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Combining Temporal Logic Systems
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Abstract  This paper investigates modular combinations of temporal logic
systems. Four combination methods are described and studied with respect to
the transfer of logical properties from the component one-dimensional tempo-
ral logics to the resulting combined two-dimensional temporal logic. Three ba-
sic logical properties are analyzed, namely soundness, completeness, and de-
cidability. Each combination method comprises three submethods that com-
bine the languages, the inference systems, and the semantics of two one-
dimensional temporal logic systems, generating families of two-dimensional
temporal languages with varying expressivity and varying degrees of transfer
of logical properties. Théemporalization methodnd theindependent com-
bination methodare shown to transfer all three basic logical properties. The
method offull join of logic systems generates a considerably more expressive
language but fails to transfer completeness and decidability in several cases. So
aweaker method ofestricted joinis proposed and shown to transfer all three
basic logical properties.

1 Introduction Weare interested in describing systems in which two distinct tem-
poral “points of view” coexist. Descriptions of temporal systems under a single point
of view, i.e., one-dimensional temporal systems, abound in the literature. These one-
dimensional temporal logics differ from each other in several ways. They differ on
the approach, whether proof-theoretic, model-theoretic, or algebraic. They differ on
the ontology of time adopted, whether time is represented as a set of points, intervals,
or events. They can also differ on the properties assigned to flows of time, whether
linear or branching time, discrete or dense, continuous or allowing for gaps. In this
paper we contemplate both proof- and model-theoretic presentations of temporal log-
ics on a point-based ontology. Most of the results presented assume that the flow of
time is linear.

The motivation for the present work came from the study of applications of two-
dimensional temporal logics by FingEf[ We were aware of Venemalg?] negative
results concerning the unaxiomatizability of two-dimensional temporal logics over
the upper semi-plane f x N, Z x Z, andR x R (see also Propositida.3below).
However, for our purposes then, the full expressivity of Venema'’s two-dimensional
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language was not required, and a weaker language provided the appropriated expres-
Sivity.

It then became clear that this weaker two-dimensional language could be gener-
alized and a family of languages resulting from adding a (second) temporal dimen-
sionexternallyto a temporal logic system was thus obtained. This process was for-
malized by Finger and Gabbd§][ where it was calledemporalizationand several
results were obtained concerning the transfer of logical properties from the compo-
nent logical system to the combined one. As a result, a family of temporalized logic
systems was obtained, the properties of which can be derived from the properties of
the component logic systems via the transfer results.

The next step, which we present in this work, comes from the observation that
there may be several distinct ways in which two temporal logic systems can be com-
bined, generating thus several families of combined two-dimensional temporal sys-
tems. Different combination methods may be presented by the distinct interactions
between related parts of the two logic systems involved, leading to two-dimensional
systems based on distinct languages with distinct semantical structure, expressive
power, and other properties (that may be transferred or not from the component sys-
tems).

Several cases in which two distinct temporal dimensions (or temporal “points
of view”) can co-exist are described next, motivating several different methods for
combining two temporal logics. We will also attempt to relate these methods to re-
cent, mostly unpublished work on combining two generic (not necessarily temporal)

logics systems, e.g., Gabbdy2], [[11].

1.1 First case: external time One temporal point of view can lexternalto the
other. The external point of view is seen as describing the temporal evolution of a
systems, when systen(g is itself a temporal description. Suppa$és described us-

ing a temporal logid, and suppose that the external point of view is given in a pos-
sibly distinct logicT. For example, consider an agehtwhose temporal beliefs are
expressed in logid, that we want to allow to reason about the temporal beliefs of
an agentB, which are expressed in a possibly distinct lo@icThis is illustrated in

Figurell]

G observes .

