
207

Notre Dame Journal of Formal Logic
Volume 30, Number 2, Spring 1989

Modularity and Relevant Logic

JAMES GARSON

Abstract A practical system of reasoning must be both correct and effi-
cient. An efficient system which contains a large body of information can
not search for the proof of a conclusion from all information available. Effi-
ciency requires that deduction of the conclusion be carried out in a modu-
lar way using only a relatively small and quickly identified subset of the total
information. One might assume that data modularity is incompatible with
correctness, where a system is correct for a logic L iff it proves exactly what
is valid in L. We point out that modularity and correctness are indeed in-
compatible if the logic in question is classical. On the other hand, the two
desiderata are compatible for relevance logic. Furthermore, Horn clause
resolution theorem proving is modular (this helps explain its relative effi-
ciency) and the logic for which it is correct is relevance logic not classical
logic.

1 Introduction The Modularity of Mind [4] rallies the troops for a move-
ment in cognitive science which has been gradually gaining strength over the past
decade or two. The old view, championed, for example, by Newell and Simon's
work [9] on the General Problem Solver, was that intelligence is monolithic, it
is describable in a relatively simple way, and it has access to all the available
data. The new wisdom has it that cognition can be best explained by assuming
the existence of modules which have specialized functions, and narrow lines of
communication with the data and their peers.

The strongest kind of evidence for rejecting monolithic theories of the
human mind has come from work on perceptual processing, for example Marr's
work [7] on vision. We have learned that some things which we take for granted,
for example the ability to match images in our left and right eyes during binocu-
lar vision, are not at all easily explained. Given the relatively slow neural re-
sponse times, and the speed of the overall system, we feel compelled to postulate
the existence of an array of parallel structures each of which processes informa-
tion in only a small portion of the visual field. Given this assumption and phys-

Received January 27, 1987; revised July 9, 1987

208 JAMES GARSON

iological evidence, fairly concrete things can be be said about the algorithms that
carry out the process of perception.

Evidence on vision can hardly provide a conclusive argument against the
monolithic view of the mind. The relatively low-level processing that goes on
during sensory input does not begin to exhaust what a mind is capable of doing.
High-level processing such as solving problems and drawing conclusions would
seem to be more paradigmatic functions of the mind. Fodor describes his mod-
ules as part of the "input system", underscoring their role as part of sensory pro-
cessing, but he goes on to argue for the existence of a "central system" capable
of integrating information across sensory domains. So a monolithic theory of
a higher-level process such as reasoning is at the very least compatible with what
Fodor says.1

In this paper, we examine a modular account of reasoning. A reasoner is
perhaps best treated as an array of modules with special functions and limited
lines of communication. Although the system as a whole might have access to
all information, each module would have access to only a small portion of the
available data. Because each module carries out a limited task, modular systems
can be significantly faster than monolithic systems.

We do not intend to argue the merits of this account either as a descrip-
tion of the human mind or a blueprint for computer reasoning systems. The pur-
pose of this paper is to examine the view that formal logics, and especially the
classical predicate calculus, can provide an adequate account of efficient rea-
soning systems. We will conclude that classical logic and modularity are incom-
patible, but we will not conclude that logic has no place in the theoretical
description of fast reasoning systems. Although predicate logic forces us to adopt
the monolithic view of reasoning, at least one nonclassical logic, relevance logic,
is compatible with the modular hypothesis. If relevance logic is used as the stan-
dard of accuracy for modular reasoning systems, it may be possible to escape
the tradeoff between logical accuracy and speed which bedevils classical logic.

We have further evidence of the importance of relevance logic as a stan-
dard for efficient reasoning systems. Logic programming is a widely used and
relatively efficient methodology in artifical intelligence research. It is based on
a reasoning method called procedural derivation which we will show is compat-
ible with modularity. We will prove that procedural derivation obeys the stan-
dards of relevance logic. So relevance logic has already been adopted (covertly)
as a standard for efficient reasoning systems.

2 Acceptance of logic as a theory of reasoning The earliest work on the
application of formal logic to the construction of computer reasoning systems
accepted the monolithic viewpoint. Logical reasoning was taken to be one thing:
the verification of the validity of arguments in first-order logic. The main
research problem was to find correct and efficient techniques for checking valid-
ity. The discovery of resolution theorem proving in the early sixties was a mile-
stone in these efforts, because of the method's simplicity and relative efficiency
(see [10]).

The thesis that predicate logic can (or even should) provide an adequate
theory of reasoning has had rough going lately, particularly among artificial

MODULARITY AND RELEVANT LOGIC 209

intelligence researchers interested in problem solving and natural language pro-
cessing. The enthusiasm for resolution theorem proving faded in the late sixties
as the costs of applying the method to more complex problems became more
apparent. The problems with predicate logic are well known. First, there is no
decision procedure for predicate logic, so no computer program can correctly
answer all our questions about inference anyway. But what makes matters worse
is that even propositional logic is NP-complete: it falls into a class of problems
that are practically intractable because the time to compute an answer rises expo-
nentially with the size of the problem.

