The Expressive Power of Second-Order Propositional Modal Logic

MICHAEL KAMINSKI and MICHAEL TIOMKIN

Abstract

It is shown that the expressive power of second-order propositional modal logic whose modalities are $\mathbf{S 4 . 2}$ or weaker is the same as that of secondorder predicate logic.

It has been shown by Fine in that second-order arithmetic can be interpreted in second-order propositional modal logic, denoted SOPML, when the modality is S4.2 or weaker. In this paper we show that actually the expressive power of SOPML, when the modality is $\mathbf{S 4 . 2}$ or weaker, is the same as that of the full second-order predicate logic. This result immediately extends to the logic Q2, which is first-order modal logic based on the world-relative domain semantics introduced by Thomason [10]. Since SOPML is interpretable in Q2 (see §2 below), second-order predicate logic can be interpreted in $\mathbf{Q 2}$ as well, when the modality is $\mathbf{S 4 . 2}$ or weaker and, of course, vice versa.

The paper is organized as follows. In the next section we recall the definition of SOPML and show how the second-order predicate logic can be embedded into this logic when the modality is S4.2 or weaker. In §2 we show that SOPML and Q2 are each interpretable in the other. The last section contains remarks about the expressive power of SOPML and $\mathbf{Q 2}$ when the modality is stronger than S4.2.

1 Second-order propositional modal logic The language of second-order propositional modal logic, SOPML, is that of the propositional modal logic extended with the existential quantifier \exists. The definition of a SOPML formula is obtained by extending the inductive step of the definition of a propositional modal formula with the following rule.

If φ is a SOPML formula and p is a propositional variable, then $\exists p \varphi$ is also a SOPML formula.

Next we define the semantics of SOPML.
A frame is a pair $\langle W, R\rangle$, where W is a nonempty set of possible worlds and $R \subseteq W \times W$ is an accessibility relation on W.

Let $F=\langle W, R\rangle$ be a frame, and let $T=\left\{T_{w}\right\}_{w \in W}$ be a set of truth assignments for propositional variables in the worlds of F. The satisfiability of a SOPML formula φ by u under assignment T, denoted $(u, T) \models_{\text {sopml }} \varphi$, is the following extension to the definition of satisfiability of propositional modal formulas.

If φ is a propositional variable p, then then $(u, T) \models \operatorname{sopmL} \varphi$ if and only if p is true under the truth assignment T_{u}.
$(u, T) \models \operatorname{sopML} \varphi \supset \psi$ if and only if $(u, T) \not \models \operatorname{SOPML} \varphi$ or $(u, T) \models$ SOPML ψ.
$(u, T) \models$ SOPML $\neg \varphi$ if and only if $(u, T) \not \models_{\text {SOPML }} \varphi$.
$(u, T) \models_{\text {sopmL }} \exists p \varphi(p)$ if and only if there exists a set of truth assignments $T^{\prime}=\left\{T_{w}^{\prime}\right\}_{w \in W}$, such that for each $w \in W, T_{w}^{\prime}$ differs from T_{w} at most at p, and $\left(u, T^{\prime}\right) \models_{\text {sopml }} \varphi(p)$. That is, we adopt what Fine calls the platonistic interpretation of propositional quantifiers, on which propositional variables range over the full power set of worlds.
$(u, T) \models$ sopmL $\square \varphi$ if and only if for each w satisfying $u R w,(w, T) \models$ sopML φ.
We say that a formula φ is valid in a frame $\langle W, R\rangle$ if and only if for any set of truth assignments T and for any $u \in W,(u, T) \models$ sopmL φ. For a class of frames \mathcal{F}, the logic defined by \mathcal{F} consists of all formulas which are valid in all frames of \mathcal{F}.

Below we prove that the second-order predicate logic is interpretable in SOPML when the modality is $\mathbf{S 4 . 2}$ or weaker. ${ }^{1}$ We shall describe a SOPML formula PAIRING that defines pairing of worlds of a frame, thus allowing us to express second-order dyadic predicates on the worlds instead of monadic ones (which correspond to worlds satisfying propositional variables).

