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Strong Normalization and Typability
with Intersection Types

SILVIA GHILEZAN

Abstract A simple proof is given of the property that the set of strongly nor-
malizing lambda terms coincides with the set of lambda terms typable in certain
intersection type assignment systems.

1 Introduction Intersection type assignment systems were introduced and devel-
oped in the 1980s by Barendregt, Coppo, Dezani-Ciancaglini and Venneri (see [2],
[3], and [4]). They are meant to be extensions of Curry’s basic functional theory
which will provide types for a larger class of lambda terms. On the one hand this aim
was fulfilled, and on the other hand they became of interest for their other properties
as well.

Weshall deal with four intersection type assignment systems: the original ones
D andD� introduced in [3] and [4] and their extensionsD≤ andD�≤ with the rule
(≤), which involves partial ordering on types.

The problem of typability in a type system is whether there is a type for a given
term. The problem of typability in the full intersection type assignment systemD�≤
is trivial, since every lambda term is typable by the typeω. For the same reasons
typability in D� is trivial as well. This property changes essentially when the(ω)-
rule is left out. It turns out that all strongly normalizing lambda terms are typable in
D≤ andD , and they are the only terms typable in these systems (see Krivine [9] and
van Bakel [15]).

The idea that strongly normalizing lambda terms are exactly the terms typable
in the intersection type assignment systems without the(ω)-rule first appeared in [4],
Pottinger [11], and Leivant [10]. Further, this subject is treated in [15], [9], and
Ronchi della Rocca et al. [12], with different approaches. We shall present a mod-
ified proof of this property and compare it with the proofs mentioned above.

Section 2 is an overview of the systems considered. In Section 3 we shall present
a proof à la Tait of strong normalization forD andD≤ based on the proof of strong
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normalization for the simply typed lambda calculus and the polymorphic lambda cal-
culus, as given in Barendregt [1]. The strong normalization holds for all eight systems
of Barendregt’s cube. The systems of Barendregt’s cube are given in the Church style,
whereas the intersection type systems are given in the Curry style. The very essential
and outstanding property of the intersection type systemsD≤ andD is the converse
of the strong normalization property, i.e., the fact that all strongly normalizing terms
are typable inD≤ andD . In Section 4 we shall present a simple proof of this property
and compare it with the proofs mentioned above. The undecidability of typability is
aconsequence of this property. It will also be mentioned.

2 Basic intersection type systems Intersection types were introduced in [2], [3],
and [4]. They are introduced as a generalization of Curry’s type inference system in
order to characterize a larger class of terms. The main idea is the introduction of a
new type-forming operator, namely intersection∩.

The types are propositional formulas with connectives→ and∩, where∩ is a
specific conjunction whose properties are in accordance with its interpretation as in-
tersection of types. The basic notions of the intersection type assignment system are
given in [2], [3], and [4] and can be found in the survey of typed lambda calculi in [1]
and [9]. Let us recall some basic notions in order to fix the notation.

The set of typesT of is defined in the following way.

Definition 2.1

• V = {α, β, γ, α1, . . .} ⊂ T (V is a denumerable set of propositional variables).
• ω ∈ T.

• If σ, τ ∈ T, then(σ → τ) ∈ T.

• If σ, τ ∈ T, then(σ ∩ τ) ∈ T.

Let α, β, γ, α1, . . . be schematic letters for type variables, and letσ, τ, ϕ,ψ, σ1, . . . be
schematic letters for types.

Definition 2.2

• A pre-order ≤ is introduced onT in the following way:

1. σ ≤ σ 5. (σ → ρ) ∩ (σ → τ) ≤ σ → (ρ ∩ τ)

2. σ ≤ τ, τ ≤ ρ ⇒ σ ≤ ρ 6. σ ∩ τ ≤ σ, σ ∩ τ ≤ τ

3. σ ≤ ω 7. σ ≤ τ, σ ≤ ρ ⇒ σ ≤ τ ∩ ρ

4. ω ≤ ω → ω 8. σ ≤ σ1, τ ≤ τ1 ⇒ σ1 → τ ≤ σ → τ1.

• σ ∼ τ if and only if σ ≤ τ andτ ≤ σ.

Definition 2.3 The following rules determine the intersection type systems:

(start rule)
(x : σ) ∈ �

� � x : σ
;

(→ E)
� � M : σ → τ � � N : σ

� � M N : τ
;

(→ I)
�, x : σ � M : τ

� � (λx.M) : σ → τ
;
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(∩E)
� � M : σ ∩ τ

� � M : σ
,

� � M : σ ∩ τ

� � M : τ
;

(∩I)
� � M : σ � � M : τ

� � M : σ ∩ τ
;

(ω)
� � M : ω

;

(≤)
� � M : σ σ ≤ τ

� � M : τ
.