A B

Figure 1: One agent externally observing the other

Agent A's beliefs are external to agen&s beliefs, so thafl is externally de-
scribing the evolution of. The external temporal point of vieW is then applied to
the internal systerit, in aprocess calletemporalizationor adding a temporal di-
mension to a logic systemefined in[5]. The resulting combined logic systef(T)
is illustrated in Figuré®]

The temporalization associates every time poirf ivith a temporal description
in T, where thosd-descriptions need not be all identical. Given the logical properties
of T and T, what can be said about the logical propertied ¢T)?
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yields T(T)

Figure 2: The combined flow of time resulting from temporalization

In terms of a generic combination of logics, the temporalization method can be
matched with a process callédizzling” or layering which is characterized by the
fact that the formulas of systefcan be substituted for the atoms of syst&€min
(Kripke-) semantical terms, this means that every possible worlH isfassociated
to a whole model oT; see[L1].

1.2 Second case: independent agents  Suppose now that age#t has the ability
of referring to agenB’s temporal beliefs and vice versa. The agents are therefore
observing each other, as illustrated in Fidgle

observes
Q. o
A e B
observes

Figure 3: Independent interaction of agents

The agents’ beliefs are then capable of interacting with each other through sev-
eral levels of cross-reference, as in the senterfcbélieves thaB believes thatA
believes that....” A new combination method oand T is needed in order to rep-
resent such a sentence as a formula; which is calleihttependent combination
T @ T. Since a formula off @ T has a finite nature, it can be unravelled in a finite
number of alternating temporalizations, as illustrated in Fifflire

Figure 4: Unravelling the independent combination
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Figureldlsuggests a way of analyzing the properties of the independent combi-
nation method using the temporalization method as an intermediary step. It will turn
out that the independent combination method is the (infinite) union of all finite alter-
nated temporalizations. Anillustration of a possible independently combined flow of
time is presented in Figulel

Figure 5: Independently combined flow of time

In terms of a generic combination of two logics, this process can be matched to
thedovetailingprocess of{{ 1], whereby atoms of can be substituted by formulas of
T and vice-versa. The semantical counterpart is obtained by providing each possible
world with two distinct accessibility relations; and <, so that from every possible
world it is possible to reach another possible world eitherviar via <.

1.3 Third case: two-dimensional plane Yet another distinct situation can be found
where we have the coexistence of two distinct temporal “points of view.” This time

a dngle agent with temporal reasoning capabilites is considered, and we want to be
able to describe the evolution of his own beliefs. This is perhaps better illustrated
by considering the agent as a temporal database where each piece of information
is associated to a validity time (or interval). For example, consider the traditional
database relatioamployeéName Salary Managen. Suppose the following is in

the database at March 94.

Name Salary Dept Start End
Peter 1000 R&D Apr93 Mar94

Where the attributes start and end represents the end points of the validity interval
associated with the information. We assume that Peter’s salary has not changed since
Apr 93. Suppose in Apr 94 Peter receives a retroactive promotion dating back to the
beginning of the year, increasing his salary to 2000. The whole database evolution
is illustrated in Figurdg] where only the value of Peter’s salary is indicated at each
point.
If T represents valid-time an@ represents transaction-time, we have guaran-
teed a two-dimensional plarié x T in order to represent the database evolution.
Another application of the two-dimensional plane (or its NW-semi-plane) is in
the representation of intervals on a line, as presentd?n [n FigurelZlwe can see
aline considered the diagonal of a two-dimensional plane and that an intgrma] [
on that line is represented by the pojti, t,) on the NW-semi-plane.
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Figure 6: Two-dimensional temporal database evolution
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Figure 7: Two-dimensional representation of intervals

The combination of two temporal systems that generates a combined flow of
time that is isomorphic to a two-dimensional plane is calledjdire of two logical
systems. We have adopted the tgom of logicshere (instead of the previously used
interlacing of logicsin Finger [B]) to be in accordance to the concept as defined in
the larger context of generic combination of log{&&][ Although the language gen-
erated in this process is the same as that of independent combination (for the case
of two temporal logics), the semantic interaction betw&emd T is a lot stronger;
this is due to the fact that the temporal operators of the two logics are commutative
in the join. As it will be seen in Section 7, it is necessary to restrict this interaction to
obtain the transfer of logical properties. The restiction will be applied to the type of
operators allowed in one of the logics involved in the restricted join.