The response of many computer scientists has been to abandon the ap-
proach based on logic, and to hand code specific inferencing behavior in their
reasoning systems. "Semantic nets", "frames", "scenes", "servants", "demons",
and "actors" are buzz words for techniques that help organize the programming
effort that ensures that a given system reasons in the desired way. The trouble
with this response, as everyone has been quick to admit, is that these techniques
put no restrictions on what behavior can be programmed, so the resulting sys-
tems are not known to obey a theory of inference. Formal logic may be too
expensive in computer time, but at least we have consistency and completeness
results which assure us that conclusions are correctly drawn from the data.

Disenchantment with formal logic has now spread to philosophers. Cher-
niak [2] argues that the computational complexity of predicate logic challenges
not only its usefulness but also its universal acceptability. The conclusion of his
argument is that a reasoning computer or human may not rely on classical predi-
cate logic if it or he wants to get anything done. At best, it must rely on "clever
hacks" which occasionally make errors, but which compensate for this by pro-
viding timely answers. Since predicate logic is impractical, it cannot be accepted
as a realistic standard for reasoning.

We agree with Cherniak that any sensible theory of reasoning must make
clear how timely computation of answers to common sense questions can be cal-
culated. However, we are unwilling to give up on logic so quickly. There is ter-
ritory yet to be explored between monolithic systems based on predicate logic
on the one hand, and ad hoc programming on the other.

This paper explores a model where reasoning systems consist of an assem-
bly of logical modules, logical in the sense that each one meets the conditions
of adequacy (consistency and completeness) which have guided our construc-
tion of logics. The idea is that a reasoner is an array of small logical systems each
of which is capable of answering questions both quickly and accurately in its
own domain of expertise. The purpose of presenting this model is to show that
(contrary to the conclusions one might draw from Cherniak) speed and logical
accuracy need not be incompatible.

Cherniak considers modularity as a possible solution for the problem of
efficiency, but he objects (p. 753) that modules would "be particularly weak on
inferences . . . distributed between such (modules)". However, if modules are
logical, as we will propose, no module will ever need to consult data outside its
domain in order to reason correctly, and so there will be no inferences distrib-
uted between modules. Cherniak's assumption that there will be such inferences
makes sense if one adopts classical logic. On the other hand, we will show that
if relevance logic is adopted as the logical standard, then it is at least possible

210 JAMES GARSON

to construct a system of modules which is fast and completely accurate. It would
be fast because each problem would be referred to a module which contains a
small portion of the total data and resources. It would be accurate because the
system as a whole is consistent and complete for relevance logic.

3 The definition of logical modules A logical module meets the standards
of accuracy for some system of logic. It comes to a conclusion in its domain of
expertise just in case that conclusion is entailed by the data available to the entire
system. There are differences of opinion about which logic serves best as the
standard for defining entailment. One of the purposes of this paper will be to
argue backwards from the thesis of modularity to the logics that can serve as
standards of accuracy. So as not to prejudge the issue, let us simply refer to our
standard system as global logic, or G for short.

We will assume that a reasoner consists of a set of modules and a selector.
Each module consists of three items: a set of rules that define the set of sentences
that comprises its domain of expertise, a set of inference rules, and a set of sen-
tences that serve as its data. The global data for the reasoner consists of the data
in all the modules, and the global domain contains all sentences in the domains
of all modules. The selector assigns to each sentence in the global domain a mod-
ule (whose domain contains that sentence) which determines whether or not that
sentence follows from the data. If the reasoner is to be efficient, the selector
must be able to pick a module for a given sentence quickly, for example by
examining the logical notation or vocabulary that it contains.

A sentence is correct (for G) just in case it is provable in G from the global
data. A sentence is provable in a module just in case there is a proof of that sen-
tence from the module's data, using the module's inference rules. A module is
locally consistent for the global logic G just in case any sentence provable in a
module is correct, and a module is locally complete (for G) just in case every
sentence in the module's domain that is correct is provable in the module. A
module is logical (for G) just in case it is both locally consistent and locally com-
plete. A sentence is provable in a reasoner just in case the sentence can be proven
in the module that is selected for it.

It is interesting to note that the assumption that all the modules of a
reasoner are logical entails that the reasoner prove exactly what is correct. When
all the modules are logical, the desired performance of the whole system is the
sum of the performance of its parts.

4 Examples of logical modules Let us give some examples of logical mod-
ules.2 Conjunction modules can be constructed for the domain of sentences
containing & as the only logical connective using the two rules Conjunction In
and Conjunction Out. These rules are incomplete for the full range of inferences
of predicate logic, but they are complete and consistent for arguments expressed
in this domain. Not only that, the system has a very fast decision procedure: an
argument is valid just in case every atomic conjunct of the conclusion appears
as a conjunct in the data.

A second useful technique for checking entailment is the semantic net. It

MODULARITY AND RELEVANT LOGIC 211

works for atomic sentences which express facts about transitive binary relations.
Labeled arcs are used to represent each atomic sentence in the data along the
lines of a Haus diagram. For example, the sentence aRb is represented by the
diagram:

R

a b

To check whether or not the sentence cRd follows from the data using a seman-
tic net amounts to seeing whether there is a path from c to d following arcs la-
beled by R.

