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The Expressive Power of Second-Order
Propositional Modal Logic

MICHAEL KAMINSKI and MICHAEL TIOMKIN

Abstract It is shown that the expressive power of second-order propositional
modal logic whose modalities are S4.2 or weaker is the same as that of second-
order predicate logic.

It has been shown by Fine in [1] that second-order arithmetic can be interpreted in
second-order propositional modal logic, denoted SOPML, when the modality is S4.2
or weaker. In this paper we show that actually the expressive power of SOPML, when
the modality is S4.2 or weaker, is the same as that of the full second-order predicate
logic. This result immediately extends to the logic Q2, which is first-order modal
logic based on the world-relative domain semantics introduced by Thomason [10].
Since SOPML is interpretable in Q2 (see §2 below), second-order predicate logic
can be interpreted in Q2 as well, when the modality is S4.2 or weaker and, of course,
vice versa.

The paper is organized as follows. In the next section we recall the definition of
SOPML and show how the second-order predicate logic can be embedded into this
logic when the modality is S4.2 or weaker. In §2 we show that SOPML and Q2 are
each interpretable in the other. The last section contains remarks about the expressive
power of SOPML and Q2 when the modality is stronger than S4.2.

1 Second-order propositional modal logic The language of second-order propo-
sitional modal logic, SOPML, is that of the propositional modal logic extended with
the existential quantifier ∃. The definition of a SOPML formula is obtained by ex-
tending the inductive step of the definition of a propositional modal formula with the
following rule.

If ϕ is a SOPML formula and p is a propositional variable, then ∃pϕ is also a
SOPML formula.
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Next we define the semantics of SOPML.
A frame is a pair 〈W, R〉, where W is a nonempty set of possible worlds and

R ⊆ W × W is an accessibility relation on W .
Let F = 〈W, R〉 be a frame, and let T = {Tw}w∈W be a set of truth assignments

for propositional variables in the worlds of F. The satisfiability of a SOPML formula
ϕ by u under assignment T , denoted (u, T ) |=SOPML ϕ, is the following extension to
the definition of satisfiability of propositional modal formulas.

If ϕ is a propositional variable p, then then (u, T ) |=SOPML ϕ if and only if p
is true under the truth assignment Tu.

(u, T ) |=SOPML ϕ ⊃ ψ if and only if (u, T ) �|=SOPML ϕ or (u, T ) |=SOPML ψ.

(u, T ) |=SOPML ¬ϕ if and only if (u, T ) �|=SOPML ϕ.

(u, T ) |=SOPML ∃pϕ(p) if and only if there exists a set of truth assignments
T ′ = {T ′

w}w∈W , such that for each w ∈ W , T ′
w differs from Tw at most at p,

and (u, T ′) |=SOPML ϕ(p). That is, we adopt what Fine [1] calls the platonis-
tic interpretation of propositional quantifiers, on which propositional variables
range over the full power set of worlds.

(u, T ) |=SOPML �ϕ if and only if for each w satisfying uRw, (w, T ) |=SOPML

ϕ.

We say that a formula ϕ is valid in a frame 〈W, R〉 if and only if for any set of truth
assignments T and for any u ∈ W , (u, T ) |=SOPML ϕ. For a class of frames F , the
logic defined by F consists of all formulas which are valid in all frames of F .

Below we prove that the second-order predicate logic is interpretable in SOPML
when the modality is S4.2 or weaker.1 We shall describe a SOPML formula PAIRING

that defines pairing of worlds of a frame, thus allowing us to express second-order
dyadic predicates on the worlds instead of monadic ones (which correspond to worlds
satisfying propositional variables).

The frames for PAIRING consist of six “groups” of worlds. The first group con-
tains only one world—the root. The second group contains the worlds which consti-
tute the domain of pairing, the third and fourth groups contain identical copies of the
domain elements (which are the first and second pair components, respectively), and
the fifth one contains the pairs themselves. The sixth group contains only one world
that is accessible from all the worlds.2 Each world u in the second group is connected
(by means of the accessibility relation ) to a unique world u′ in the third group and to a
unique world u′′ in the fourth group (the copies of u), and a world w in the fifth group
is a pair (u1, u2), if both u′

1 (the copy of u1 in the third group) and u′
2 (the copy of u2

in the fourth group) are connected to w. We use six propositional constants {Li}1≤i≤6

to distinguish among the groups (see Axiom 1 below).3 The relative position of the
groups is shown in Figure 1 on the next page.