1.4 Aims of this paper In this paper we study three situations of coexistence of
“two temporal points of view” that result from a combination of two linear, one-
dimensional temporal logics. In this sense this paper is a continuation on the work
started in[g] on the combination of temporal logics. There, a process for adding a
temporal dimension to a logic system was described, in which a temporalllagic
externallyapplied to a generic logic systdmgenerating a combined logigL). We

now explore several methods for systematically combining two temporal logics,
and T, thus generating for each method a new familyveé-dimensional temporal
logics.



TEMPORAL LOGIC SYSTEMS 209

A great number of (one-dimensional) temporal logics exist in the literature to
deal with the great variety of properties one may wish to express about flows of time.
When building two-dimensional temporal logics, the combination of two classes of
flows of time generates an even greater number of possible systems to be studied. Fur-
thermore, as we will see, there are several distinct classes of temporal logics that may
be considered two-dimensional, each generated by a distinct combination method. It
is, therefore, desirable to study whether it is possibtestiosfer the propertiesf long
known and studied (one-dimensional) temporal logic systems to the two-dimensional
case.

So the main goal of this paper is to study, for each combination method, the
transfer of logical properties from component one-dimensional temporal systems to a
combined two-dimensional one. We concentrate on the transfer of three basic proper-
ties of logic systems, namely soundness, completeness, and decidability. This by no
means implies that those are the only properties whose transfer deserve to be stud-
ied, but, as has already been noted@hfpr the temporal case, and in Kracht and
Wolter [16] and an unpublished paper by Fine and Schurtz, for the monomodal case,
the transfer of completeness serves as a basis for the transfer of several other proper-
ties of logical systems.

We consider the following methods for combining two temporal logics.

1. The temporalization method, i.e., the external application of a temporal logic
to another temporal system, also known as adding a temporal dimension to a
logic system;

2. the independent combination of two temporal systems;

3. the full join of two temporal systems, where flows of time are considered over
atwo-dimensional plane;

4. the restricted join of two temporal system, a combination method that restricts
the previous one but generates nice transfer results.

We proceed as follows. Sectidlpresents the basic notions of one- and two-
dimensional temporal logics. Secti@idiscusses combinations of logics in general
terms, so that in the rest of the paper we can present special cases of combination
methods. Sectiddlbriefly examines the transfer results obtained for the temporaliza-
tion method in[f]. SectiorBlstudies the independent combination method. Sefétion
deals with the full join method and Sectil@hvith its restricted version. Sectif@an-

alyzes the properties of a two-dimensional diagonal on the model generated by the
full and restricted join methods. In Sectilwe discuss the results of this work.

2 Preliminaries Forthe purposes of this paper, alogic system is composed of three
elements:

1. alanguage, normally given by a set of formation rules generating well formed
formulas over a signature and a set of logical connectives.

2. Aninference system, i.e., a relatierbetween sets of formulas, normally rep-
resented by upper case Greek lettard”, 3, W, ® and a single formula, nor-
mally represented by upper case lettArB, C, .. .; the fact thatA is inferred
from a setA is indicated byA = A. WhenA is a singletonA = {B}, the no-
tation is abused and we wrig A.
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3. The semantics of formulas over a cla&sof model structures. The fact that a
formula A is true of or holds at a modél € X is indicated byM = A.

In providing a method for combining two logics into a third one, it will be necessary

to provide three sub-methods that combine the languages, inference systems, and se-
mantics of the component logic systems. The component systems considered in this
paper will be one-dimensional line&lS-temporal logics. Their language is built

from a countable signature of propositional lettéts= {p4, po, ...}, the Boolean
connectivesa (conjunction) and- (negation), the two-place temporal operatldn

(until) and S (since), possibly renamed, and the following formation rules:

e every propositional letter is a formulas

e if AandB are formulas, so areAandA A B

e if AandB are formulas, so arg (A, B) (reads “untilAis true in the future,
B will be true™) andS(A, B) (reads “sinceA was true in the pasB has been
true”).

e nothing else is a formula.