Thesimply typed lambda calculus λ → is obtained by the (start rule), (→ E), and
(→ I). Weshall deal with the following intersection type assignment systems:

• D is λ → plus(∩E) and(∩I), the corresponding turnstile is denoted by�,

• D≤ is D plus(≤), the corresponding turnstile is denoted by�≤.

Let us mention two other intersection type systems,D� which isD plus(ω), andthe
full intersection type systemD�≤, which isD plus (≤) and(ω) and is also called
λ∩ in the literature.

The basic combinatorsI ≡ λx.x, K ≡ λxy.x andS ≡ λxyz.xz(yz) are typable
in the simply typed lambda calculus, and hence they are typable in the intersection
type systems. Self-application is not typable inλ →, but it is in D . For example,
λx.xx has no type inλ →, but � λx.xx : (σ ∩ (σ → τ)) → τ. Also, the term� ≡
(λx.xx)(λx.xx) has no type inλ →, nor inD , but it is trivially typable byω in D�.
These examples give the intuition about the difference between the classes of lambda
terms which are typable in the simply typed lambda calculus and in the intersection
type systems.

Further, let us consider reductions in the type systems. The main axioms of
β- andη-reductions are(λx.M)N →β M[ N/x] andλx.Mx →η M, x /∈ FV (M),

respectively. If a termM is typable by a certain typeσ and if M β-reduces toN,
M →→β N, or if M η-reduces toN, M →→η N, the question is whetherN is typable
by σ as well. The answer forλ → is yes, and we say that thesubject reduction prop-
erty holds forλ →. It holds for intersection type systems as well and for all systems
of Barendregt’s cube (see [1]).

Proposition 2.4 If � �(≤) M : σ and M →→βη N, then � �(≤) N : σ.

The converse question is whether the type systems are closed under expansion.D�≤
andD� are closed underβ-expansion, and the reason why it is so is the characteristic
of these systems that a term can have more types, as shown in [1]. On the other hand
λ → is not closed underβ-expansion, sinceKI� →β I andI is typable inλ →, i.e.,
�λ→ I : α → α, butKI� is even not typable inλ →. The systemsD andD≤ are not
closed underβ-expansion. This will be discussed in Section 4.

None of the systems considered is closed underη-expansion since in all systems
λx.x : α → α, α is a type variable, whereas itsη-expansionλxy.xy cannot be typed
by α → α in any of these systems.
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3 Strong normalization for intersection type systems The proof of strong normal-
ization forD andD≤, which we present here in Theorem 3.7, is in the manner of the
proof of strong normalization for the simply typed lambda calculus given by Tait [13].

A lambda term isnormalizing if at least one of its reduction paths is finite. A
lambda term isstrongly normalizing if each of its reduction paths is finite. For exam-
ple:

• � ≡ (λx.xx)(λx.xx) is not normalizing,
• KI� is normalizing, but not strongly normalizing,
• KIS is strongly normalizing.

All terms typable in the simply typed lambda calculusλ → are strongly normalizing.
This was first proved in [13]. The same property for the polymorphic lambda calcu-
lusλ2 (systemF) was proved by Girard [7]. This proof cannot be performed within
second-order Peano arithmetic. A general approach towards the proof of strong nor-
malization for bothλ → andλ2 is given in [1]. It is on the lines of the proofs in [7]
and Tait [14]. We shall use this method in order to prove strong normalization for the
intersection type systemsD andD≤.

First of all, let us recall some notions and notation given in [1]. The set of all
strongly normalizing lambda terms is denoted bySN. If A andB are sets of lambda
terms, then

A → B =de f {M ∈ �|∀N ∈ A M N ∈ B}.
Theinterpretation of types ‖ ‖ : T → P (�) is defined inductively.

Definition 3.1

1. ‖α‖ = SN, for all type variablesα;
2. ‖ϕ → ψ‖ = ‖ϕ‖ → ‖ψ‖, for all typesϕ andψ ;
3. ‖ϕ ∩ ψ‖ = ‖ϕ‖ ∩ ‖ψ‖, for all typesϕ andψ.

Let us notice that for each typeϕ,ψ ∈ T we have that‖ϕ‖ ⊆ SN, and ifϕ ≤ ψ, then
‖ϕ‖ ⊆ ‖ψ‖ (see [1]). The notion of asaturated set of lambda terms is defined induc-
tively as follows.