We shall need the “uniqueness modality,” ♦!, stating that there is a unique world
reachable from a given state where a given formula holds. A formula ♦!ϕ is defined
by (♦ϕ) ∧ ∀q(�(ϕ ⊃ q) ∨ �(ϕ ⊃ ¬q)) (see Garson [4], p. 296, where ♦! is denoted
by I).

Next we introduce the axioms defining the interpretation.
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Figure 1: The relative position of the group elements in the frame.

1. ♦!L6 ∧�
∨6

i=1 Li. This axiom states that there are at most six groups of worlds,
and that the sixth group consists of exactly one world.

2.
∧6

i=1 �(Li ⊃ ♦!Li). This axiom states that distinct worlds in each group are
each inaccessible from the other.

3.
∧6

i=2 �(Li ⊃ ∧
j<i �¬L j). This axiom states that the groups are mutually dis-

joint. Moreover, for j < i, no element of the jth group is accessible from an
element of the ith group.

4. �(L3 ⊃ �¬L4). This axiom states that no element of the fourth group is ac-
cessible from an element of the third group.

5. L1 ∧ ∧
i∈{1,2,4,5} �(Li ⊃ ♦Li+1) ∧ �(L2 ⊃ ♦L4) ∧ �(L3 ⊃ ♦L5). This ax-

iom together with Axioms 3 and 4 implies that the groups can be divided into
five nonempty levels in the following manner. The first group lies on the first
(ground) level, the second group lies on the second level, the third and fourth
groups lie on the third level, the fifth group lies on the fourth level, and the sixth
group lies on the fifth level (see Figure 1).

6. �(L2 ⊃ (♦!L3 ∧ ♦!L4)). This axiom states that each element of the second
group is connected to unique elements (its copies) of the third and the fourth
groups.

7. ∀p(♦!(L3 ∧ p) ⊃ ♦!(L2 ∧ ♦(L3 ∧ p))) ∧ ∀p(♦!(L4 ∧ p) ⊃ ♦!(L2 ∧ ♦(L4 ∧
p))). This axiom states that each element of the third or the fourth group is
accessible from a unique element of the second group. Thus Axioms 6 and 7
imply that the accessibility relation imposes a bijection between the second and
the third (fourth) groups.

Now we define formulas EL(p) and PAIR(p) which state that a propositional variable
p is an element of the domain and a pair respectively, and a formula REL(p, q, r)
stating that a propositional variable r is a pair consisting of propositional variables p
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and q:

EL(p) is ♦!p ∧ ♦(L2 ∧ p),

PAIR(p) is ♦!p ∧ ♦(L5 ∧ p), and
REL(p, q, r) is EL(p) ∧ EL(q) ∧ PAIR(r) ∧ ♦(L2 ∧ p ∧ ♦(L3 ∧ ♦r))∧

∧♦(L2 ∧ q ∧ ♦(L4 ∧ ♦r)).

Finally, we define the usual axioms for pair enumeration, i.e.,

8. ∀p∀q(EL(p) ∧ EL(q)) ⊃ ∃!r(PAIR(r) ∧ REL(p, q, r)), and

9. ∀rPAIR(r) ⊃ ∃!p∃!q(EL(p) ∧ EL(q) ∧ REL(p, q, r)).

Note that we have “equality” on elements and pairs defined by �(p ≡ q). Thus the
quantifier ∃! is well defined.

Let PAIRING be the conjunction of Axioms 1–9.
For the definability result below we need one more bit of notation. Let F =

〈W, R〉 be a frame and let u ∈ W . Then Fu = 〈Wu, Ru〉 denotes the frame whose set
of worlds consists of the worlds of W which are different from u and are reachable
from u by means of of R, and Ru is the restriction of R on Wu.

For a set D not containing 2, 3, 4 or 6 let FD = 〈WD, RD〉 be a frame such that

WD = (D × {2}) ∪ (D × {3}) ∪ (D × {4}) ∪ (D × D) ∪ {6},

where RD is the reflexive and transitive closure of

{[(d, 2), (d, 3)]}d∈D ∪ {[(d, 2), (d, 4)]}d∈D ∪ {[(d1, 3), (d1, d2)]}d1,d2∈D∪
∪{[(d2, 4), (d1, d2)]}d1,d2∈D ∪ {[(d1, d2), 6]}d1,d2∈D.

We shall call D and FD a pairing domain and the pairing frame of D, respectively.

