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Strong Normalization and Typability
with Intersection Types

SILVIA GHILEZAN

Abstract A simple proof is given of the property that the set of strongly nor-
malizing lambda terms coincides with the set of lambda terms typable in certain
intersection type assignment systems.

1 Introduction Intersection type assignment systems were introduced and devel-
oped in the 1980s by Barendregt, Coppo, Dezani-Ciancaglini and Vennerbjsee [
[3], and H]). They are meant to be extensions of Curry’s basic functional theory
which will provide types for a larger class of lambda terms. On the one hand this aim
was fulfilled, and on the other hand they became of interest for their other properties
as well.

We shall deal with four intersection type assignment systems: the original ones
D andDS introduced in[B] and ] and their extensiond- andDS2 < with the rule
(<), which involves partial ordering on types.

The problem of typability in a type system is whether there is a type for a given
term. The problem of typability in the full intersection type assignment sygd¢in
is trivial, since every lambda term is typable by the typeFor the same reasons
typability in DS is trivial as well. This property changes essentially when(the
rule is left out. It turns out that all strongly normalizing lambda terms are typable in
. andD, and they are the only terms typable in these systems (see Kilsjia@d
van Bakel[L5)).

The idea that strongly normalizing lambda terms are exactly the terms typable
in the intersection type assignment systems withoutdherule first appeared irif],
Pottinger [L1J, and Leivant [d]. Further, this subject is treated iag], [, and
Ronchi della Rocca et alLP], with different approaches. We shall present a mod-
ified proof of this property and compare it with the proofs mentioned above.

Section 2 is an overview of the systems considered. In Section 3 we shall present
aproofa la Tait of strong normalization fo®) andD- based on the proof of strong
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normalization for the simply typed lambda calculus and the polymorphic lambda cal-
culus, as given in Barendreffi][ The strong normalization holds for all eight systems

of Barendregt’s cube. The systems of Barendregt’s cube are given in the Church style,
whereas the intersection type systems are given in the Curry style. The very essential
and outstanding property of the intersection type syst®mand? is the converse

of the strong normalization property, i.e., the fact that all strongly normalizing terms
are typable ifD- andD. In Section 4 we shall present a simple proof of this property
and compare it with the proofs mentioned above. The undecidability of typability is
aconsequence of this property. It will also be mentioned.

2 Basic intersection type systems  Intersection types were introduced [#,[[B],
and F]. They are introduced as a generalization of Curry’s type inference system in
order to characterize a larger class of terms. The main idea is the introduction of a
new type-forming operator, namely intersection

Thetypes are propositional formulas with connectives andn, wheren is a
specific conjunction whose properties are in accordance with its interpretation as in-
tersection of types. The basic notions of the intersection type assignment system are
given in [2], [[3], and ] and can be found in the survey of typed lambda calcul]n [
and []. Let us recall some basic notions in order to fix the notation.

The set of typed of is defined in the following way.

Definition 2.1

o V={wa, B,y a1,...} CT(Visadenumerable set of propositional variables).
e weT.

e Ifo,reT, thenlco—1)eT.

e Ifo,7eT,then(ocnNt)eT.

Leta, B, v, a1, ... be schematic letters for type variables, andlet ¢, ¥, o1, ... be
schematic letters for types.

Definition 2.2

e A pre-order < isintroduced orT in the following way:

lo<o 50> pNc—>1)<0— (pN1T)
220<1, T<p=>0=<p 6.coNt<o, oNt<Tt

3.0<w 7T.0<1, o<p=0o=<tNp

4 ow<w—>w 8.o0<o01, tT<T1=>01—>T=<0— 11

e o~ rtifandonlyifo < randr <o.

Definition 2.3  The following rules determine the intersection type systems:

X:o)el
(start rule) ex o’
''MFM:o— 1t I'EN:o
) TFMN:z ’
(= 1) I'X:o-M:7

TFOGxXM)io—>1°



46 SILVIA GHILEZAN

'EFM:oNt 'EM:onNt
(NE) r-EM:0 ° rEM:z °
1) 'EM:o FI—M:‘c'

'FM:oNt ’
N

'-M:o o<t
() ,

'EM:zt

The simply typed lambda calculus A — is obtained by theart rule), (— E), and
(— 1). We shall deal with the following intersection type assignment systems:

e Dis i — plus(NE) and(Nl), the corresponding turnstile is denotedtby
e D_ is D plus (=), the corresponding turnstile is denotedHy.

Let us mention two other intersection type syste®, which is?D plus (w), andthe
full intersection type syster®2—, which is D plus (<) and(w) and is also called
ANin the literature.