The frames for PAIRING consist of six "groups" of worlds. The first group contains only one world-the root. The second group contains the worlds which constitute the domain of pairing, the third and fourth groups contain identical copies of the domain elements (which are the first and second pair components, respectively), and the fifth one contains the pairs themselves. The sixth group contains only one world that is accessible from all the worlds. ${ }^{2}$ Each world u in the second group is connected (by means of the accessibility relation) to a unique world u^{\prime} in the third group and to a unique world $u^{\prime \prime}$ in the fourth group (the copies of u), and a world w in the fifth group is a pair $\left(u_{1}, u_{2}\right)$, if both u_{1}^{\prime} (the copy of u_{1} in the third group) and u_{2}^{\prime} (the copy of u_{2} in the fourth group) are connected to w. We use six propositional constants $\left\{L_{i}\right\}_{1 \leq i \leq 6}$ to distinguish among the groups (see Axiom 1 below). ${ }^{3}$ The relative position of the groups is shown in Figure 1 on the next page.

We shall need the "uniqueness modality," \diamond !, stating that there is a unique world reachable from a given state where a given formula holds. A formula $\diamond!\varphi$ is defined by $(\diamond \varphi) \wedge \forall q(\square(\varphi \supset q) \vee \square(\varphi \supset \neg q)$) (see Garson [4], p. 296, where \diamond ! is denoted by I).

Next we introduce the axioms defining the interpretation.

Figure 1: The relative position of the group elements in the frame.

1. $\diamond!L_{6} \wedge \square \bigvee_{i=1}^{6} L_{i}$. This axiom states that there are at most six groups of worlds, and that the sixth group consists of exactly one world.
2. $\bigwedge_{i=1}^{6} \square\left(L_{i} \supset \diamond!L_{i}\right)$. This axiom states that distinct worlds in each group are each inaccessible from the other.
3. $\bigwedge_{i=2}^{6} \square\left(L_{i} \supset \bigwedge_{j<i} \square \neg L_{j}\right)$. This axiom states that the groups are mutually disjoint. Moreover, for $j<i$, no element of the j th group is accessible from an element of the i th group.
4. $\square\left(L_{3} \supset \square \neg L_{4}\right)$. This axiom states that no element of the fourth group is accessible from an element of the third group.
5. $L_{1} \wedge \bigwedge_{i \in\{1,2,4,5\}} \square\left(L_{i} \supset \diamond L_{i+1}\right) \wedge \square\left(L_{2} \supset \diamond L_{4}\right) \wedge \square\left(L_{3} \supset \diamond L_{5}\right)$. This axiom together with Axioms 3 and 4 implies that the groups can be divided into five nonempty levels in the following manner. The first group lies on the first (ground) level, the second group lies on the second level, the third and fourth groups lie on the third level, the fifth group lies on the fourth level, and the sixth group lies on the fifth level (see Figure 1).
6. $\square\left(L_{2} \supset\left(\diamond!L_{3} \wedge \diamond!L_{4}\right)\right)$. This axiom states that each element of the second group is connected to unique elements (its copies) of the third and the fourth groups.
7. $\forall p\left(\diamond!\left(L_{3} \wedge p\right) \supset \diamond!\left(L_{2} \wedge \diamond\left(L_{3} \wedge p\right)\right)\right) \wedge \forall p\left(\diamond!\left(L_{4} \wedge p\right) \supset \diamond!\left(L_{2} \wedge \diamond\left(L_{4} \wedge\right.\right.\right.$ $p))$). This axiom states that each element of the third or the fourth group is accessible from a unique element of the second group. Thus Axioms 6 and 7 imply that the accessibility relation imposes a bijection between the second and the third (fourth) groups.