Definition 3.2 A setX ⊆ � is calledsaturated, X ∈ S AT , if

1. (∀n ≥ 0) (∀M1, . . . , Mn ∈ SN) xM1 . . . Mn ∈ X, wherex is any term variable;
2. (∀n ≥ 0)(∀M1, . . . , Mn ∈ SN)(∀N ∈ SN)

M[ N/x]M1 . . . Mn ∈ X ⇒ (λx.M)N M1 . . . Mn ∈ X.

Proposition 3.3

1. SN is saturated.
2. If A and B are saturated, then A → B is saturated.
3. If A and B are saturated, then A ∩ B is saturated.
4. ‖ϕ‖ is saturated for all ϕ ∈ T.

Proposition 3.3.3 (Lemma 4.3.3 in [1]) is stated for an infinite intersection, hence it
holds for a finite intersection as well, which will be needed here.

Let ρ be a mapping of term variables into lambda terms, i.e.,ρ : V → �. Then
thevaluation of terms ‖ ‖ρ : � → � is defined inductively.
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Definition 3.4

1. ‖x‖ρ = ρ(x), for all term variablesx;
2. ‖M‖ρ = M[ρ(x1)/x1, . . . , ρ(xn)/xn], whereFV (M) = {x1, . . . , xn}.

The relation of satisfaction,|=, isdefined in terms of the type interpretation‖ ‖ : T →
P (�) and the term valuation‖ ‖ρ : � → � induced by a mapρ : V → �.

Definition 3.5

1. ρ satisfiesM : σ, notationρ |= M : σ, if ‖M‖ρ ∈ ‖σ‖.

2. ρ satisfies a basis�, notationρ |= �, if

ρ |= x : σ, for all (x : σ) ∈ �.

3. A basis� satisfiesM : ϕ, notation� |= M : σ, if

∀ρ(ρ |= � ⇒ ρ |= M : σ).

Now, the proof of soundness ofλ → given in [1] can be extended to the proof of
soundness ofD andD≤.

Proposition 3.6 (Soundness ofD andD≤) If � �(≤) M : σ, then � |= M : σ.

Proof: By induction on the derivation of� � M : σ. We shall point out only the
essential cases forD .

Case (∩E): The last rule applied is(∩E), i.e.,

� � M : ϕ ∩ ψ

� � M : ϕ(M : ψ)
.

In order to show� |= M : ϕ and� |= M : ψ, let us take an arbitraryρ and suppose
thatρ |= �. Then by the induction hypothesis,

ρ |= M : ϕ ∩ ψ , i.e. ‖M‖ρ ∈ ‖ϕ ∩ ψ‖.

Thus‖M‖ρ ∈ ‖ϕ‖ and‖M‖ρ ∈ ‖ψ‖. Henceρ |= M : ϕ andρ |= M : ψ.

Case (∩I): The last rule applied is(∩I), i.e.,

� � M : ϕ � � M : ψ

� � M : ϕ ∩ ψ
.

If we proceed as in the previous cases and suppose thatρ |= � for an arbitraryρ, then
by the induction hypothesis,

ρ |= M : ϕ and ρ |= M : ψ.

Thus‖M‖ρ ∈ ‖ϕ‖ and‖M‖ρ ∈ ‖ψ‖. It follows that‖M‖ρ ∈ ‖ϕ‖ ∩ ‖ψ‖, i.e., ρ |=
M : ϕ ∩ ψ.

Case (≤): The proof in this case is straight forward since we noticed that ifϕ ≤ ψ,
then‖ϕ‖ ⊆ ‖ψ‖. �
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�
Once we have the soundness ofD andD≤, then in order to obtain strong normaliza-
tion for D andD≤, weproceed as in the case ofλ →.

Theorem 3.7 (Strong Normalization forD andD≤) If � �(≤) M : σ, then M is
strongly normalizing.

Proof: Suppose� � M : σ, then by Proposition 3.6� |= M : σ, thus for eachρ,

ρ |= � ⇒ ‖M‖ρ ∈ ‖σ‖.