The trouble with these modules is that they handle a very limited set of
arguments. A stronger sort of module which is widely employed and well under-
stood is the system based on resolution theorem proving. Although the method
runs in exponential time, its performance is good enough at actual tasks to find
many practical uses. There is a particularly efficient form of resolution theorem
proving for Horn clauses which we call procedural derivation. (Horn clauses will
be described in Section 7.) Procedural derivation is fast enough to serve as the
foundation of the Prolog computer language. As we will see, this efficiency can
be attributed partly to the fact that procedural derivation is correct with respect
to relevance logic, but not classical logic.

Table look-up can also be used as the underlying algorithm for checking
validity in many domains. If the domain of a module is restricted to a finite list
of questions, the answers to which have previously been computed (by whatever
means), then validity can be checked by inspecting lists. Using this technique,
a reasoner can eliminate expensive processing time by 'compiling out' those
classes of inference which are especially common.

5 Logical modules and Fodorian modules We can help motivate our def-
inition of logical modules by showing that they have many of the properties
which Fodor ([4], part III) attributes to input modules, or at least properties
analogous to them. First, our modules are domain specific, for each system is
designed to draw conclusions over a limited domain of expertise. Second, the
accuracy condition ensures that operation of our modules can be mandatory.
Once a sentence falls into a module's domain, the module can correctly handle
it, so it is all right if the selector assigns a sentence to any module which has that
sentence in its domain. Third, a Fodorian module should have limited access to
inputs of the system. In our case, a module contains all the data it needs to solve
problems in its domain, so that the only input it needs is the question to be
answered. Fourth, a module should be fast. There are two reasons that logical
modules are likely to be fast. First, each module may use a validity detecting
algorithm specially designed for its data and domain. Second, the collection of
the data of a module is assumed to be significantly smaller than the global data,
so that even if algorithms with exponential complexity are used, the size of the
problem is small enough to ensure practical response times. Fifth, a module

212 JAMES GARSON

should be informationally encapsulated. This means that the module does not
need to access global information concerning the problem to be solved. Logi-
cal modules qualify because they have on board all the information they need.3

There is another important property of logical modules which does not fall
on Fodor's list. We want modules to be independent in the sense that the addi-
tion or deletion of other modules does not significantly affect their behavior.
Logical modules are independent because the reasoner will prove the sentences
which are selected for a given module so long as that module exists in the sys-
tem. The presence or absence of other modules makes no difference to its behav-
ior. Independence is important because it ensures the graceful degradation of
the behavior of the reasoner when processing or memory limitations have the
effect of disabling certain modules.

6 Contradiction and modularity We have now laid the groundwork for dis-
cussing the relationships between systems of logical modules and their global
logics. We will now argue that classical logic cannot possibly serve as the the-
ory of a practical modular system, using a variant of an argument that is familiar
to advocates of relevance logic.4 The problem with classical logic is that it
accepts the Law of Contradiction, i.e., that a contradiction entails any sentence.
This principle is fatal to modularity. In a practical system, the global data will
be large and changing. Any attempt to ensure its consistency will be extremely
costly. What makes matters worse, no reliable consistency check is even possi-
ble, because there is no decision procedure for predicate logic. A practical sys-
tem, then, must tolerate contradictions in its global data. If there are a fair
number of modules, it is very likely that a contradiction in the global data will
not appear in the data of any one module, but will be the result of a disagree-
ment between modules. If the Law of Contradiction is obeyed under these cir-
cumstances, then the set of theorems of the global logic is the set of all sentences
of the language. The result is that all modules must prove all sentences in their
domains if they are to be locally complete. But they cannot, even if each one
obeys the Law of Contradiction, because none of them finds a contradiction in
its own data.

Complaints about the Law of Contradiction are commonplace, particularly
in the literature on artificial intelligence. The difficulty is one reason commonly
given for abandoning logic, and turning to hand coding in the design of inferenc-
ing systems. The objection is usually that reasoners based on classical logic are
impractical because they "degrade ungracefully" when contradictions arise. Our
objection to classical logic is more theoretical. Classical logic is not only imprac-
tical, it is also a poor theory about the inference behavior of modular systems.
If standards for logical adequacy of modular systems are to be found at all, we
must find them in nonclassical logics.5

7. Relevance and local completeness If logic is to play a prescriptive role
in the theory of modular reasoning systems, we must choose a logical standard
which allows the modules to have access to only part of the global data. Luckily,
we have the prospect of achieving this with relevance logic (see [1]). Relevance

MODULARITY AND RELEVANT LOGIC 213

logic does not accept the Principle of Contradiction, and it provides us with the
tools to partition the global data into smaller parcels without jeopardizing the
local completeness of the corresponding modules.

One of the fundamental ideas in relevance logic is to keep track of which
sentences are used in the derivation of other sentences. If a derivation of sen-
tence C is possible given sentence A, it does not follow that A relevantly implies
C, for A may not have played any role whatsoever in the proof of C One of
the signs that a formula has played a role in the proof of another is if they con-
tain common notation. In many relevance logics, A implies C only if there is
a variable common to both A and C This property allows the data that are rele-
vant for proving a given conclusion to be neatly circumscribed.

To explain how this is done, let us define the topic of a sentence C (for a
given set of data D) as follows. Every subformula of C is in the topic, and if
any sentence in the data D contains a sentence in the topic then its subformulas
are also in the topic. It is possible to show that any proof of C involves only data
in the topic of C in a fragment of relevance logic. (See the Appendix where this
definition is sharpened considerably and where proofs are given.) Given a group
of sentences with the same topic, we can build a module with that topic as data
which is locally complete with respect to relevance logic.