Now we define formulas $E L(p)$ and $\operatorname{PAIR}(p)$ which state that a propositional variable p is an element of the domain and a pair respectively, and a formula $\operatorname{REL}(p, q, r)$ stating that a propositional variable r is a pair consisting of propositional variables p
and q :

$E L(p)$	is	$\diamond!p \wedge \diamond\left(L_{2} \wedge p\right)$,
$\operatorname{PAIR}(p)$	is	$\diamond!p \wedge \diamond\left(L_{5} \wedge p\right)$, and
$\operatorname{REL}(p, q, r)$	is \quad	$E L(p) \wedge E L(q) \wedge P A I R(r) \wedge \diamond\left(L_{2} \wedge p \wedge \diamond\left(L_{3} \wedge \diamond r\right)\right) \wedge$
		$\wedge \diamond\left(L_{2} \wedge q \wedge \diamond\left(L_{4} \wedge \diamond r\right)\right)$.

Finally, we define the usual axioms for pair enumeration, i.e.,
8. $\forall p \forall q(E L(p) \wedge E L(q)) \supset \exists!r(\operatorname{PAIR}(r) \wedge \operatorname{REL}(p, q, r))$, and
9. $\forall r \operatorname{PAIR}(r) \supset \exists!p \exists!q(E L(p) \wedge E L(q) \wedge R E L(p, q, r))$.

Note that we have "equality" on elements and pairs defined by $\square(p \equiv q)$. Thus the quantifier \exists ! is well defined.

Let Pairing be the conjunction of Axioms 1-9.
For the definability result below we need one more bit of notation. Let $F=$ $\langle W, R\rangle$ be a frame and let $u \in W$. Then $F^{u}=\left\langle W^{u}, R^{u}\right\rangle$ denotes the frame whose set of worlds consists of the worlds of W which are different from u and are reachable from u by means of of R, and R^{u} is the restriction of R on W^{u}.

For a set D not containing $2,3,4$ or 6 let $F_{D}=\left\langle W_{D}, R_{D}\right\rangle$ be a frame such that

$$
W_{D}=(D \times\{2\}) \cup(D \times\{3\}) \cup(D \times\{4\}) \cup(D \times D) \cup\{6\},
$$

where R_{D} is the reflexive and transitive closure of

$$
\begin{gathered}
\{[(d, 2),(d, 3)]\}_{d \in D} \cup\{[(d, 2),(d, 4)]\}_{d \in D} \cup\left\{\left[\left(d_{1}, 3\right),\left(d_{1}, d_{2}\right)\right]\right\}_{d_{1}, d_{2} \in D} \cup \\
\cup\left\{\left[\left(d_{2}, 4\right),\left(d_{1}, d_{2}\right)\right]\right\}_{d_{1}, d_{2} \in D} \cup\left\{\left[\left(d_{1}, d_{2}\right), 6\right]\right\}_{d_{1}, d_{2} \in D} .
\end{gathered}
$$

We shall call D and F_{D} a pairing domain and the pairing frame of D, respectively.
Theorem 1.1 Let F be a frame and let u be a world of F. Then u satisfies PAIRING if and only if the following holds. There exists a pairing domain D and an isomorphism ι between F^{u} and F_{D} such that for every $w \in W^{u}, w \models L_{i}$ if and only if $\iota(w) \in D \times\{i\}, i=2,3,4, w \models L_{5}$ if and only if $\iota(w) \in D \times D$, and $w \models L_{6}$ if and only if $\iota(w)=6$.

Proof: The "if" part of the theorem is immediate. For the "only if" part, assume that u satisfies PaIRING. Let $D=\left\{w \in W^{u}: w \models L_{2}\right\}$. Then we can define ι as follows. If $w \in D$, then $\iota(w)=(w, 2)$. If $w \models L_{3}\left(w \models L_{4}\right)$, then, by Axioms 6 and 7, there exists a unique $w^{\prime} \in D$ such that $w^{\prime} R w$, and we put $\iota(w)=\left(w^{\prime}, 3\right)\left(\iota(w)=\left(w^{\prime}, 4\right)\right)$.