Theorem 1.1 Let F be a frame and let u be a world of F. Then u satisfies PAIR-
ING if and only if the following holds. There exists a pairing domain D and an iso-
morphism ι between Fu and FD such that for every w ∈ Wu, w |= Li if and only if
ι(w) ∈ D × {i}, i = 2, 3, 4, w |= L5 if and only if ι(w) ∈ D × D, and w |= L6 if and
only if ι(w) = 6.

Proof: The “if” part of the theorem is immediate. For the “only if” part, assume that
u satisfies PAIRING. Let D = {w ∈ Wu : w |= L2}. Then we can define ι as follows.
If w ∈ D, then ι(w) = (w, 2). If w |= L3 (w |= L4), then, by Axioms 6 and 7, there
exists a unique w′ ∈ D such that w′ Rw, and we put ι(w) = (w′, 3)(ι(w) = (w′, 4)).

If w |= L5, then, by Axioms 6,7,8, and 9, there exist a unique pair (w1,w2) ∈
D × D such that w is reachable from w1 through a world satisfying L3 and is reach-
able from w2 through a world satisfying L4. We put ι(w) = (w1,w2). Finally, if
w |= L6, we put ι(w) = 6. Now it follows from Axioms 1–5, that ι satisfies the con-
ditions of the theorem. �

Corollary 1.2 We can embed second-order predicate logic into SOPML when the
modality is S4.2 or weaker.
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Proof: We can use propositional variables which are sets of pairs as dyadic second-
order predicates, and propositional variables which are elements as their arguments.
For propositional variables R, p, and q, we define R(p, q) as ∃r(REL(p, q, r) ∧
♦(L5 ∧ R ∧ r)), which means that p and q are related by R. Moreover, using dyadic
predicates to define a tuple enumeration, the full second-order predicate logic can be
interpreted in this logic. Now the corollary follows from Theorem 1.1. �
In particular, Corollary 1.2 implies that SOPML is not recursively axiomatizable
when the modality is S4.2 or weaker.4

Corollary 1.3 Second-order predicate logic and SOPML (when the modality is
S4.2 or weaker) are interpretable one in the other.

Proof: The proof follows from Corollary 1.2 and the fact that validity in a frame can
be defined in second-order predicate logic, where quantifiers on truth assignments are
expressible. �

Remark 1.4 Note that it follows from the definition of PAIRING that second-order
monadic theory of a reflexive, transitive, and convergent binary relation with first
point is equivalent to second-order predicate logic.

2 The world-relative domain semantics This section is organized as follows. First
we recall the definition of the logic Q2 based on the world-relative domain semantics
(cf. [10]). Then we reproduce the proof from Kamp [8] of the fact that SOPML is
interpretable in Q2. An immediate corollary to this fact is interpretability of second-
order predicate logic in Q2 and vice versa when the modality is S4.2 or weaker. We
start with the definition of the world-relative domain semantics.

An interpretation σ consists of a nonempty set Dσ, called the domain of σ, and
an assignment to each n-place predicate symbol P an n-place relation Pσ in Dσ.5 A
(Q2) model is a triple M = 〈W, R, S〉, where 〈W, R〉 is a frame and S is a mapping
from W into the class of interpretations.

Let V = {Vw}w∈W be a set of assignments for variables in the interpretations
S(w), w ∈ W . The satisfiability of a formula ϕ at u under assignments V , denoted
(u, V ) |=Q2 ϕ, is defined inductively as follows.

If ϕ is an atomic formula P(x1, . . . , xn), then (u, V ) |=Q2 ϕ if and only if
(Vu(x1), . . . , Vu(xn)) ∈ PS(u), where Vu(x) is the the element of DS(u) as-
signed to variable x by assignment Vu.

(u, V ) |=Q2 ϕ ⊃ ψ if and only if(u, V ) �|=Q2 ϕ or (u, V ) |=Q2 ψ.

(u, V ) |=Q2 ¬ϕ if and only if(u, V ) �|= ϕ.

(u, V ) |=Q2 ∃xϕ(x) if and only if there exists a set of assignments V ′ =
{V ′

w}w∈W , such that for each w ∈ W , V ′
w differs from Vw at most at x, and

(u, V ′) |=Q2 ϕ(x). That is, in Q2 we quantify over individual concepts.

(u, V ) |=Q2 �ϕ if and only if for every w such that uRw, (w, V ) |=Q2 ϕ.

We say that a formula ϕ is valid in a model M , denoted M |=Q2 ϕ, if and only
if for any set of assignments V and for any u ∈ W , (u, V ) |=Q2 ϕ, and we say that a
set of formulas � is valid in M , denoted M |=Q2 �, if and only if M |=Q2 ϕ, for all
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ϕ ∈ �. We say that � semantically entails ϕ, denoted � |=Q2 ϕ, if M |=Q2 � implies
M |=Q2 ϕ for each model M .