Themirror imageof a formula is another temporal formula obtained by swapping all
occurrences of) andS, e.g., the mirror image of) (A, S(B, C)) is S(A, U(B, C)).

The other Boolean connectives(disjunction),— (material implication) <>
(material bi-implication) and the constants(false) andT (true) can be derived in
the standard way. Similarly, the one-place temporal operd&dfsometime in the
future”), P (“sometime in the past”) (“always in the future”), andd (“always in
the past”) can be defined in termsldfand S.

To provide the semantics of temporal formulas we have to consider a (one-
dimensional¥low of time F = (T, <), whereT is a set of time points and is an
order overT. A temporal valuatiorh : T — 2% associates every time point with a
set of propositional letters, i.eh(t) is the set of propositions that are true at time
(Equivalently, and perhaps more usually, a valuation could be defined as a function
h: P — 2T, associating every propositional letter to a set of time points in which it
holds true; see Burgeﬁl[Gabbay@.) A model structureM = (T, <, h) consists
of a flow of time(T, <) and a temporal assignmemtand for the purposes of combi-
nation of logics we consider a “current worlt’e T as part of the modetM, t = A
reads ‘A is true att over modelM.” Classes of models are normally defined by re-
strictions over the order relatioa of the flow of time.

The semantics of temporal formulas is given by:

M,t=p iff  pe P suchthatp € h(t).

M, tE=-A iff itis notthe case thaf/,t = A.

M,t=AAB iff M,t=AandM,t = B.

M,tl=S(A, B) iff thereexistsase T withs<tandM,s|= Aand for
everyue T,if s< u<tthen,u = B.

M, t=U(A, B) iff thereexistsase Twitht <sandM,s|= Aand for
everyue T,if t <u < sthen™,u = B.

The following restriction will be applied throughout this presentation. Flows of
time will always be considered to have the properties:

1. irreflexivity: Vt—=(t < t)
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2. transitivity: Vi, s, u(t <sAs<u—t < u)
3. totality: Vt,s(t=svt<svs<t)

The class of all flows respecting the restrictions above is the ggof linear flows

of time. We also represent the class of all models based on linear fla#gg,ag-ur-

ther restrictions can be applied to the nature of flows of time so that several other
linear subclasses can be formed, e.g., the classes of d€Rggsd, discrete K gis),
Z-like, Q-like, andR-like flows of time. The linearity property allows for the defini-
tion of the “at all times” temporal connective.

OA=AAGAAHA

In case of discrete flows of time, the operator “next tim@, and “previous time,”
@, are also defined.

OA=U(A, 1)
O®A=S(A 1)

The inference systems will be considered to be finite axiomatizations, i.e., a pair
(2, I) whereX is a finite set of formulas calleaxiomsand I is a set of inference
rules. Consider the Burgess-X#][ Xu [23] axiomatization fork j;, consisting of

the following axioms:

A0 all classical tautologies

Ala G(p—q) — (U(p,r) — U(q,r))

A2a G(p—q) — (U, p) = U, Q)

A3a (pAU(Q,r)) - U@A S(p,r),T)

Ada U(p,q) — U(p.gAU(p,a))

ASa U(@AU(p,a),q) — U(p,q)

Aba (U(p, g AU(r,S) —

Upar,gas)yvU(pas,gas)vVU@@AT,QAS))

plus their mirror imagedyaxioms). The inference rules are:

Subst Uniform Substitution, i.e., leA(q) be an axiom containing the proposi-
tional letterg and letB be any formula, then fromr A(q) infer = A(q\ B) by
substituting all appearancesain A by B.

MP Modus Ponens: fromr Aand- A — Binfer+ B.

TG Temporal Generalization: from Ainfer HA and- GA

A formula A is deducible from the set of formulas, A - A, if there exists a
finite sequence of formulaB,, ..., B, = A such that eveny; is either

(a) aformulainA; or

(b) an axiom; or

(c) obtained from previous formulas in the sequence through the use of an infer-
ence rule.