If $w \models L_{5}$, then, by Axioms $6,7,8$, and 9 , there exist a unique pair $\left(w_{1}, w_{2}\right) \in$ $D \times D$ such that w is reachable from w_{1} through a world satisfying L_{3} and is reachable from w_{2} through a world satisfying L_{4}. We put $\iota(w)=\left(w_{1}, w_{2}\right)$. Finally, if $w \models L_{6}$, we put $\iota(w)=6$. Now it follows from Axioms $1-5$, that ι satisfies the conditions of the theorem.

Corollary 1.2 We can embed second-order predicate logic into SOPML when the modality is $\mathbf{S} 4.2$ or weaker.

Proof: We can use propositional variables which are sets of pairs as dyadic secondorder predicates, and propositional variables which are elements as their arguments. For propositional variables R, p, and q, we define $R(p, q)$ as $\exists r(R E L(p, q, r) \wedge$ $\left.\diamond\left(L_{5} \wedge R \wedge r\right)\right)$, which means that p and q are related by R. Moreover, using dyadic predicates to define a tuple enumeration, the full second-order predicate logic can be interpreted in this logic. Now the corollary follows from Theorem1.1.

In particular, Corollary 1.2 implies that SOPML is not recursively axiomatizable when the modality is $\mathbf{S 4 . 2}$ or weaker. ${ }^{4}$

Corollary 1.3 Second-order predicate logic and SOPML (when the modality is $\mathbf{S 4 . 2}$ or weaker) are interpretable one in the other.

Proof: The proof follows from Corollary 1.2 and the fact that validity in a frame can be defined in second-order predicate logic, where quantifiers on truth assignments are expressible.

Remark 1.4 Note that it follows from the definition of PAIRING that second-order monadic theory of a reflexive, transitive, and convergent binary relation with first point is equivalent to second-order predicate logic.

2 The world-relative domain semantics This section is organized as follows. First we recall the definition of the logic $\mathbf{Q 2}$ based on the world-relative domain semantics (cf. [10]). Then we reproduce the proof from Kamp 8] of the fact that SOPML is interpretable in Q2. An immediate corollary to this fact is interpretability of secondorder predicate logic in $\mathbf{Q 2}$ and vice versa when the modality is $\mathbf{S 4 . 2}$ or weaker. We start with the definition of the world-relative domain semantics.

An interpretation σ consists of a nonempty set D_{σ}, called the domain of σ, and an assignment to each n-place predicate symbol P an n-place relation P^{σ} in $D_{\sigma} .{ }^{5} \mathrm{~A}$ (Q2) model is a triple $\mathscr{M}=\langle W, R, S\rangle$, where $\langle W, R\rangle$ is a frame and S is a mapping from W into the class of interpretations.

Let $V=\left\{V_{w}\right\}_{w \in W}$ be a set of assignments for variables in the interpretations $S(w), w \in W$. The satisfiability of a formula φ at u under assignments V, denoted ($u, V) \models_{\mathrm{Q} 2} \varphi$, is defined inductively as follows.

If φ is an atomic formula $P\left(x_{1}, \ldots, x_{n}\right)$, then $(u, V) \models_{\mathbf{Q} 2} \varphi$ if and only if $\left(V_{u}\left(x_{1}\right), \ldots, V_{u}\left(x_{n}\right)\right) \in P^{S(u)}$, where $V_{u}(x)$ is the the element of $D_{S(u)}$ assigned to variable x by assignment V_{u}.
$(u, V) \models_{\mathbf{Q} 2} \varphi \supset \psi$ if and only if $(u, V) \not \models_{\mathbf{Q} 2} \varphi$ or $(u, V) \models_{\mathbf{Q} 2} \psi$.
$(u, V) \models_{\mathbf{Q} 2} \neg \varphi$ if and only $\operatorname{if}(u, V) \not \vDash \varphi$.
$(u, V) \models_{\mathrm{Q} 2} \exists x \varphi(x)$ if and only if there exists a set of assignments $V^{\prime}=$
$\left\{V_{w}^{\prime}\right\}_{w \in W}$, such that for each $w \in W, V_{w}^{\prime}$ differs from V_{w} at most at x, and
$\left(u, V^{\prime}\right) \models_{\mathbf{Q} 2} \varphi(x)$. That is, in $\mathbf{Q 2}$ we quantify over individual concepts.
$(u, V) \models_{\mathbf{Q} 2} \square \varphi$ if and only if for every w such that $u R w,(w, V) \models_{\mathbf{Q} 2} \varphi$.
We say that a formula φ is valid in a model \mathscr{M}, denoted $\mathscr{M} \models_{\mathbf{Q} 2} \varphi$, if and only if for any set of assignments V and for any $u \in W,(u, V) \models_{\mathbf{Q} 2} \varphi$, and we say that a set of formulas Γ is valid in \mathcal{M}, denoted $\mathcal{M} \models_{\mathbf{Q} 2} \Gamma$, if and only if $\mathcal{M} \models_{\mathbf{Q} 2} \varphi$, for all
$\varphi \in \Gamma$. We say that Γ semantically entails φ, denoted $\Gamma \models_{\mathbf{Q} 2} \varphi$, if $\mathcal{M} \models_{\mathbf{Q} 2} \Gamma$ implies $\mathcal{M} \models_{\mathbf{Q} 2} \varphi$ for each model \mathfrak{M}.