Next it is shown that the expressive power of SOPML is equivalent to that of
Q2 with only one monadic predicate P and the axiom

TWO : ∃xP(x) ∧ ∃x¬P(x),

stating that there are two different elements in the corresponding world.
The validity-preserving transformation of SOPML formulas into Q2 formulas

is obtained by replacing each propositional variable p with P(xp) and every formula
of the form ∃pψ(p) with ∃xpψ(P(xp)).6 Formally, for a SOPML formula ϕ we de-
fine a Q2 formula ϕQ2 by induction as follows. Let p ↔ xp be a bijection between
propositional variables of SOPML and individual variables of Q2.

If ϕ is a propositional variable p, then ϕQ2 is P(xp).

(ϕ ⊃ ψ)Q2 is ϕQ2 ⊃ ψQ2, (¬ϕ)Q2 is ¬ϕQ2, (�ϕ)Q2 is �ϕQ2, and (∃pϕ)Q2 is
∃xpϕ

Q2.

Conversely, for a Q2 formula ϕ we define a SOPML formula ϕSOPML by induction as
follows. Let px be the propositional variable corresponding to the individual variable
x under the bijection p ↔ xp. That is, (px)p is p, and (xp)x is x.

If ϕ is an atomic formula P(x), then ϕSOPML is px.

(ϕ ⊃ ψ)SOPML is ϕSOPML ⊃ ψSOPML, (¬ϕ)SOPML is ¬ϕSOPML, (�ϕ)SOPML

is �ϕSOPML, and (∃xϕ)SOPML is ∃pxϕ
SOPML.

Note that for a SOPML formula ϕ, (ϕQ2)SOPML is ϕ, and for a Q2 formula ϕ,
(ϕSOPML)Q2 is ϕ. Let TWOn denote

∧n
i=0 �iTWO.7

Theorem 2.1 ([8]) Let ϕ be a SOPML formula and let n be the maximum depth
of nested modalities of ϕ. Let F = 〈W, R〉 be a frame, and let M = 〈W, R, S〉 be
a Q2 model. Let u ∈ W be such that u |=Q2 TWOn. Let T = {Tw}w∈W be a set of
assignments for propositional variables and let V = {Vw}w∈W be a set of the truth
assignments for (individual) variables such that for all w ∈ W, Tw(p) = true if and
only if (Vw(xp)) ∈ PS(w). Then (u, T ) |=SOPML ϕ if and only if (u, V ) |=Q2 ϕQ2.

Proof: Since the satisfiability of a formula of modal depth n at possible world u
depends only on the possible worlds in the set {w : uRiw, 0 ≤ i ≤ n}, we may assume
that W = {w : uRiw, 0 ≤ i ≤ n}. Then M |=Q2 TWO.

The proof is by induction on the complexity of ϕ.
If ϕ is a propositional variable p, then the result follows immediately from the

definition of T and V . The cases when ϕ is in one of the forms ¬ψ, ψ1 ⊃ ψ2, or �ψ

are straightforward.
Let ϕ be of the form ∃pψ(p). Assume (u, T ) |=SOPML ∃pψ(p). Then there is a

set of truth assignments T ′ = {T ′
w}w∈W , such that for each w ∈ W, T ′

w differs from Tw

at most at p, and (u, T ′) |=SOPML ψ(p). Consider a set of assignments for variables
V ′ = {V ′

w}w∈W that is defined as follows.
If x is not xp, then V ′

w(x) = Vw(x). If p is assigned “true” by T ′
w, then V ′

w(xp) ∈
PS(w), and if p is assigned “false” by T ′

w, then V ′
w(xp) /∈ PS(w). By TWO such an

assignment for xp is always possible. By the induction hypothesis, (w, V ′) |=Q2
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ψQ2(P(xp)). Thus, by definition, (u, V ) |=Q2 ∃xpψ
Q2(P(xp)). That is, (u, V ) |=Q2

ϕQ2.
Conversely, assume (u, V ) |=Q2 ∃xpψ

Q2(P(xp)). Then there is a set of assign-
ments for variables V ′ = {V ′

w}w∈W , such that for each w ∈ W , V ′
w differs from Vw at

most at {xp}, and (u, V ′) |=Q2 ψQ2(P(xp)). Consider a set of assignments for propo-
sitional variables T ′ = {T ′

w}w∈W that is defined as follows.
If q is not p, then T ′

w(q) = Tw(q). If (w, V ′) |=Q2 P(xp), then T ′
w, assigns “true”

to p; and if (w, V ′) �|=Q2 P(xp), then T ′
w assigns “false” to p. By the induction hy-

pothesis, (u, T ′) |=SOPML ψ(p). Thus, by definition, (u, T ) |=SOPML ∃pψ(p). That
is, (u, T ) |=SOPML ϕ. �
Theorem 2.1 has the following immediate corollaries.