Defineρ0(x) = x for all term variablesx. Then we haveρ0 |= � since by Proposi-
tion 3.3‖τ‖ is saturated for each typeτ, and hencex ∈ ‖τ‖. Therefore‖M‖ρ0 ∈ ‖σ‖,

but‖M‖ρ0 = M and‖σ‖ ⊆ SN. ThereforeM ∈ SN. �
The proofs of Proposition 3.6 and Theorem 3.7 are in a sense dual to the proofs of the
same properties presented in [9]. In the sequel we shall try to explain what this duality
is about. It is necessary to introduce various type interpretations as well in order to
extend the proof of soundness ofλ → to the proof of soundness ofλ2. This is done
in [1] and Girard et al. [8] by taking various mappingsξ, which maptype variables
into saturated sets, thereby obtaining the type interpretation‖ ‖ξ from ξ by setting

‖α‖ξ = ξ(α) ∈ S AT, for all type variablesα,

and proceeding as in Definition 3.1.
The same is done in the proof of soundness ofD given in [9] (lemme d’ad́equa-

tion). On the other hand, there is a fixed term (variable) valuation

ρ(x) = x, for all term variablesx,

and hence a fixed term valuation‖ ‖ : � → �, for which‖M‖ = M. This is dual to
the proof of Proposition 3.6, where we had a single type interpretation and a variety
of term valuations.

Strong normalization forD in [9] is proved by choosing a single type (variable)
interpretation

ξ0(α) = SN.

This is dual again to the choice of a single term valuation in the proof of Theorem 3.7.
This technique is generalized in Gallier [5] using a “variant of realizability argu-

ment known as reducibility.” By a suitable choice of type interpretation‖σ‖ which
satisfies a unary predicateP describing the desired property of lambda terms (e.g.,
‖α‖ = SN, as in our case, or‖α‖ ∈ S AT as in [9]) the type characterizations of solv-
able and normalizing terms are given.

The strong normalization forD≤ is not considered in [9], since the partial order-
ing on types is not mentioned in an explicit way. The notion of computability defined
in [11] is used in [15] in order to prove the strong normalization theorem forD≤. It
seems doubtful that the strong normalization ofD can be proved via computability.
One of the reasons to believe this is the fact thatη-conversion is involved in the notion
of computability, whereas it is a “property” of the rule(≤) as shown in Ghilezan [6].
For the analysis of other proofs of strong normalization for intersection type systems
see [15].
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4 Typability of strongly normalizing terms The very essential and outstanding
property of the intersection type systemsD≤ andD is the converse of the strong nor-
malization property, i.e., the fact that all strongly normalizing terms are typable in
D≤ andD . The idea that strongly normalizing lambda terms are exactly the terms ty-
pable in the intersection type assignment systems without the(ω)-rule first appeared
in [11], [4], and [10]. Further, this subject is treated in [12], [9], and [15] with differ-
ent approaches. Obviously, this property does not hold forD�≤, since all lambda
terms are typable in it. In other words, by leaving out the rule(ω) the situation
changes essentially: not only that terms typable inD andD≤ are strongly normaliz-
ing, but strongly normalizing terms are exactly all terms typable inD andD≤. Here
we present a modified proof of this property in Theorem 4.3 and compare it with the
proofs mentioned above.

In order to show that every strongly normalizing term is typable inD≤ andD ,
first it is necessary to notice that every normal form is typable in these systems. It is
known that a lambda termN in normal form can be represented in the following way:

N ≡ λx1 . . . xn.yN1 . . . Nk, for some normal formsN1, . . . , Nk.

Also it is known that every term in normal form can be typed inD (see [12] and [9]).

Proposition 4.1 If N is a normal form, then there is a basis � and a type σ such
that

� � N : σ.

Proof: By induction on the construction of a normal formM. �

There is another problem that is to be overcome in order to show that every strongly
normalizing term is typable inD . It isknown thatD is closed forβ-reduction, which
is not closed forβ-expansion, i.e., types are preserved underβ-reduction, but this is
not the case forβ-expansion. The counterexample given in [9] takes into account the
termsλy.(λx.y)(yy) andλy.y sinceλy.(λx.y)(yy) →β λy.y and� λy.y : α → α,
whereα is a type variable, whereas�� λy.(λx.y)(yy) : α → α.

The term variabley has to have an arrow type in order to type self-application
yy in D . This problem is avoided inD�, since yy can be typed byω. But still, the
termλy.(λx.y)(yy) is typable inD by (α ∩ (α → β)) → (α ∩ (α → β)). Thus both
of the considered terms are typable inD , i.e.,� λy.y : α → α and� λy.(λx.y)(yy) :
(α ∩ (α → β)) → (α ∩ (α → β)), but λy.(λx.y)(yy) : α → α cannot be derived
without the rule(ω).