Next it is shown that the expressive power of SOPML is equivalent to that of Q2 with only one monadic predicate P and the axiom

$$
T W O: \exists x P(x) \wedge \exists x \neg P(x),
$$

stating that there are two different elements in the corresponding world.
The validity-preserving transformation of SOPML formulas into $\mathbf{Q 2}$ formulas is obtained by replacing each propositional variable p with $P\left(x_{p}\right)$ and every formula of the form $\exists p \psi(p)$ with $\exists x_{p} \psi\left(P\left(x_{p}\right)\right) .{ }^{6}$ Formally, for a SOPML formula φ we define a $\mathbf{Q 2}$ formula $\varphi^{\mathbf{Q 2}}$ by induction as follows. Let $p \leftrightarrow x_{p}$ be a bijection between propositional variables of SOPML and individual variables of $\mathbf{Q 2}$.

If φ is a propositional variable p, then $\varphi^{\mathbf{Q 2}}$ is $P\left(x_{p}\right)$.

$$
\begin{aligned}
& (\varphi \supset \psi)^{\mathbf{Q} \mathbf{2}} \text { is } \varphi^{\mathbf{Q} \mathbf{2}} \supset \psi^{\mathbf{Q} \mathbf{2}},(\neg \varphi)^{\mathbf{Q}^{2}} \text { is } \neg \varphi^{\mathbf{Q} \mathbf{2}},(\square \varphi)^{\mathbf{Q}^{2}} \text { is } \square \varphi^{\mathbf{Q} \mathbf{2}} \text {, and }(\exists p \varphi)^{\mathbf{Q}^{2}} \text { is } \\
& \exists x_{p} \varphi^{\mathbf{Q}^{2}} .
\end{aligned}
$$

Conversely, for a Q2 formula φ we define a SOPML formula $\varphi^{\text {SOPML }}$ by induction as follows. Let p_{x} be the propositional variable corresponding to the individual variable x under the bijection $p \leftrightarrow x_{p}$. That is, $\left(p_{x}\right)_{p}$ is p, and $\left(x_{p}\right)_{x}$ is x.

If φ is an atomic formula $P(x)$, then $\varphi^{\text {SOPML }}$ is p_{x}.

$$
(\varphi \supset \psi)^{\text {SOPML }} \text { is } \varphi^{\text {SOPML }} \supset \psi^{\text {SOPML }},(\neg \varphi)^{\text {SOPML }} \text { is } \neg \varphi^{\text {SOPML }},(\square \varphi)^{\text {SOPML }}
$$

$$
\text { is } \square \varphi^{\text {SOPML }} \text {, and }(\exists x \varphi)^{\text {SOPML }} \text { is } \exists p_{x} \varphi^{\text {SOPML }} \text {. }
$$