The basic combinatois= AXx.x, K = Axy.x andS = Axyz.xz(yz) are typable
in the simply typed lambda calculus, and hence they are typable in the intersection
type systems. Self-application is not typablerin->, but it is in D. For example,
AX.XX has no type in. —, butk Ax.xx: (6 N (o — 1)) — 1. Also, the termQ =
(AX.XX) (AX.XX) has no type irh. —, nor in D, but it is trivially typable byw in DS.
These examples give the intuition about the difference between the classes of lambda
terms which are typable in the simply typed lambda calculus and in the intersection
type systems.

Further, let us consider reductions in the type systems. The main axioms of
B- andn-reductions ar€Ax.M)N — g M[N/x] andAx.Mx —, M, x ¢ FV(M),
respectively. If a ternM is typable by a certain type and if M B-reduces toN,
M —— g N, or if M p-reduces tdN, M —, N, the question is whethe\ is typable
by o as well. The answer for — is yes, and we say that tisabject reduction prop-
erty holds forA —. It holds for intersection type systems as well and for all systems
of Barendregt's cube (se&]).

Proposition2.4 If I' =<y M:ocand M —=g, N,thenT =) N : 0.

The converse question is whether the type systems are closed under exp@ion.
and?Dg are closed unde#-expansion, and the reason why itis so is the characteristic
of these systems that a term can have more types, as shdiin @ the other hand
A — is not closed undeg-expansion, sincKl2 — g | andl is typable ink —, i.e.,
F,— | o — o, butKIQ2 is even not typable in —. The system® and?D- are not
closed undep-expansion. This will be discussed in Section 4.

None of the systems considered is closed uneexpansion since in all systems
AXX: o — o, a IS a type variable, whereas ifsexpansior.xy.xy cannot be typed
by @« — « in any of these systems.
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3 Strong normalization for intersection typesystems  The proof of strong normal-
ization forD andD-, which we present here in Theorem 3.7, is in the manner of the
proof of strong normalization for the simply typed lambda calculus given by[TZit [

A lambda term iswormalizing if at least one of its reduction paths is finite. A
lambda term istrongly normalizing if each of its reduction paths is finite. For exam-
ple:

e Q= (AX.XX)(AX.XX) is not normalizing,
e KIQ is normalizing, but not strongly normalizing,
e KIS is strongly normalizing.

All terms typable in the simply typed lambda calculus> are strongly normalizing.

This was first proved idl[3). The same property for the polymorphic lambda calcu-
lus 1.2 (systemF) was proved by Girard7]. This proof cannot be performed within
second-order Peano arithmetic. A general approach towards the proof of strong nor-
malization for bothh — anda2 isgiven in [I]. It is on the lines of the proofs ifi/]

and Tait [L4]. We shall use this method in order to prove strong normalization for the
intersection type systeni8 and?-.

First of all, let us recall some notions and notation giverilih [The set of all
strongly normalizing lambda terms is denoted3jy. If A andB are sets of lambda
terms, then

A— B=get {M e A[IVN € A MN € B}.

Theinterpretation of types || || : T — P(A) is defined inductively.
Definition 3.1

1. |la]l = SN, for all type variables;
2. llo = ¥l = llgll — llyll, for all typesp andy ;
3. llenyll = llel N, for all typesp andy.
Let us notice that for each type ¢ € T we have thafi¢|| € SN, and ifp < v, then

lell € llv]l (seeld). The notion of asaturated set of lambda terms is defined induc-
tively as follows.

Definition 3.2 A setX C A is calledsaturated, X € SAT, if

1. (Vn>0) (VMq,..., Mye SN) xM;... M, € X, wherexis any term variable;
2. (Vn>0)(VMq, ..., My e SN)(VN € SN)
M[N/X]M1...Mp e X= (AX.M)NM;... M, € X.

Proposition 3.3

1. SN issaturated.

2. If Aand B are saturated, then A — B is saturated.
3. If Aand B are saturated, then AN B is saturated.
4. ||l¢| issaturated for all ¢ € T.

Proposition 3.3.3 (Lemma 4.3.3 ifi]j is stated for an infinite intersection, hence it
holds for a finite intersection as well, which will be needed here.

Let p be a mapping of term variables into lambda terms, heyY — A. Then
thevaluation of terms || ||, : A — A is defined inductively.
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Definition 3.4

1. |IXll, = p(x), for all term variables;
2. IMll, = M[p(X1) /X1, - .., p(Xn)/Xn], WhereFV(M) = {Xq, ..., Xn}.

The relation of satisfactior, isdefined in terms of the type interpretatipfi : T —
P(A) and the term valuatiof ||, : A — A induced byamap :V — A.