The counterexample in [15] deals with the termsλyz.(λx.z)(yz) andλyz.z ty-
pable inD , since

λyz.(λx.z)(yz) →β λyz.z

and for which� λyz.z : β → (α → α) and� λyz.(λx.z)(yz) : (α → β) → (α →
α). Again,λyz.(λx.z)(yz) cannot be typed withβ → (α → α) without the rule(ω)

becausey has to be of an arrow type in order to type the applicationyz in D .
Since each normal form is typable inD we need some property that “pastes to-

gether” the steps ofβ-reduction in a reduction tree with the steps in the type assign-
ment. This is done by the following statement proved in [9] and [15].
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Proposition 4.2 Let M →β N by contracting the β-redex (λx.P)Q. Then if � �
N : σ and Q is typable in the same basis �, it follows that � � M : σ.

Proof: By induction on the construction ofM and length ofσ. �
The main point in Proposition 4.2 is the fact thatQ is typable inD in the given basis.
In the previous counterexamples subtermsyy and yz were not typable inD in the
given bases. That is the reason why thoseβ-expansions do not preserve types. This
property trivially holds forD� sinceQ is typable in any basis byω.

Theorem 4.3 (Converse of Strong Normalization Theorem)If M is strongly nor-
malizing, then there is a basis � and a type σ such that

� � M : σ.

Proof: By induction on the size of reduction ofM, i.e., the sum of the lengths of all
possible reductions ofM, as defined in [9] notationn(M).

If n(M) = 0, thenM is a normal form. Hence by Proposition 4.1 there is a basis
� and a typeσ such that� � M : σ.

Otherwise let(λx.P)Q be a redex inM. Let N be the result of contracting this
redex inM. Sincen(Q) < n(M) andn(N) < n(M) by the induction hypothesisQ
andN can be typed inD , i.e.,

�′ � Q : σ and �′′ � N : τ.

Now Q andN can be typed inD in the same basis� which is obtained from the bases
�′ and�′′ in the following way:x : σ ∈ � if x : σ ∈ �′ or x : σ ∈ �′′ or σ ≡ σ′ ∩ σ′′

andx : σ′ ∈ �′, x : σ′′ ∈ �′′. Hence by Proposition 4.2M can be typed inD . �
This strong normalization property is proved in [15] by using “the inside-out reduc-
tion” of lambda terms. The inductive argument in [9] is the sum of all possible re-
ductions of a term, using the property that each term can be expressed in the form
λx1 . . . xn.N M1 . . . Mk, whereN is a variable or a redex. For the analysis of other
proofs of this property see [15].

A consequence of Theorems 3.7 and 4.3 is that strongly normalizing terms are
exactly the terms typable inD . The systemsD andD≤ are equivalent from the point
of view of typability, as shown in [6], so the same property holds for the systemD≤.

Corollary 4.4 Let M be a lambda term. There are � and σ such that � �(≤) M : σ

if and only if M is strongly normalizing.

A consequence of this equivalence is the undecidability of the typability in the sys-
temsD andD≤, since the set of strongly normalizing terms,SN, is not recursive.
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1, 1, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4

[10] Leivant, D., “Polymorphic type inference,” pp. 88–98 inProceedings 10th ACM Sym-
posium on Principles of Programming Languages, Austin, Texas, 1983.1, 4

[11] Pottinger, G., “A type assignment for the strongly normalizableλ-terms,” pp. 561–577
in To H. B. Curry: Essays on Combinatory Logic, Typed Lambda Calculus and Formal-
ism, edited by J. R. Hindley and J. P. Seldin, Academic Press, London, 1980.
MR 82j:03014 1, 3, 4

[12] Ronchi della Rocca, S., and B. Venneri, “Principal type schemes for an extended type
theory,” Theoretical Computer Science, vol. 28 (1984), pp. 151–169.Zbl 0535.03007
MR 86d:03017 1, 4, 4

[13] Tait, W. W., “Intensional interpretation of functionals of finite type I,”The Journal of
Symbolic Logic, vol. 32 (1967), pp. 198–212.MR 36:2483 3, 3

[14] Tait, W. W., “A realizability interpretation of the theory of species,” pp. 240–251 in
Logic Colloquium (Boston), edited by R. Parikh, Lecture Notes in Mathematics 453,
Springer-Verlag, Berlin, 1975.Zbl 0328.02014 MR 52:5380 3

[15] van Bakel, S., “Complete restrictions of the intersection type discipline,”Theoretical
Computer Science, vol. 102 (1992), pp. 136–163.Zbl 0762.03006 MR 94b:03025 1,
1, 3, 3, 4, 4, 4, 4, 4

Faculty of Engineering
University of Novi Sad
Trg Dositeja Obradovića 6
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