The moral of this discussion is that the difficulties which lead us to aban-
don classical logic do not require us to abandon logic altogether. A nonclassi-
cal logic such as relevance logic offers hope that the behavior of modular
reasoning systems can be rationalized. Relevance logic is a standard candidate
for modular reasoning systems just because it allows a method for narrowing
down the data and rules that can possibly play a role in the proof of a given con-
clusion. This property is essential if locally complete modules are to be defined.

8 Topic and the problem of modularizing data It is widely recognized that
the fundamental difficulty in designing efficient reasoning systems is to find ways
to locate quickly a small set of data which is relevant to answering a given ques-
tion. So far, the problem has been intractable in general, and the recognition
of this has motivated the ad hoc approach to the design of inferencing systems,
where the desired inferencing behavior is merely programmed in. Clearly, the
definition of 'topic' that we have proposed, however artfully improved upon,
could not itself provide a general solution to the problem of modularizing infor-
mation. It is highly unlikely that any criterion which looks only at the syntac-
tic form of the data could provide an answer to such a fundamental question.6

The reader should not suppose that our definition of 'topic' is meant to pro-
vide necessary and sufficient conditions for modularizing data for inferencing
systems. Our goal is much more modest. It is to lay out the formal conditions
that must hold if formal logic is to serve as a theory of modular reasoning. That
the data fall into the topic of a question is sufficient to ensure that the data form
a logically correct module for that question in relevance logic, but it is certainly
not a necessary condition. In all likelihood, further techniques for organizing
data will be needed to ensure efficient behavior from a complex system. Fur-
ther difficulties may be encountered in providing efficient algorithms for assign-
ing data to given modules when data are added to the system. Although this

214 JAMES GARSON

process need not be as fast as question answering, it should not take so long that
updating the system becomes prohibitively expensive. There is no guarantee (nor
could there be one as far as I can see) that any one proposal for modularizing
data could ensure both logically accurate and efficient behavior, even when the
logical standard is relevance logic.

Our purpose in defining 'topic' has been to argue that while classical logic
cannot serve as a standard of modular reasoning, relevance logic is at least not
open to the same objection, and so it is at least possible for modular reasoning
systems to meet the logical standards imposed by relevance logic. Whether an
efficient system (say an expert system or a human organism) actually does (or
even should) meet these standards is another matter to be argued in another
place.

9 Relevance logic and procedural derivation Relevance logic not only shows
promise as a standard for modular reasoning systems, but it has, in a sense, been
already adopted by artificial intelligence researchers. The resolution method for
Horn clauses appears to be based on classical logic, but procedural derivation
(see [6]), the method actually used for logic programming, is not complete for
classical logic, and is in fact equivalent to relevance logic.

Horn clauses are sentences of the form:

ΛuA2y.. .,An => C

where the sentences Ax,... ,An and C are atomic. A Horn clause of this form
is read iAx,A2,..., and An entail C\ The list AX,A2,... ,An of antecedents
may be empty, in which case => C asserts that C. The consequent C may also be
missing in which case AX,A2,... ,An => says that the antecedents entail a con-
tradiction.

Although the reading usually given for the Horn clause Ax, ... ,An => C is
the propositional logic expression 'if Ax and.. .and An then C\ this is the
wrong reading if we are translating Horn clauses into the notation of relevance
logic. If the symbol '=>' represents relevant entailment, we may not represent
Au ... ,An => C by (A i & . . . & An) -> C. The reason is that (Ax &...&An)-+

C may be provable in relevance logic when the sentences Au... ,An do not
relevantly entail C. For example, (p & q) -* p is provable in R, but p is not
derivable relevantly from the list/?,*?, since q is irrelevant to the proof of p. In
order to interpret the clause AX,A2 =>Casa relevant implication, we use the
formula Ax -> (A2 -> C), which (by the deduction theorem) is provable just in
case C relevantly follows from Ax and A2.

A procedural derivation of a sentence C begins by searching for clauses in
the data whose consequents are C 7 If a clause with consequent C is found that
has no antecedents then the proof is complete, because this clause asserts C.
If a clause with consequent C contains antecedents, then the method is ap-
plied again to try to prove each antecedent. If all antecedents of the clause are
provable, then so is C. If no clause contains C as a consequent, then C is not
provable.

Procedural derivation is not complete for classical logic: it misses some

MODULARITY AND RELEVANT LOGIC 215

proofs that depend on the Law of Contradiction. To illustrate this, suppose the
data contain only the clauses:

and

A =>.

The first asserts and the second denies A, and so by classical logic C follows.
Imagine now that we are attempting a procedural derivation of C from these
data alone, and that C is not A. Since no clause with C as a consequent is found
in the data, C has no proof.

Procedural derivation has the advantage that the search for a proof is
restricted to those clauses in the data which meet a condition of relevance. Just
as in relevance logic, each conclusion has a topic which limits the data which
could possibly enter into its proof. For procedural derivation, the topic of the
sentence C is defined recursively to contain all clauses with C as a consequent,
and all clauses that have a consequent which is also an antecedent of some mem-
ber of the topic. (Actually, the definition of the topic is somewhat more com-
plex in the case of quantified arguments. The details are given in the Appendix.)
A proof of a sentence using procedural derivation involves only members of its
topic. If the data for a module are restricted to the joint topic of the sentences
in its domain of expertise, then it will contain all the data it will ever need to
complete a procedural derivation.