Note that for a SOPML formula $\varphi,\left(\varphi^{\mathbf{Q 2}}\right)^{\mathbf{S O P M L}}$ is φ, and for a $\mathbf{Q 2}$ formula φ, $\left(\varphi^{\mathbf{S O P M L}}\right)^{\mathbf{Q 2}}$ is φ. Let $T W O^{n}$ denote $\bigwedge_{i=0}^{n} \square^{i} T W O O^{7}$

Theorem 2.1 (8]) Let φ be a SOPML formula and let n be the maximum depth of nested modalities of φ. Let $F=\langle W, R\rangle$ be a frame, and let $\mathcal{M}=\langle W, R, S\rangle$ be $a \mathbf{Q 2}$ model. Let $u \in W$ be such that $u \models_{\mathbf{Q} 2} T W O^{n}$. Let $T=\left\{T_{w}\right\}_{w \in W}$ be a set of assignments for propositional variables and let $V=\left\{V_{w}\right\}_{w \in W}$ be a set of the truth assignments for (individual) variables such that for all $w \in W, T_{w}(p)=$ true if and only if $\left(V_{w}\left(x_{p}\right)\right) \in P^{S(w)}$. Then $(u, T) \models_{\operatorname{SOPML}} \varphi$ if and only if $(u, V) \models_{\mathbf{Q} 2} \varphi^{\mathbf{Q}^{2}}$.
Proof: Since the satisfiability of a formula of modal depth n at possible world u depends only on the possible worlds in the set $\left\{w: u R^{i} w, 0 \leq i \leq n\right\}$, we may assume that $W=\left\{w: u R^{i} w, 0 \leq i \leq n\right\}$. Then $\mathcal{M} \models_{\mathbf{Q}_{2}} T W O$.

The proof is by induction on the complexity of φ.
If φ is a propositional variable p, then the result follows immediately from the definition of T and V. The cases when φ is in one of the forms $\neg \psi, \psi_{1} \supset \psi_{2}$, or $\square \psi$ are straightforward.

Let φ be of the form $\exists p \psi(p)$. Assume $(u, T) \models \operatorname{sopmL} \exists p \psi(p)$. Then there is a set of truth assignments $T^{\prime}=\left\{T_{w}^{\prime}\right\}_{w \in W}$, such that for each $w \in W, T_{w}^{\prime}$ differs from T_{w} at most at p, and $\left(u, T^{\prime}\right) \models_{\text {sopmL }} \psi(p)$. Consider a set of assignments for variables $V^{\prime}=\left\{V_{w}^{\prime}\right\}_{w \in W}$ that is defined as follows.

If x is not x_{p}, then $V_{w}^{\prime}(x)=V_{w}(x)$. If p is assigned "true" by T_{w}^{\prime}, then $V_{w}^{\prime}\left(x_{p}\right) \in$ $P^{S(w)}$, and if p is assigned "false" by T_{w}^{\prime}, then $V_{w}^{\prime}\left(x_{p}\right) \notin P^{S(w)}$. By TWO such an assignment for x_{p} is always possible. By the induction hypothesis, $\left(w, V^{\prime}\right) \models_{\mathbf{Q} 2}$
$\psi^{\mathbf{Q} \mathbf{2}}\left(P\left(x_{p}\right)\right)$. Thus, by definition, $(u, V) \models_{\mathbf{Q} 2} \exists x_{p} \psi^{\mathbf{Q}^{2}}\left(P\left(x_{p}\right)\right)$. That is, $(u, V) \models_{\mathbf{Q} 2}$ $\varphi^{\mathbf{2} 2}$.

Conversely, assume $(u, V) \models_{\mathbf{Q} 2} \exists x_{p} \psi^{\mathbf{Q}^{2}}\left(P\left(x_{p}\right)\right)$. Then there is a set of assignments for variables $V^{\prime}=\left\{V_{w}^{\prime}\right\}_{w \in W}$, such that for each $w \in W, V_{w}^{\prime}$ differs from V_{w} at most at $\left\{x_{p}\right\}$, and $\left(u, V^{\prime}\right) \models_{\mathbf{Q} 2} \psi^{\mathbf{Q} 2}\left(P\left(x_{p}\right)\right)$. Consider a set of assignments for propositional variables $T^{\prime}=\left\{T_{w}^{\prime}\right\}_{w \in W}$ that is defined as follows.