Wewrite = Afor @ = A i.e., only items (b) and (c) above are used in the deduction
of A, inwhich caseA is said to be dheorem A set of formulasA is inconsistentf
A L, otherwise it isconsistent A formula A is consistent iff A} is consistent.
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On the semantical side, a set of formulass satisfiableover a class of models
K if there exists a modeM e K with at € T such that, foreverg ¢ A, M, t = B.
A formula A is valid over X, X = A, if for every modelM = (T, <, h) € X and
everyt ¢ T, M, t = A. The expression = Arepresents that every model satisfying
A also satisfie®\.

An inference system isoundwith respect to a class of modef§ iff every the-
orem is a valid formula, i.ek AimpliesX = A. Aninference system iGveakly)
complete ovefX if every theorem- Ais valid, X = A, or equivalently if every con-
sistent formula is satisfied ové{. Strong completeness states that whenaver A
thenA = A, for a possibly infiniteA. LetL = (£, , =) be a logic system with lan-
guageL, inference systerr, and semantics=. We say thatl is decidableif there
exists an algorithm (decision procedure) that determines, for every, whetherA
is a theorem or not. Thealidity problemfor L is to determine whether sonfee L
is a valid formula or not.

We have the following results.

Theorem 2.1 ([4),[23)) The Burgess-Xu axiomatization presented above is sound
and complete over the clag§;;,.

Theorem 2.2 (Rabin [L7]) The logicUS = (Lys, Fus, Eus) is decidable ovef .

3 Combining logics As we have mentioned earlier, the combination of two one-
dimensional temporal logics will generate a two-dimensional temporal logic.
Throughout this presentation, we refer to one of the temporal dimensionsfasrthe
izontal dimensiorand the other one as thvertical dimensionthe symbols related
to the vertical dimension are normally obtained by putting a bar on top of the corre-
sponding horizontal ones, e.§.and T, FandF, < and=<.

There are two distinct criteria for defining a modal/temporal logic system as two-
dimensional:

1. If the alphabet of the language contains two nhonempty, disjoint sets of corre-
sponding modal or temporal operatofis,and ®, each set associated with a
distinct flow of time,(T, <) and(T, <), then the system is two-dimensional.

2. If the truth value of a formula is evaluated with respect to two time points, then
the system is two-dimensional. In this case, we even have the distinction be-
tween strong and weak interpretations of formulas that, as a consequence, gen-
erates different notions of valid formulas (a formula is valid if it holds in all
models for all pairs of time points). Under tegong interpretationthe truth
value of atoms depends on both dimensions, giving rise to the notgiroogly
valid formulaswhen the evaluation of formulas is inductively extended to all
connectives. In theveak interpretationthe truth value of atoms depends only
on the one dimension, e.g., the horizontal dimension, giving rise to the notion
of weakly valid formulasUsually for this notion of two-dimensionality, both
time points refer to the same flow of time, so we may also have the notion
of (weak/strongdiagonally validformulas by restricting validity to the case
where both dimensions refer to the same point, ieis diagonally valid iff
M, t,t = Afor all M andt; seel3 for more details.
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Criterion[Llwill be called thesyntactic criterionfor two-dimensionality, although it
is not completely syntactic, i.e., it depends on the semantic notion of flows of time;
criterion2]will be called thesemantic criteriorfor two-dimensionality.

Note that both cases can yield, as an extreme case, one-dimensional temporal
logic. In[L]this can be done by making=T and< = (<)~ = (>), i.e., by taking
two flows with the same set of time points such that one order is the inverse of the
other; the future operato® = {F, G, U} are associated witliT, <) and the past
operatorsd = {P, H, S} are associated witfil, >). In[2] this can be done by fixing
one dimension to a single time point so that it becomes redundant.

