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The Expressive Power of Second-Order
Propositional Modal Logic

MICHAEL KAMINSKI and MICHAEL TIOMKIN

Abstract Itisshown that the expressive power of second-order propositional
modal logic whose modalities are S4.2 or weaker isthe same asthat of second-
order predicate logic.

It has been shown by Fine in [[J that second-order arithmetic can be interpreted in
second-order propositional modal logic, denoted SOPM L, when the modality is $4.2
or weaker. Inthispaper we show that actually the expressive power of SOPM L, when
the modality is S4.2 or weaker, is the same as that of the full second-order predicate
logic. This result immediately extends to the logic Q2, which is first-order modal
logic based on the world-relative domain semantics introduced by Thomason [[10].
Since SOPML is interpretable in Q2 (see §2 below), second-order predicate logic
can beinterpreted in Q2 aswell, when the modality is S4.2 or weaker and, of course,
viceversa.

The paper is organized as follows. In the next section we recall the definition of
SOPML and show how the second-order predicate logic can be embedded into this
logic when the modality is $4.2 or weaker. In 82 we show that SOPML and Q2 are
each interpretablein the other. Thelast section contains remarks about the expressive
power of SOPML and Q2 when the modality is stronger than $4.2.

1 Second-order propositional modal logic  The language of second-order propo-
sitional modal logic, SOPML, isthat of the propositional modal |ogic extended with
the existential quantifier 3. The definition of a SOPML formulais obtained by ex-
tending the inductive step of the definition of a propositional modal formulawith the
following rule.

If pisaSOPML formulaand p isapropositiona variable, then 3pp isaso a
SOPML formula.
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Next we define the semantics of SOPML.

A frameis a pair (W, R), where W is a nonempty set of possible worlds and
R C W x W isan accessibility relation on W.

Let F = (W, R) beaframe, and let T = {T,, },ew be a set of truth assignments
for propositional variablesintheworldsof F. The satisfiability of aSOPML formula
¢ by u under assignment T, denoted (u, T) E=sopmL ¢, iSthe following extension to
the definition of satisfiability of propositional modal formulas.

If ¢ isapropositiona variable p, then then (u, T) E=sopmL ¢ if and only if p
istrue under the truth assignment T,,.

(U, T) ':SOPML (/D] 1// if and onIy if (U, T) b&SOPML @ or (U, T) ':SOPML llf
(U, T) EsopmL ¢ if and only if (U, T) FEsopmL @-

(U, T) EsopmL Ipe(p) if and only if there exists a set of truth assignments
T = {T,,}wew, such that for each w € W, T, differs from T,, at most at p,
and (u, T') EsopmiL @(p). That is, we adopt what Fine [[1] calls the platonis-
tic interpretation of propositional quantifiers, on which propositional variables
range over the full power set of worlds.

(U, T) EsopmL O if and only if for each w satisfying uRw, (w, T) EsopmL
Q.

We say that aformula ¢ isvalid in aframe (W, R) if and only if for any set of truth
assignments T and forany u e W, (U, T) =sopmL @- For aclass of frames 7, the
logic defined by 7 consists of all formulas which are valid in all frames of .

Below we provethat the second-order predicatelogicisinterpretablein SOPM L
when the modality is S4.2 or weaker.! We shall describeaSOPM L formulaPAIRING
that defines pairing of worlds of a frame, thus allowing us to express second-order
dyadic predicates on the worldsinstead of monadic ones (which correspond to worlds
satisfying propositional variables).

The framesfor PAIRING consist of six “groups’ of worlds. Thefirst group con-
tains only one world—the root. The second group contains the worlds which consti-
tute the domain of pairing, the third and fourth groups contain identical copies of the
domain elements (which are the first and second pair components, respectively), and
the fifth one contains the pairs themselves. The sixth group contains only one world
that is accessible from all theworlds.? Each world u in the second group is connected
(by means of the accessibility relation) to auniqueworld U’ inthethird groupandtoa
unique world u” in the fourth group (the copies of u), and aworld w in thefifth group
isapair (ug, up), if both uj (the copy of uy in the third group) and u; (the copy of u,
in the fourth group) are connected to w. We use six propositional constants {L}1<j<¢
to distinguish among the groups (see Axiom 1 below).2 The relative position of the
groupsis shown in Figure 1 on the next page.