Of course, we still need to prove that procedural derivation is more than
a "clever hack". We have no assurance that it corresponds to any logical sys-
tem for which we have a suitable adequacy proof. Luckily, however, we can
show that a module that uses procedural derivation as its inference rule, and
whose data contain all sentences in the topic of each sentence of its domain, is
locally consistent and complete for the concept of entailment generated by rel-
evance logic. As we will show in the Appendix (Theorem 2), an argument with
premises (data) D and conclusion C has a procedural derivation just in case the
result of translating D (using -», not &) into relevance logic relevantly entails
the translation of C. It follows then that systems of modules which are actually
used in computer science have the feature that relevance, not classical, logic pro-
vides a theory of their behavior.

In the course of proving the correctness of procedural derivation with
respect to relevance logic, we also prove a result (Theorem 1) that sheds new light
on the relationships between relevance and classical logic. Resolution theorem
proving is significantly more powerful than procedural derivation, and we know
that it is correct with respect to classical logic. We present a simple modifica-
tion of resolution theorem proving that is compatible with modularity and which
is correct with respect to relevance logic. The idea behind the variation is ex-
tremely simple. For a relevant resolution of C from D there must be a deriva-
tion of C from D by resolution in which all the members of D are used. So the
adoption of relevance logic is painless; systems based on relevance logic can be
easily implemented and fine tuned using the large body of knowledge we have
already developed on theorem proving.

216 JAMES GARSON

10 Conclusion The conditions that make a workable system of logical
modules possible are not easily satisfied. We must abandon the Law of Con-
tradiction, and turn to some nonclassical logic such as relevance logic for our
logical standard. There are practical problems as well, for we have no guaran-
tee that the global data will allow any definition of topic for the logic we have
chosen that will result in an efficient system. There may be, after all, a neces-
sary trade-off between logical accuracy and efficiency.

On the other hand, the results on procedural derivation and relevance logic
show that at least some relatively efficient reasoning systems, based on tech-
niques in wide use, do count as modular logical systems in the sense that the data
relevant to answering a given question can be circumscribed in a reasonable way.
Although decisions about how to structure the data in order to produce an effi-
cient set of logical modules will be difficult ones to make, at least we have some
hope that the desire for efficiency need not lead us to logical anarchy. If for-
mal logic is to play its traditional role as a theoretical standard for reasoning
systems, then a desire for efficiency requires us to carry on with the necessary
research in nonclassical logic.

Appendix The purpose of this Appendix is to prove two claims made in the
text. We show that procedural derivation is both consistent and complete with
respect to the negation implication and quantifier fragment of RQ (see [8]), here-
after referred to as RQ.8 We then use this result to prove that the derivation of
a conclusion in that system never needs to appeal to data outside the topic of
that conclusion. These results will allow us to improve the definition of the topic
of a sentence.

The proof of the equivalence of procedural derivation and relevance logic
depends on a stronger result (Theorem 1 below) concerning a relevant version
of the rule of resolution. A simpler proof of the equivalence of procedural deri-
vation and relevance logic is possible. However, Theorem 1 is interesting in its
own right because it shows that relevance logic can serve as a standard for a vari-
ation of resolution which uses clausal form notation. So the result is not lim-
ited to the less expressive Horn clause notation used in procedural derivation.

We begin by explaining the notion of relevant resolution that we will show
is equivalent to a relevance logic. The underlying idea is simple: clause C has
a proof from the set of clauses D by relevant resolution (D h^- C) iff there
is a proof of C by repeated applications of the rule of resolution which uses
exactly the sentences in D. We may define D \-^ C by means of an axiom
and rule as follows:

Axiom C ĥ p- C

Rule of Relevant D hΰΓ L => A,R D' h^ L\A' => R

Resolution D,D' ^ s(L,L' => RyR')

where D and D' are sequences of clauses, C, C", and C" are clauses, L, L', R,
and R' are sequences of atoms, A and A' are atoms, and s is any substitution
of terms for variables such that s(A) =s{A'). (We write s(A) for the result of
applying the substitution s to A.) Since the operations of permutation and con-

MODULARITY AND RELEVANT LOGIC 217

traction (removing duplicates) have no meaningful effect on any of the sequences
we discuss in this Appendix, we treat sequences as sets whenever we like, though
we always use sequence notation.

Resolution is not complete for classical logic. (For example, resolution can-
not generate A =• A from the empty set of data.) However, the rule is complete
for refutations, that is, if D is inconsistent in first-order logic, then there is a
resolution proof of the empty clause => from D. We will prove a similar result
for relevant resolution.

We must first give a transformation from sentences in clausal form into
corresponding sentences of relevance logic. Since function symbols and constants
are available in clausal form, we assume their presence in the language of RQ.
We begin with two notational matters. We drop parentheses associated with the
conditional -*, and assume that they are replaced from right to left, so that
A -> B -» C -> D (for example) amounts to (A -> (B -* (C -* D))). Second, open
sentences of RQ are taken to be abbreviations of their universal closures.