Definition 3.5

1. p satisfiesM : o, notationp = M : o, if [M], € |lo].

2. p satisfies a basiE, notationp =T, if

pEX:o, forall (x:0)eTl.
3. A basisl™ satisfiesM : ¢, notationl” = M : o, if
Vo(pET = pEM:o).

Now, the proof of soundness af — given in [I] can be extended to the proof of
soundness oD andD-.

Proposition 3.6 (Soundness aD and?D<) If 'y M:o,thenT =M :o.

Proof: By induction on the derivation df - M : o. We shall point out only the
essential cases feb.

Case (NE): The last rule applied iNE), i.e.,

T-M:gNy
FEM:pM:y)’

In order to show” = M : g andI” = M : v, let us take an arbitrary and suppose
thatp =T'. Then by the induction hypothesis,

pEMIpNY e M, lenyl.

Thus|M||, € |l¢ll and|[M], € [l¥]l. Hencep = M g andp = M : .
Case (Nl):  The last rule applied igNl), i.e.,

Fr'EM:p THEM: Y
Fr'EM:pnNy

If we proceed as in the previous cases and suppose thdt for an arbitraryp, then
by the induction hypothesis,

opEM:p and p=M: .
Thus|[M|, € llell and|IM]l, € [[¥]l. It follows that[M]|, € llgll NIy, i.e., p
M:pNip.

Case (<): The proofin this case is straight forward since we noticed thatify,
then|lell < [V U
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O

Once we have the soundnesg/oaind?-, then in order to obtain strong normaliza-
tion for D andD-, we proceed as in the case bf—.

Theorem 3.7 (Strong Normalization fo® and?D<) IfT' <) M : o, then M is
strongly normalizing.

Proof: Supposd™ + M : o, then by Proposition 3.6 = M : o, thus for eaclp,
pET = [M],€ o]

Define pg(x) = x for all term variablex. Then we havepy = I" since by Proposi-
tion 3.3 || is saturated for each typeand hence € || z|. Therefore|M||,, € llo]l,
butM]|,, = M and|o|| € SN. ThereforeM e SN. O

The proofs of Proposition 3.6 and Theorem 3.7 are in a sense dual to the proofs of the
same properties presented@} [In the sequel we shall try to explain what this duality

is about. It is necessary to introduce various type interpretations as well in order to
extend the proof of soundnessif— to the proof of soundness a2. This is done

in [1] and Girard et al[g] by taking various mappings, which maptype variables

into saturated sets, thereby obtaining the type interpretatipri: from & by setting

lolle = (o) € SAT, for all type variablesy,

and proceeding as in Definition 3.1.
The same is done in the proof of soundnes®djiven in [9] (lemme d’a&qua-
tion). On the other hand, there is a fixed term (variable) valuation

p(X) = x, for all term variables,

and hence a fixed term valuatigirj| : A — A, for which ||M]|| = M. This is dual to
the proof of Proposition 3.6, where we had a single type interpretation and a variety
of term valuations.
Strong normalization fof in [[9 is proved by choosing a single type (variable)
interpretation
o(a) = SN.

This is dual again to the choice of a single term valuation in the proof of Theorem 3.7.
This technique is generalized in Gallig] using a “variant of realizability argu-
ment known as reducibility.” By a suitable choice of type interpretalioj which
satisfies a unary predicaf describing the desired property of lambda terms (e.qg.,
x|l = SN, as inour case, ofi«|| € SAT as in B]) the type characterizations of solv-
able and normalizing terms are given.
The strong normalization fab- is not considered ifd], since the partial order-
ing on types is not mentioned in an explicit way. The notion of computability defined
in [IT is used in[L5] in order to prove the strong normalization theorem4yr. It
seems doubtful that the strong normalizatiorfb€an be proved via computability.
One of the reasons to believe this is the fact thabnversion is involved in the notion
of computability, whereas it is a “property” of the rule) as shown in Ghileza].
For the analysis of other proofs of strong normalization for intersection type systems

seel[5]
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4 Typability of strongly normalizing terms  The very essential and outstanding
property of the intersection type systetls and? is the converse of the strong nor-
malization property, i.e., the fact that all strongly normalizing terms are typable in
D- andD. The idea that strongly normalizing lambda terms are exactly the terms ty-
pable in the intersection type assignment systems withoutiheule first appeared
in [11], [E], and [LOJ. Further, this subject is treated [d], [[B], and [L5] with differ-
ent approaches. Obviously, this property does not holdf@r, since all lambda
terms are typable in it. In other words, by leaving out the rbe the situation
changes essentially: not only that terms typabl®iand?- are strongly normaliz-
ing, but strongly normalizing terms are exactly all terms typab®iand?D-. Here
we present a modified proof of this property in Theorem 4.3 and compare it with the
proofs mentioned above.