We shall need the “uniqueness modality,” !, stating that thereisauniqueworld
reachable from a given state where a given formula holds. A formula {!¢ is defined
by (O@) AVq(D(e D q) v O(p D —q)) (see Garson [[], p. 296, where ¢! is denoted
by I).

Next we introduce the axioms defining the interpretation.
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Figure 1. The relative position of the group elementsin the frame.

1 Ollgnd \/f’:1 L. Thisaxiom statesthat there are at most six groupsof worlds,
and that the sixth group consists of exactly one world.

2. /\f’:lD(Li D OlLj). Thisaxiom states that distinct worlds in each group are
each inaccessible from the other.

3. AL,0(Li o /\j<iO—Lj). Thisaxiom statesthat the groupsare mutually dis-
joint. Moreover, for j < i, no element of the jth group is accessible from an
element of the ith group.

4. O(L3z D O=Ly4). Thisaxiom states that no element of the fourth group is ac-
cessible from an element of the third group.

5. L1 A /\i€{1’2’475} O(Li D OLiz1) AO(L2 D OLg) ADO(Lz D OLs). Thisax-
iom together with Axioms 3 and 4 implies that the groups can be divided into
five nonempty levelsin the following manner. The first group lies on the first
(ground) level, the second group lies on the second level, the third and fourth
groupslieonthethird level, thefifth group liesonthefourthlevel, and the sixth
group lies on the fifth level (see Figure 1).

6. O(Ly D (O'Lz A OlLg)). This axiom states that each element of the second
group is connected to unique elements (its copies) of the third and the fourth
groups.

7. Vp(Ol(La A p) D O (L2 A O(Ls A P))) AVP(OH(LaA P) D Ol (Lo A O(LaA
p))). This axiom states that each element of the third or the fourth group is
accessible from a unique element of the second group. Thus Axioms 6 and 7
imply that the accessibility relation imposes abijection between the second and
the third (fourth) groups.

Now we defineformulas EL ( p) and PAIR( p) which statethat apropositional variable
p is an element of the domain and a pair respectively, and a formula REL(p, q, )
stating that a propositional variabler isapair consisting of propositional variables p
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and g:
EL(p) is OlpA QLA p),
PAIR(p) is O!'pAO(Ls A p), and
REL(p,qg,r) is EL(p) AEL(Q) APAIR(H) AQ(Lo A PAO(L3AOI))A

AO(L2 AgAQ(La A QD).

Finally, we define the usual axioms for pair enumeration, i.e.,

8. VpVYq(EL(p) A EL(g)) D 3'r(PAIR(r) A REL(p, g,r)), and
9. VrPAIR(r) > 3 palq(EL(p) A EL(g) A REL(p, q,T)).

Note that we have “equality” on elements and pairs defined by CI(p = q). Thusthe
quantifier 3! iswell defined.

Let PAIRING be the conjunction of Axioms 1-9.

For the definability result below we need one more bit of notation. Let F =
(W, R) beaframeand let u e W. Then FY = (W", RY) denotes the frame whose set
of worlds consists of the worlds of W which are different from u and are reachable
from u by means of of R, and RY isthe restriction of R on WV.

For aset D not containing 2, 3,4 or 6 let Fp = (Wp, Rp) be aframe such that

Wb = (D x {2}) U (D x {3}) U(D x {4}) U (D x D) U {6},
where Rp isthe reflexive and transitive closure of

{[(d’ 2)7 (d7 3)]}dED U {[(dv 2)’ (d9 4)]}d€D U {[(dlv 3)’ (dl’ dZ)]}dl,dzeDU
U{[(d2, 4), (d1, d2)]}d,,d,ep U {[(d1, d2), 6]}d,.dpeD-

We shall call D and Fp apairing domain and the pairing frame of D, respectively.

Theorem 1.1 Let F beaframeand let u be a world of F. Then u satisfies PAIR-
ING if and only if the following holds. There exists a pairing domain D and an iso-
morphism ¢ between F and Fp such that for every w € WY, w = L; if and only if
t(w)e Dx{i},i=23,4, wk Lsifandonlyif «(w) € D x D,and w = Lg if and
only if t(w) = 6.

