) entails that —x € P and therefore P € h(—x).
If x =0 or x =1 it is immediate that A(—x) = —h(x).

To prove that 4 is injective, assume h(x) = h(y): if x = 0 then h(y) =
h(0) = and by A5 y=0.If x=1 and y # 1 then every point of —y is not in
y and this contradicts the fact that 4(y) = A(x) = II. In the same way we pro-
ceed if y =0 or y = 1. Assume that both x and y are different from 0 and 1 and
x £ y or, equivalently, x £ ——y. Then, since xC — y, by AS a point P exists such
that x,—y € P. Hence, P € h(x) and P & h(y) and this contradicts the hypoth-
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esis that 4 (x) = A(y). Consequently x < y, in the same manner one proves that
¥ < x and therefore x = y. This proves the first part of the proposition.

Assume now that L is a complete Boolean algebra; then, since L is an or-
thocomplemented lattice, by Proposition 2 a connection structure (R, C) is as-
sociated to L. To prove AS, observe that in every Boolean algebra

XAy=0=>-—xv-y=1
=2y=(=XV=YIANY=(—XAY)V(-YAY)=—XAy=>y=<—x

This means that in (R, C) the relation C coincides with the relation O and the
points of (R, C) coincide with the prime filters of L. As a consequence, AS be-
comes a well-known property of Boolean algebras.

Notice that Axiom A2.1’ given in [3] becomes
A6 There is no atom in (R,<).

As a consequence the following proposition holds.

Proposition 4 The whole of Clarke’s system of Axioms A 1-A6 characterizes
the atomless complete Boolean algebras. The class of the open regular subsets
of a euclidean space with respect to the overlapping relation is a model of this
system.

4 Concluding remarks Recall that if T is a topology on a set X, the set
T* = {x € T/x = (x)°} of the open regular subsets of X is a complete Boolean
algebra with respect to the set theoretic inclusion relation. Namely, we have it
that, if Y is a nonempty subset of T*, then

vY=((UY)7)°, AY=(NY)°

and if x € T*, then the complement of x is the interior of the set theoretic com-
plement of x. Conversely, every complete Boolean algebra can be obtained in this
way (see Halmos [4]). Thus the system A1-A5 of axioms characterizes, in a sense,
the structure of the open regular subsets of a topological space. This is all right
since the regular open subsets are natural candidates to represent regions. Un-
fortunately, the coincidence of the connection relation with the overlapping re-
lation is rather unsatisfactory and far from the purpose of Whitehead and
Clarke. Indeed the relations “x is externally connected to y” and “x is tangen-
tial part of y” proposed in [2] and [3] are satisfied by no pair of regions and the
concept of “nontangential part” collapses into that of “part”. As a consequence,
the question of a suitable modification of the system of axioms proposed by
Clarke arises. The new system should still admit as models the class of the
nonempty regular open subsets of a topological space (S,7T). But in these models
the definition of the connection relation should be as follows:

xCyesxNy+ J.

The models obtained in this way satisfy A1 and A2. Moreover, if the topo-
logical space is regular, the relation < defined by (2) coincides with the inclusion
relation and this gives, in particular, A3. Indeed, x S y implies X S y and there-
fore C(x) € C(y). Conversely, let C(x) € C(y) and assume that X is not con-
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tained in y. Then an element p of S exists such that p € ¥ and p ¢ 7. Let z be an
open neighborhood of p such that 7N y = & and set 2’ = (Z)°. Then it is well-
known that z’ is regular; moreover, z’ € C(x) and z’ ¢ C(y), which contradicts
the hypothesis that C(x) € C(»). Then X € y and therefore x = (¥)° S (J)° =y.

Now, in spite of the completeness of (R,<), A4 is not satisfied and there are
subsets of R with no fusion. For example, assume that the topological space un-
der consideration is the real line, set X = {]0,1 — 1/n[/n > 1} and assume the
existence of a region x for which C(x) = U{C(]0,1 — 1/n[)/n > 1}. Then we
have x 2 ]0,1 — 1/n[ for every n > 1 and hence 1 € X. As a consequence, the re-
gion ]11,2[ is connected with x in spite of the fact that ]1,2[ is not connected with
10,1 — 1/n[ for every n > 1. Thus A4 should be weakened, assuming only the
completeness of (R,=<).

Finally, the definition of point and axiom AS give rise to some difficulties.
Indeed, in view of AS, if p € S then the class P = {x € R/p € %} should be a
point of the connection structure (R, C). Unfortunately this is not true since (ii)
is not satisfied. Indeed, two nonconvex regions of a euclidean space can be tan-
gent in p and overlap in a region that does not contain p in its closure.

Perhaps it is possible to avoid such difficulties by considering suitable bases
of filters rather than filters. For example, call representative of a point every class
p of regions such that, for every pair x, y of regions,

(i) x€p,y€p=xCy;
@iy xEp,y€E€p, xOy=xAyEp;
(iii))’ (vz € p, xOz and yOz) = xCy.

Moreover, we can call point represented by p the class P = {x € R/x =  for
a suitable z € p}. At least in the euclidean spaces, this definition of point seems
to work well. Indeed, it is matter of routine to prove that, for every p € S, the
class of open convex regular subsets whose closure contains p satisfies (i), (ii),
and (iii)’ and therefore represents a point P. With respect to this definition of
point, it is easy to see that AS is satisfied.
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