In order to show that every strongly normalizing term is typabl®inand D,
first it is necessary to notice that every normal form is typable in these systems. It is
known that a lambda terid in normal form can be represented in the following way:

N=AXy...%X.YN1... Nk, for some normal form#y, ..., Ng.

Also it is known that every term in normal form can be typedirgsee 2] and [J).

Proposition 4.1  If N isa normal form, then thereisa basis I" and a type o such
that

I'N:o

Proof: By induction on the construction of a normal forvh. O

There is another problem that is to be overcome in order to show that every strongly
normalizing term is typable iD. Itisknown thatD is closed fors-reduction, which

is not closed foiB-expansion, i.e., types are preserved urglezduction, but this is

not the case fog-expansion. The counterexample giver{dhthkes into account the
termsiy.(AX.y)(yy) andAy.y sincery.(AX.y)(Yy) =g Ay.y and- Ay.y: o — «,
wherecx is a type variable, wheredsiy. (AX.y) (YY) : @ — a.

The term variabley has to have an arrow type in order to type self-application
yyin D. This problem is avoided iD$2, sSnce yy can be typed bw. But still, the
termAy.(AX.y)(yy) is typable inD by (¢ N (¢ — B)) — (e N (¢ — B)). Thus both
of the considered terms are typable/mi.e., Ay.y: « — « and- Ay.(AX.Y) (YY) :
(N (@ — B) = (N (a— B)), butry.(AX.y)(YY) : @ — «a cannot be derived
without the rule(w).

The counterexample ifiLE] deals with the termayz. (Ax.z)(yz) andiyz.z ty-
pable inD, since

AYZ.(AX.2)(YZ) —pg AyzZ.Z

and for which~ Ayz.z: 8 — (a¢ — «) and- Ayz. (AX.2)(Y2) : (@ — B) — (o —
a). Again, Ayz.(AX.z)(yz) cannot be typed witl — (¢ — «) without the rule(w)
because has to be of an arrow type in order to type the applicatipim D.

Since each normal form is typable M we need some property that “pastes to-
gether” the steps g8-reduction in a reduction tree with the steps in the type assign-
ment. This is done by the following statement proved@hgnd [L5].
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Proposition 4.2 Let M — 4 N by contracting the g-redex (Ax.P)Q. Thenif I' -
N : o and Q istypablein the same basis T, it followsthatI" - M : o.

Proof: By induction on the construction dfl and length ob. O

The main point in Proposition 4.2 is the fact ti@ais typable inD in the given basis.

In the previous counterexamples subterygsand yz were not typable irD in the
given bases. That is the reason why thgsexpansions do not preserve types. This
property trivially holds forD<2 sinceQ is typable in any basis hy.

Theorem 4.3 (Converse of Strong Normalization Theorem)f M is strongly nor-
malizing, then thereisa basisI" and a type o such that

'M:o.

Proof: By induction on the size of reduction &, i.e., the sum of the lengths of all
possible reductions d¥l, as defined in [B] notationn(M).

If n(M) =0, thenM is a normal form. Hence by Proposition 4.1 there is a basis
I’ and a typer such thal" - M : o.

Otherwise letAx.P)Q be a redex irM. Let N be the result of contracting this
redex inM. Sincen(Q) < n(M) andn(N) < n(M) by the induction hypothesi®
andN can be typed i, i.e.,

I"''CQ:o0 and I N: 1.

Now Q andN can be typed ifD in the same basis which is obtained from the bases
I andI™ in the following way:x: o eTTif X:oel"orx:oc el oro=0'No”
andx: o’ eIV, x:o¢” € I'”. Hence by Proposition 4.®1 can be typed irD. O

This strong normalization property is proved iG] by using “the inside-out reduc-
tion” of lambda terms. The inductive argument [ [s the sum of all possible re-
ductions of a term, using the property that each term can be expressed in the form
AX1...%.-NMq... My, whereN is a variable or a redex. For the analysis of other
proofs of this property se@f].

A consequence of Theorems 3.7 and 4.3 is that strongly normalizing terms are
exactly the terms typable #. The system® and?- are equivalent from the point
of view of typability, as shown ir@, so the same property holds for the syst®&m

Corollary 44 Let M bealambdaterm. ThereareI" and o suchthatT" =) M : o
if and only if M is strongly normalizing.

A consequence of this equivalence is the undecidability of the typability in the sys-
tems? andD-, snce the set of strongly normalizing terna\, is not recursive.
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