Proof: The"“if” part of thetheoremisimmediate. For the“only if” part, assumethat
u satisfies PAIRING. Let D = {w € WY : w = L,}. Then we can define : as follows.
If we D, thent(w) = (w, 2). If w = L3 (w = Ly), then, by Axioms 6 and 7, there
existsaunique w’ € D such that w’Rw, and we put «(w) = (w’, 3) (t(w) = (w', 4)).

If w = Ls, then, by Axioms 6,7,8, and 9, there exist a unique pair (wy, wp) €
D x D suchthat w isreachable from w; through aworld satisfying L3 and is reach-
able from w, through a world satisfying L4. We put «(w) = (wq, wp). Finadly, if
w = Lg, we put t(w) = 6. Now it follows from Axioms 1-5, that ¢ satisfies the con-
ditions of the theorem. O

Corollary 1.2  We can embed second-order predicate logic into SOPM L when the
modality is $4.2 or weaker.
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Proof: We can use propositional variables which are sets of pairs as dyadic second-
order predicates, and propositional variables which are elements as their arguments.
For propositional variables R, p, and g, we define R(p, q) as Ir(REL(p, g,r) A
O(Ls A RAT)), which meansthat p and q arerelated by R. Moreover, using dyadic
predicates to define a tuple enumeration, the full second-order predicate logic can be
interpreted in this logic. Now the corollary follows from Theorem[1.1] O

In particular, Corollary [L2]implies that SOPML is not recursively axiomatizable
when the modality is S4.2 or weaker.*

Corollary 1.3  Second-order predicate logic and SOPML (when the modality is
4.2 or weaker) are interpretable one in the other.

Proof:  The proof followsfrom Corollary[L2land the fact that validity in aframe can
be defined in second-order predicatelogic, where quantifierson truth assignments are
expressible. O

Remark 1.4 Notethat it followsfrom the definition of PAIRING that second-order
monadic theory of a reflexive, transitive, and convergent binary relation with first
point is equivalent to second-order predicate logic.

2 Theworld-relativedomain semantics  Thissectionisorganized asfollows. First
werecall the definition of the logic Q2 based on the worl d-rel ative domain semantics
(cf. [I0]). Then we reproduce the proof from Kamp [[8] of the fact that SOPML is
interpretablein Q2. An immediate corollary to thisfact isinterpretability of second-
order predicate logic in Q2 and vice versa when the modality is $4.2 or weaker. We
start with the definition of the world-relative domain semantics.

An interpretation o consists of a nonempty set D,,, called the domain of o, and
an assignment to each n-place predicate symbol P an n-place relation P° in D,.> A
(Q2) model isatriple M = (W, R, S), where (W, R) isaframe and Sis amapping
from W into the class of interpretations.

Let V = {V,}wew be aset of assignments for variables in the interpretations
S(w), w € W. The satisfiability of aformula ¢ at u under assignments V, denoted
(U, V) E=q2 ¢, isdefined inductively as follows.

If ¢ is an atomic formula P(Xy, ..., Xn), then (u, V) =q2 ¢ if and only if
Ma(Xa), - -+, Vu(Xn)) € PSW, where V,(x) is the the element of Dg,, as-
signed to variable x by assignment V,,.

(U, V) =2 ¢ D yifandonly if(u, V) g2 ¢ or (U, V) =q2 ¥

(U, V) =g2 —¢if and only if(u, V) - ¢.

(U, V) =gz Ixe(x) if and only if there exists a set of assignments V' =

{V,,}wew, such that for each w € W, V,, differs from V,, at most at x, and
(U, V') =2 ¢(X). That is, in Q2 we quantify over individual concepts.

(U, V) g2 e if and only if for every w such that uRw, (w, V) Eq2 ¢.

We say that aformula ¢ is valid in amodel M, denoted M =q; ¢, if and only
if for any set of assignments V and for any u e W, (u, V) =q2 ¢, and we say that a
set of formulas I isvalid in M, denoted M |=q, T, if and only if M =q; ¢, for all
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¢ € I'. Wesay that " semantically entails ¢, denoted I f=q, ¢, if M =g T implies
M Eqz ¢ for each model M.