Corollary 2.2 Let ϕ be a SOPML formula. Then |=SOPML ϕ if and only if
TWO |=Q2 ϕQ2.

Corollary 2.3 Let ϕ be a SOPML formula and let n be the maximum depth of
nested modalities of ϕ. Then |=SOPML ϕ if and only if |=Q2 TWOn ⊃ ϕQ2.

Corollary 2.4 We can embed second-order predicate logic into Q2 when the mo-
dality is S4.2 or weaker.

Proof: The proof follows from Corollaries 1.2 and 2.3. �
In particular, Corollary 2.4 implies that Q2 when the modality is S4.2 or weaker, is
not recursively axiomatizable.

Corollary 2.5 If the modality is S4.2 or weaker, then second-order predicate logic,
Q2, and SOPML are each interpretable in the others.

Proof: The proof follows from Corollary 1.3, Corollary 2.4, and the fact that valid-
ity in a Q2 model can be defined in second-order predicate logic. �

3 Logics stronger than S4.2 We conclude the paper with several notes concerning
the power of SOPML and Q2 when the modality is S4.38 or S5.

First, it follows from a very nontrivial result of Gurevich and Shelah [5] that
second-order arithmetic is interpretable in SOPML with the S4.3 modality.9 By [5],
Corollary 0.2, second-order arithmetic is interpretable in the monadic second-order
theory of order of real numbers. Therefore, by Shelah [9], Lemma 7.12, second-order
arithmetic is interpretable in the monadic second-order theory of linear order, which
is definable in the S4.3 frames.

Moreover, it is shown in Gurevich and Shelah [6] that, under a weak set-theoretic
assumption, second-order predicate logic is interpretable in the monadic second-order
theory of linear order, and therefore in SOPML with the S4.3 modality.

Finally, SOPML with the S5 modality is decidable, see [1], because it is equiv-
alent to monadic second-order theory, and Kamp [8] presents Kripke’s recursive ax-
iomatization of Q2 with the S5 modality. An interesting byproduct of Kripke’s proof
is that de re modalities are eliminable in Q2 based on S5. That is, in this logic, each
formula is equivalent to a formula not containing modalities in the scope of quanti-
fiers, cf. Fine [2] and [3].
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NOTES

1. That is, for logics defined by a class of frames that contains all reflexive, transitive, and
convergent frames. These properties of a frame are implied by the axioms ∀p(�p ⊃ p),
∀p(�p ⊃ ��p), and ∀p(♦�p ⊃ �♦p), respectively, and vice versa, see Hughes and
Cresswell [7], p. 31.

2. This world ensures that the frame is convergent.

3. These constants can be eliminated by replacing PAIRING with

∃L1∃L2∃L3∃L4∃L5∃L6PAIRING.

4. This result is proved in [1] by embedding second-order arithmetic into SOPML.

5. For simplicity we assume that the underlying language is one without equality and con-
tains no constants or function symbols. As we shall see in a moment, all we need is one
monadic predicate symbol.

6. This translation is defined in Kamp [8]. The translation in Garson [4] uses equality in-
stead of P.

7. As usual, �0ϕ is ϕ, and �i+1ϕ is ��iϕ.

8. That is, SOPML defined by the class of all reflexive, transitive, and connected frames.
These properties of a frame are implied by the axioms ∀p(�p ⊃ p), ∀p(�p ⊃ ��p),
and ∀p∀q(�(�p ⊃ q) ∨ �(�q ⊃ p)), respectively, and vice versa, see [7], p. 30.

9. In [1] Fine uncarefully claims that SOPML with the S4.3 modality is decidable. Fur-
thermore, it is claimed in [4], Section 3.4 that “second-order modal arithmetic” is inter-
pretable in Q2 with the S4.3 modality. However the proof of this result is based on a
mistake statement ([4], Section 3.4, Lemma 8) that is an extension of Theorem 2.1 in
which modal arithmetic operators are interpreted by function symbols.
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