If q is not p, then $T_{w}^{\prime}(q)=T_{w}(q)$. If $\left(w, V^{\prime}\right) \models_{\mathbf{Q} 2} P\left(x_{p}\right)$, then T_{w}^{\prime}, assigns "true" to p; and if $\left(w, V^{\prime}\right) \not \vDash_{\mathbf{Q}_{2}} P\left(x_{p}\right)$, then T_{w}^{\prime} assigns "false" to p. By the induction hypothesis, $\left(u, T^{\prime}\right) \models_{\text {SOPML }} \psi(p)$. Thus, by definition, $(u, T) \models_{\text {SOPML }} \exists p \psi(p)$. That is, $(u, T) \models$ SOPML φ.
Theorem 2.1 has the following immediate corollaries.
Corollary 2.2 Let φ be a SOPML formula. Then $\models_{\text {SOPML }} \varphi$ if and only if $T W O \models_{\mathbf{Q} 2} \varphi^{\mathbf{Q} 2}$.

Corollary 2.3 Let φ be a SOPML formula and let n be the maximum depth of nested modalities of φ. Then $\models_{\text {SOPML }} \varphi$ if and only if $\models_{\mathbf{Q}_{2}} T W O^{n} \supset \varphi^{\mathbf{Q}^{2}}$.

Corollary 2.4 We can embed second-order predicate logic into $\mathbf{Q 2}$ when the modality is $\mathbf{S 4 . 2}$ or weaker.
Proof: The proof follows from Corollaries 1.2 and 2.3.
In particular, Corollary 2.4 implies that $\mathbf{Q 2}$ when the modality is $\mathbf{S 4 . 2}$ or weaker, is not recursively axiomatizable.
Corollary 2.5 If the modality is $\mathbf{S 4 . 2}$ or weaker, then second-order predicate logic, Q2, and SOPML are each interpretable in the others.
Proof: The proof follows from Corollary 1.3. Corollary 2.4. and the fact that validity in a $\mathbf{Q 2}$ model can be defined in second-order predicate logic.

3 Logics stronger than S4.2 We conclude the paper with several notes concerning the power of SOPML and $\mathbf{Q 2}$ when the modality is $\mathbf{S 4 . 3}{ }^{8}$ or $\mathbf{S 5}$.

First, it follows from a very nontrivial result of Gurevich and Shelah [5] that second-order arithmetic is interpretable in SOPML with the $\mathbf{S 4 . 3}$ modality. ${ }^{9}$ By [5], Corollary 0.2 , second-order arithmetic is interpretable in the monadic second-order theory of order of real numbers. Therefore, by Shelah 9, Lemma 7.12, second-order arithmetic is interpretable in the monadic second-order theory of linear order, which is definable in the $\mathbf{S} 4.3$ frames.

Moreover, it is shown in Gurevich and Shelah [6] that, under a weak set-theoretic assumption, second-order predicate logic is interpretable in the monadic second-order theory of linear order, and therefore in SOPML with the $\mathbf{S 4 . 3}$ modality.

Finally, SOPML with the $\mathbf{S 5}$ modality is decidable, see [1] because it is equivalent to monadic second-order theory, and Kamp $\sqrt[8]{ }$ presents Kripke's recursive axiomatization of $\mathbf{Q} \mathbf{2}$ with the $\mathbf{S 5}$ modality. An interesting byproduct of Kripke's proof is that de re modalities are eliminable in Q2 based on $\mathbf{S 5}$. That is, in this logic, each formula is equivalent to a formula not containing modalities in the scope of quantifiers, cf. Fine [2] and [3].