Next it is shown that the expressive power of SOPML is equivalent to that of
Q2 with only one monadic predicate P and the axiom

TWO : IXP(x) A IX—P(X),

stating that there are two different elements in the corresponding world.

The validity-preserving transformation of SOPML formulas into Q2 formulas
is obtained by replacing each propositional variable p with P(xp) and every formula
of the form I pyr(p) with Ixy v ( P(xp)).6 Formally, for aSOPML formula ¢ we de-
fine a Q2 formula ¢?? by induction as follows. Let p <> Xp be a bijection between
propositional variables of SOPML and individual variables of Q2.

If ¢ isapropositional variable p, then 992 is P(xp).

(@ DY) ispR 5 Y2 (mp)R2 is =2, (Op)Q? is e, and (Ape) ? is
ElxpchZ.

Conversely, for aQ2 formulag we defineaSOPML formulagSCPML by induction as
follows. Let py bethe propositional variable corresponding to theindividual variable
X under the bijection p <> Xp. That is, (px)p is p, and (Xp)x iS X.

If ¢ isan atomic formula P(x), then ¢S°PML s p,.
(§0 5 1p)SOPML ngDSOPML 5 wSOPML (_|¢)SOF’ML iS_|¢SOPML (Dw)SOPML
is TlpSOPML and (Ixg)SOPML 53 p,SOPML

Note that for a SOPML formula ¢, (¢??)S°PML is ¢, and for a Q2 formula ¢,
(pPPMLYQ2 js . | et TWO" denote AL, ' TWO.’

Theorem 2.1 ([8]) Let ¢ be a SOPML formula and let n be the maximum depth
of nested modalities of ¢. Let F = (W, R) be a frame, and let M = (W, R, S) be
a Q2 model. Let u e W be such that u =g, TWO". Let T = {T,}wew be a set of
assignments for propositional variables and let V = {V,,}wew be a set of the truth
assignments for (individual) variables such that for all w € W, T,,(p) = trueif and
only if (V,,(Xp)) € PS®). Then (u, T) E=sopmi ¢ if and only if (u, V) =gz ¢@2.

Proof: Since the satisfiability of a formula of modal depth n at possible world u
depends only on the possibleworldsintheset {w : uUR'w, 0 <i < n}, wemay assume
that W = {w : uR'w, 0 <i < n}. Then M =g, TWO.

The proof is by induction on the complexity of ¢.

If ¢ isapropositional variable p, then the result follows immediately from the
definition of T and V. The caseswhen ¢ isin one of the forms —y, ¥r1 D ¥, or Oy
are straightforward.

Let ¢ beof theform I pyr(p). Assume (U, T) Esopm APY(P). Thenthereisa
set of truthassignments T" = {T,, },ew, such that for each w € W, T, differsfrom T,
atmostat p,and (U, T") E=sopmL ¥ (p). Consider aset of assignments for variables
V' = {V,, }wew that is defined as follows.

If xisnot xp, then V,, (x) = V,,(X). If pisassigned “true” by T, , then V,, (xp) €
PS), and if pisassigned “false” by T, then V,,(xp) ¢ PS*). By TWO such an
assignment for xp is aways possible. By the induction hypothesis, (w, V') =q2
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¥ 2(P(Xp)). Thus, by definition, (U, V) =gz IXp??(P(Xp)). Thatis, (U, V) =gz
@92,
Conversely, assume (U, V) g2 IXp¥??(P(Xp)). Thenthereis aset of assign-
ments for variables V' = {V/ },,cw, such that for each w € W, V, differsfrom V,, at
most at {Xp}, and (u, V') =2 ¥2(P(Xp)). Consider aset of assignments for propo-
sitional variables T’ = {T, },ew that is defined as follows.

If gisnot p, then T, (q) = T, (Q). If (w, V') =gz P(Xp), then T, assigns“true”
to p; and if (w, V') g2 P(Xp), then T assigns “false” to p. By the induction hy-
pothesis, (U, T') EsopmL ¥(P). Thus, by definition, (u, T) EsopmL IpY(P). That
is, (U, T) FEsopmL ¢- U

Theorem[2Tlhas the following immediate corollaries.