The corresponding sentence for clause A\ .. .An => C\ . . . Cm,Cm+ι is
A\ ->...-+ An -> ~Cγ -•...-• ~Cm -* -—Cm+\. If the consequent of the
clause is empty, so that the clause has the form A\.. .An,An+i =>, then the cor-
responding sentence is A1 -* . . . -> An -> ~An+x. Note that =>A corresponds to
A, and A^> corresponds to -A. We define RQ-provability for hypotheses in the
standard way: Dx .. .Dn \-^- C iff the sentence Dx-+...-+ Dn-+ C is provable
in RQ. A set Dx . . .Dn,Dn+ι is RQ-inconsistent (written D h ^ =0 iff A . . .
Dn HRQ- ~Dn+i. To simplify our discussion we will use clausal form notation
as an abbreviation for the corresponding sentence of R. (For reasons we
explained in Section 9, we are using intensional conjunction (and disjunction)
when we translate clauses into R.)

Theorem 1 D Y^ => iff D ^ =*.

Proof: (left to right) The consistency of relevant resolution with respect to rel-
evance logic may be proven by showing that relevant resolution is a derivable
rule of RQ. The result depends on well-known features of RQ. First, we may
freely permute and contract the consequent or the antecedent of Lx.. .Ln =>
R\.. .Rm. (Remember we use clausal form notation to abbreviate correspond-
ing sentences of RQ.) Notice that to contract a rightmost duplicate we need to
appeal to "indirect proof": (~A ->A)-+A, and to permute a rightmost pair we
must appeal to contraposition: {-A -> C) -* (~C-+A). The second is a prin-
ciple of generalized transitivity, namely that if HRQ- L => A and I-̂ Q- A -> C
then ĥ Q- L => C (see [1], p. 27). Given generalized transitivity and permutation,
it is not difficult to show the derivability of the following rule which we call rele-
vant cut:

D' I-RQ- L' => R\A D F^Q- A,L => R

DΛD' h^UL' ^R,R' *

The axiom is clearly provable in RQ. To show that the rule of relevant reso-
lution is derivable, suppose that D h ĝ" A,L => C and D' ĥ g- L' => R',A', and
that s(A) = s(A'). Since the variables ofA,L=>C and L'9R',A are understood

218 JAMES GARSON

as universally bound, we obtain D h ĝ" s(A,L => R) and D' ĥ g- s{Lf => R',A')
by Universal Instantiation. Since s(A) = s(A'), we obtain D,D' ĥ g- s(L,L' =»
i?,i?') by relevant cut.

The proof from right to left amounts to showing that relevant resolution
is complete with respect to relevance logic. Semantical methods traditionally used
in the corresponding proof for classical logic are not helpful here because we
must keep track of which sentences are used in a derivation in order to demon-
strate the existence of a relevant resolution. Our strategy will be to make use of
the Gentzen formulation GRQ of RQ. (GRQ is the result of adding the stan-
dard Gentzen rules to the system GR in [3].)

The axiom and rules of GRQ are as follows:

Axiom AY A

Rules (h-») D,A Y B,E (-> h) D,BYE

D\-A-*B,E D' VA>E'
D9D',A-+B\-E,E'

(h~) D,A YE (~h) DYA,E

D\-~A,E D,~AYE

(hv) DYAt,E (vh) D,AtYE

D Y vxAx,E D,VxAx Y E

where the term t in (h V) must not appear in the conclusion of the rule. (Both
D and E in these rules are sequences of sentences.) It is not difficult to show that
whatever is provable in RQ is provable in GRQ. The only complication is show-
ing that cut is admissible in GRQ, which is a straightforward exercise. It remains
to be shown that if D I G R Q =>, then D Y^ =>.

In order to show this we need to relate provable sequents D Y E to corre-
sponding refutations. Let us say that a sentence (of RQ) is clausal iff it corre-
sponds to a sentence in clausal form. When A is clausal and corresponds to the
clause Lx .. .Ln => Rx.. .Rm the opposite of A (for sequent D f- E) is the
sequence of clauses s(^Lχ),..., s(=*Ln), s(R^),..., s(Rm=>), where s is a
substitution of terms for variables of A such that all terms are new to D and E.
In the case of the negation — A of a clausal sentence the opposite is simply A.

Given the sequent D V E, we form a corresponding refutation D,E* h =>,
where E* is the result of taking the opposite of each member of E. The sequent
D h E is clausal just in case all sentences of D and E* are clausal.

Lemma 1 If D Y E is clausal, and D h^g- £, fAeπ D,E* \-^ =>.

(Once Lemma 1 is proven we will have as a special case that if D I G R Q — C
then A C h^- =>. Since GRQ and RQ are equivalent, we have by the defini-
tion of D HRQ- => that if Z> ĥ g- =*> thenZ) h^- =>, which completes the proof
from right to left.)

Proof: The proof of Lemma 1 is by induction on the structure of the proof of
D Y E in GRQ. We show that the axiom has a relevant refutation and that the

MODULARITY AND RELEVANT LOGIC 219

rules preserve relevant refutation. Notice that all rules of GRQ have the prop-
erty that if their conclusions are clausal, then so are their premises. It follows
that any derivation of a clausal sequent in GRQ contains only clausal sequents.
As a result, we may assume that A in the axiom corresponds to a clause
L\ .. ,Ln => Rγ . . .Rm. We must show that we can derive => from Lλ .. .Ln =>
Rx.. .Rm and => s(Lx). . . => s(Ln), s(Rι) =>.. s(Rm) =», and this is easily
done with n + m applications of resolution.