NOTES

1. That is, for logics defined by a class of frames that contains all reflexive, transitive, and convergent frames. These properties of a frame are implied by the axioms $\forall p(\square p \supset p)$, $\forall p(\square p \supset \square \square p)$, and $\forall p(\diamond \square p \supset \square \diamond p)$, respectively, and vice versa, see Hughes and Cresswell [7], p. 31.
2. This world ensures that the frame is convergent.
3. These constants can be eliminated by replacing PAIRING with

$$
\exists L_{1} \exists L_{2} \exists L_{3} \exists L_{4} \exists L_{5} \exists L_{6} \text { PAIRING. }
$$

4. This result is proved in 1 by embedding second-order arithmetic into SOPML.
5. For simplicity we assume that the underlying language is one without equality and contains no constants or function symbols. As we shall see in a moment, all we need is one monadic predicate symbol.
6. This translation is defined in Kamp [8]. The translation in Garson [4] uses equality instead of P.
7. As usual, $\square^{0} \varphi$ is φ, and $\square^{i+1} \varphi$ is $\square \square^{i} \varphi$.
8. That is, SOPML defined by the class of all reflexive, transitive, and connected frames. These properties of a frame are implied by the axioms $\forall p(\square p \supset p), \forall p(\square p \supset \square \square p)$, and $\forall p \forall q(\square(\square p \supset q) \vee \square(\square q \supset p))$, respectively, and vice versa, see [7], p. 30.
9. In 11 Fine uncarefully claims that SOPML with the $\mathbf{S} 4.3$ modality is decidable. Furthermore, it is claimed in 4], Section 3.4 that "second-order modal arithmetic" is interpretable in Q2 with the $\mathbf{S 4 . 3}$ modality. However the proof of this result is based on a mistake statement (44, Section 3.4, Lemma 8) that is an extension of Theorem 2.1 in which modal arithmetic operators are interpreted by function symbols.

REFERENCES

[1] Fine, K., "Propositional quantifiers in modal logic," Theoria, vol. 36 (1970), pp. 336346. Zbl 0302.02005MR 48:5824 1.1.3.3.3.3
[2] Fine, K., "Model theory for modal logic, part I: the de re/de dicto distinction," Journal of Philosophical Logic, vol. 7 (1978), pp. 125-156. Zbl 0375.02008|MR 81f:03024 3
[3] Fine, K., "Model theory for modal logic, part II: the elimination of de re modality," Journal of Philosophical Logic, vol. 7 (1978), pp. 277-306.Zbl 0409.03007|MR 80c:03021 3
[4] Garson, J. W., "Quantification in modal logic," pp. 249-307 in Handbook of Philosophical Logic, edited by D. Gabbay and F. Guenther, Reidel, Dordrecht, 1984. Zbl 0875.03050|MR 844600 1.3.3.3.3
[5] Gurevich, Y., and S. Shelah, "Monadic theory of order and topology in ZFC," Annals of Mathematical Logic, vol. 23 (1983), pp. 179-198. Zbl 0516.03007|MR 85d:03080 3. 3
[6] Gurevich, Y., and S. Shelah, "Interpreting second-order logic in the monadic theory of order," The Journal of Symbolic Logic vol. 48 (1983), pp. 816-828. Zbl 0559.03008 MR 85f:03007 3
[7] Hughes, G. E., and M. J. Cresswell, A Companion to Modal Logic, Methuen, London, 1984. Zbl 0625.03005MR 86j:03014 MR 87k:03015 3. 3
[8] Kamp, H., "Two related theorems by D. Scott and S. Kripke," unpublished manuscript, 1977. 2. 2.1,3.3
[9] Shelah, S., "The monadic theory of order," Annals of Mathematics vol. 102 (1975), pp. 379-419. Zbl 0345.02034MR 58:10390 3
[10] Thomason, R. H., "Modal logic and metaphysics," pp. 119-146 in The Logical Way of Doing Things, edited by K. Lambert, Yale University Press, New Haven, 1969. Zbl 0188.31705 1,2

Department of Computer Science
Technion-Israel Institute of Technology
Haifa 32000
Israel
email: kaminski@cs.technion.ac.il
Intel Israel
MTM-Scientific Industries Center
POB 1659, Haifa 31015
Israel
email: mtiomkin@iil.intel.com