Corollary 2.2 Let ¢ be a SOPML formula. Then E=gopmL ¢ if and only if
TWO IZQZ (0Q2.

Corollary 2.3 Let ¢ be a SOPML formula and let n be the maximum depth of
nested modalities of ¢. Then =sopmi ¢ if and only if =g, TWO" D 9?2

Corollary 24 We can embed second-order predicate logic into Q2 when the mo-
dality is $4.2 or weaker.

Proof: The proof follows from Corollaries[L.2lnd[2.3] O

In particular, Corollary Z-4Jimplies that Q2 when the modality is $4.2 or weaker, is
not recursively axiomatizable.

Corollary 25  If themodality is S4.2 or weaker, then second-order predicatelogic,
Q2, and SOPML are each interpretable in the others.

Proof:  The proof follows from Corollary[1.3] Corollary P.4]and the fact that valid-
ity inaQ2 model can be defined in second-order predicate logic. O

3 Logicsstronger than S4.2  We conclude the paper with several notes concerning
the power of SOPM L and Q2 when the modality is S4.32 or S5.

First, it follows from a very nontrivial result of Gurevich and Shelah [5] that
second-order arithmetic isinterpretablein SOPM L with the S4.3 modality.® By [[5],
Corallary 0.2, second-order arithmetic is interpretable in the monadic second-order
theory of order of real numbers. Therefore, by Shelah [9], Lemma7.12, second-order
arithmetic isinterpretable in the monadic second-order theory of linear order, which
is definable in the $4.3 frames.

Moreover, it isshownin Gurevich and Shelah [[6] that, under aweak set-theoretic
assumption, second-order predicatelogicisinterpretablein the monadic second-order
theory of linear order, and therefore in SOPM L with the S4.3 modality.

Finally, SOPML with the S5 modality is decidable, see [[1]], becauseit is equiv-
alent to monadic second-order theory, and Kamp [[8] presents Kripke's recursive ax-
iomatization of Q2 with the S5 modality. An interesting byproduct of Kripke's proof
isthat de re modalities are eliminable in Q2 based on Sb. That is, in thislogic, each
formulais equivalent to a formula not containing modalities in the scope of quanti-
fiers, cf. Fine [2] and [B].



42

MICHAEL KAMINSKI and MICHAEL TIOMKIN
NOTES

That is, for logics defined by a class of frames that contains all reflexive, transitive, and
convergent frames. These propertiesof aframeareimplied by theaxiomsVp(Cp D p),
Vp(@Op > OOp),and Vp(OOp D OO p), respectively, and vice versa, see Hughes and
Cresswell [[7], p. 31.

Thisworld ensures that the frame is convergent.

These constants can be eliminated by replacing PAIRING with

3L;3L,3L33L43LsILPAIRING.

This result is proved in [1] by embedding second-order arithmetic into SOPML.

5. For simplicity we assume that the underlying language is one without equality and con-

(1]

(2]

(3]

(4]

(5]

(6]

tains no constants or function symbols. Aswe shall seein amoment, all we need isone
monadic predicate symbol.

This trandation is defined in Kamp [[E]. The trangation in Garson [[] uses equality in-
stead of P.

Asusua, 1% is ¢, and O *1p isO0 ¢.

That is, SOPML defined by the class of all reflexive, transitive, and connected frames.
These properties of aframe areimplied by theaxiomsVp(Cp O p), Vp(@Op > OOp),
and Vpvq(O(@p > q) vO(@dg D p)), respectively, and vice versa, see[[7], p. 30.

In [I] Fine uncarefully claims that SOPML with the $4.3 modality is decidable. Fur-
thermore, it isclaimed in [[4], Section 3.4 that “second-order modal arithmetic” isinter-
pretable in Q2 with the S4.3 modality. However the proof of this result is based on a
mistake statement ([F], Section 3.4, Lemma 8) that is an extension of Theorem[Z1]in
which modal arithmetic operators are interpreted by function symbols.
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