The cases of the rules for negation and (h->) are simple. We now con-
sider (-> h). Note that all quantifiers in a clausal sentence have widest scope,
and no clausal sentence contains free variables. We know that every step of a
derivation in GRQ is clausal: Any use of (-> V) must produce a sequent D9A-+
BV E where A -+ B has -> as its main connective. It follows that no quantifiers
appear in A -> B, and hence the clause to which it corresponds contains no vari-
ables. Since the sentence A -+ B is clausal, then it must have one of two forms:
A,L => R or => A',R, where A = -A'. In the first case we must show that

if (1) D, L => R9 C* ΓRR- =>
and (2)D\A =>, C * ^ =>,
then (3) D, D', A,L => Λ, C*, C * h ^ =>.

Given (1), we know there is a derivation tree with members of D, L => î , C* at
the leaves and => at the trunk. Add A to the antecedent of L => R and all its
descendents in the derivation tree. The result has an instance of resolution at
each node. Since A contains no variables, the new derivation concludes with
A =>, and we know that D, A,L => R, C* h — => A. This together with (2)
yields (3) A D\ A,L * R, C\ C* h^- ^ .

In the case where A-+B corresponds to a clause of the form => A\R, where
A = ~A', we must show that

if (1) A *R, C* hϋΓ =>
and (2)/)', =*>!', C * ^ =>,
then (3) A ^ r , =>A',R, C*, Cr* ΓRR- =>.

The proof is symmetrical with the previous case, by adding A' to the consequent
of =>R and its descendents in the derivation tree for (1).

We must now consider the axioms for the quantifier. Notice that when a
sentence of the form Vx4x corresponds to a clause the clause itself has the form
Ax. Therefore, in the case of (V h) we must show:

if (1) A At, C* hgR =>
then (2) D, Ax, C* h^ =>.

To do so take the derivation tree of (1) and replace x for t in At and its descen-
dents on the tree. Note that replacing a variable for a term in an instance of reso-
lution is a new instance of resolution, and so the new tree is a derivation of (2).

In the case of (hv) we must show that

if (l)D,At*,C* hΰΓ ^
then (2)D,Ax*, C* ̂ =>

220 JAMES GARSON

where t is foreign to the conclusion. Let t' be the constant chosen for x in form-
ing Ax*. Then Ax* contains t' exactly where At* contains t, and t' does not
appear in D, and C*. Replace t' for t in At* and its descendents in the deriva-
tion tree for (1), noting that each node of the new tree is a new case of resolu-
tion. The result is a derivation of (2).

We have completed the proof of Theorem 1, and may now give the proof
of the adequacy of procedural derivation with respect to relevance logic. Here
we will be considering arguments that can be expressed by Horn clauses, that
is, clauses with no more than one consequent.

We begin with definitions concerning procedural derivation. First, a denial
is a clause L=> with an empty consequent. Next, & procedural derivation of the
atom C from data D is a derivation by resolution of => from D, C=> with the fol-
lowing features: The derivation begins by resolving C=> with some sentence in
the data. Each subsequent step of the derivation involves a sentence from the
data and the denial that results from the previous step. A set D of data is used
in a procedural derivation just in case resolution was applied to each member
of D in the course of the derivation. We write 'D hp^ C when C has a pro-
cedural derivation from D which uses all of D9 C=>.

Theorem 2 D h^ C iff D ^ C.

Proof: The proof from left to right results immediately from Theorem 1. Given
D hpp- C, it follows from the definition of a procedural derivation that D9

C=* HRR- =>, from which we obtain D, C=> ĥ Q- => by Theorem 1. But C=>
abbreviates ~C, and so we obtain D ĥ Q- C.

For the proof from left to right, assume that D ĥ Q- C. It follows from
Theorem 1 that D, C=> h^- =>. By the definition of relevant resolution, all
members of D, C=> are used, so we need only show that the derivation of => from
D and C=> by relevant resolution can be converted into a procedural derivation.
In order to do this we will need to show how to restructure the derivation so that
C=> is used first, and also so that the derivation is linear, i.e., each step follows
from a use of resolution which is applied to the previous step. This requires that
we prove that the steps of a derivation may be reordered.

We illustrate how the steps of a derivation may be reordered in the special
case of ground clauses (i.e., clauses which contain no variables). A careful proof
is tedious but the following example should convince the reader.

C\ = B,A,L^R C2 = L'*A9R'

B,L,L' => R,R' C3 - L"^R\B

CA = L,L'fL" =* R,R',R".

Here clause C4 is obtained from Cl, C2, and C3 by two uses of resolution. We
may also obtain C4 from C1-C3 in a derivation where C3 is used in the first
step:

MODULARITY AND RELEVANT LOGIC 221

C\ = B,A,L=>R C3 = U-*R\B

A,L,L"=>R,R" C2 = L'=>A9R

C4 = L,Z/,L" =» R,R\R".

This does not establish that the steps may be reordered in derivations that con-
tain variables. However, we may extend the result for ground clauses to clauses
in general using the Lifting Lemma. (See, for example, [10], p. 211.) Take any
relevant resolution derivation and let s be the collection of all substitutions of
terms for variables used in the derivation. The result of applying s to each clause
in the derivation is a ground clause derivation which can be reordered. Now reor-
der the original derivation in the same way. The result of applying s to this new
ordering is the reordered ground clause derivation which has a case of resolu-
tion at each node. It follows by the Lifting Lemma that each node of the new
ordering is a case of resolution.

Once we have shown that derivations by relevant resolution can be reor-
dered it follows that a relevant resolution of => from D, C=> can be restructured
so that C=> is applied first. The derivation tree can also be put in linear form,
for every case of nonlinear structure:

\ / B λ \ /

\ / B 1

can be exchanged for a linear structure (by reordering branches B\ and B2 in
the example given).

\ / B 1

We now turn to the problem of refining our definition of topic and of
showing that fragments of relevance logic obey the property that provable argu-
ments contain only premises which belong to the topic of the conclusion. This
property, remember, allows us to locate, for each conclusion, a subset of all the
data which could possibly play a role in its proof. The results we have all con-

222 JAMES GARSON

cern the Horn clause fragment of RQ, that is, the set of theorems of RQ which
correspond to Horn clause sentences. It is an interesting open question whether
similar results hold for larger fragments of RQ.

With the preceding theorems in hand, the definition and proof are quite
simple. The topic for a set of data given a conclusion C is simply the set of sen-
tences which would be encountered in a full search for a proof of C using pro-
cedural derivation. More specifically, it is the smallest set of sentences closed
under the following operation (assuming all sentences have been written in Horn
clause form): The conclusion C belongs to the set, and when a sentence A in the
set is such that s(A) = s(Ά) for some substitution of terms for variables, and
L => A' is in the data, then the sentences s(L) are in the set.

NOTES

1. Fodor ([4], p. 90) argues that the linguistic input system outputs the logical form of
a sentence. However, it does not follow that the input system is responsible for draw-
ing conclusions from the sentences so represented.

2. Strictly speaking, we are not describing modules here, but only kinds of modules,
because we have said nothing about their data. For a module to be complete, it must
satisfy two criteria: first, the data available must be comprehensive enough to entail
anything that ought to be provable in its domain, and second, the rules must be
strong enough to derive any conclusion that ought to be proved from the data. For
the purpose of the examples discussed, we are simply assuming that the data are com-
prehensive.

3. The referee has pointed out that in this regard there is an important difference
between the notion of a logical module and the idea of modularity in psychology.
The neural structure of many organisms includes modules which are cut off from
data which would be relevant if it were available. In psychology, it is almost a defin-
ing feature of modules that they are nonlogical. Our concern, however, is not so
much whether logical modules actually exist in biological reasoners, but whether
modularity is incompatible with logical correctness.

4. See, for example, [1], for a discussion of the importance of avoiding the Law of
Contradiction, and of the application of relevance logic in doing so.

5. Actually, another way out is to adopt classical logic without negation, in which case
contradictions cannot arise. However, we rule (fairly) that classical logic without
negation is odd enough to merit the label 'nonclassicaΓ.

6. This section was prompted by remarks on a previous version of this paper by Lee
Bowie, to whom I am grateful.

7. Actually, we are looking for consequents that match C, but this is a complication
that we need not go into for present purposes. (See the Appendix.)

8. We believe that the result can be extended from the negation implication and quan-
tifier fragment RQ— to the full system RQ of [8], for we are confident that RQ is
a conservative extension of RQ-. Meyer reports ([1], p. 374) that R is a conserva-
tive extension of its negation implication fragment. We believe that his proof can be
easily extended to handle the quantifiers, though we have not verified this.

MODULARITY AND RELEVANT LOGIC 223

REFERENCES

[1] Anderson, A. and N. Belnap, Entailment, Princeton University Press, Princeton,
1975.

[2] Cherniak, C , "Computational complexity and the universal acceptance of logic,"
Journal of Philosophy, vol. 81 (1984), pp. 739-758.

[3] Dunn, J. M., "Relevance logic and entailment," pp. 117-224 in Handbook of Phil-
osophical Logic, eds. D. Gabbay and F. Guenthner, D. Reidel, Dordrecht, 1986.

[4] Fodor, J., The Modularity of Mind, MIT Press, Cambridge, 1983.

[5] Gentzen, G., "Investigations into logical deduction," American Philosophical
Quarterly, vol. 1 (1964), pp. 288-306.

[6] Kolwalski, R., Logic for Problem Solving, North Holland, New York, 1979.

[7] Marr, D., Vision, W. H. Freeman, San Francisco, 1982.

[8] Meyer, R., J. Dunn, and H. LeBlanc, "Completeness of relevant quantification
theories," Notre Dame Journal of Formal Logic, vol. 15 (1974), pp. 97-121.

[9] Newell, A. and H. Simon, "GPS, a program that simulates human thought," pp.
279-296 in Computers and Thought, eds. E. Feigenbaum and J. Feldman,
McGraw Hill, New York, 1963.

[10] Robinson, J., Logic: Form and Function, North Holland, New York, 1979.

Department of Philosophy
University of Houston
Houston, Texas 77204-3785