These two distinct approaches to the two-dimensionality of a system are inde-
pendent. In fact, we will see in Sectifa system that contains two distinct sets of
operators over two classes of flows of time, but its formulas are evaluated at a single
point. On the other hand, there are several temporal logics in the literature satisfy-
ingRlbut nof1] containing a single set of temporal operators in which formulas are
evaluated according to two or more time points in the same flow, B3, Aqvist [J,

Kamp [L5].

A logic system that respects both the syntactic and the semantic criteria for two-
dimensionality is calledroadly two-dimensionalnd this will be the kind of sys-
tem we will be aiming to achieve through combination methods; we consider in this
work only strong evaluation and validity; the weak interpretation generates systems
with the expressivity of only monadic first-order langud@@ [ but for broadly two-
dimensional systems we are interested in the expressivity of dyadic first-order lan-
guage, although it is known that no set of temporal operators can be expressively
complete over dyadic first-order languafg®]] (A modal/temporal language &x-
pressively completever a class of first-order formulas if, for any first-order formula
A in that class, there exists a modal/temporal formBlauch thatA is first-order
equivalent toB*, whereB* is the standard first-order translationBifsee[L3].) Ven-
ema’s P2 two-dimensional temporal logic, Segerberff§] two-dimensional modal
logic, and the temporalization of a temporal logic are all broadly two-dimensional; so
are the combined logics in Sectid@isndZ]

In the study of one-dimensional temporal logics (1DTLs) several classes of
flows of time are taken into account. When we move to 2DTLs, the number of such
classes increases considerably, and every pair of one-dimensional classes can be seen
as generating a different two-dimensional class. The study of 2DTLs would benefit
much if the properties known to hold for 1DTLs could be systematically transferred
to 2DTLs, avoiding the repetition of much of the work that has been published in the
literature. This is a strong motivation to consider methods of combination of 1DTLs
into 2DTLs and studying the transfer of logical properties through each method. Also
in favor of such an approach is the fact that the results concerning 2DTLs are then
presented in a general, compact, and elegant form.

In providing a method to combine two 1DTOsandT we have to pay attention
to the following points:

(@) A method for combining logic§ andT is composed of three sub-methods,
namely a method for combining the languagesTofand T, a method for
combining their inference systems, and a method for combining their seman-
tics.
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(b) We study the combined logic system with respect to the way certain logical
properties ofT andT are transferred to the two-dimensional combination. We
focus here on the properties of soundness, completeness, and decidability of
the combined system given those of the component ones.

(c) The combined language should be able to express some properties of the inter-
action between the two-dimensions; otherwise the combination is just a partial
one, and the two systems are not fully combined. For example, it is desirable
to express formulas likEF A <> F FA and PF A <~ F PAthat are not in the
temporalized language Gf(T).

(d) If we want to strengthen the interaction between the two systems, some proper-
ties of the interaction between the two-dimensions are expected to be theorems
of the combined system, e.g., the commutativity of horizontal and vertical fu-
ture operators such &F A <~ F FAandPF A < F PA Those are called the
interaction axiomsn [[L1].

(e) We want the combination method to be as independent as possible from the
underlying flows of time.

All methods of combination must comply with item (a). The method for combin-
ing the languages of andT includes the choice of which sublanguageToand T

is going to be part of the combined two-dimensional language, as well as the way in
which this combination is done; in this presentation we will work, in the most general
case, with the standard languagesSandU, S andU, but we also consider some
sublanguages, e.g., the sublanguage generated by a set of derived operators, such as
the vertical “previous” @) and “next” (O) in Sectionz] In combining the inference
systems ofT andT, we will assume that they are both an extension of classical logic
and that they are presented in the form of a regular, normal axiomatic systef,
whereX is a set of axioms andl is a set of inference rules. One important require-
ment is that the combined system beoaservative extensiai the two components.

The conservativeness property states thatig a formula in the language bfandL*

is a logic system extendirig(i.e., the language df is a sublanguage of the language

of L*), then A will be a theorem otf_* only if it is a theorem oL already; conserva-
tiveness guarantees that no new information about the original sysiepresent in

the extended onk*.

The combined semantics has to deal with the structure of the combined model,
the evaluation of two-dimensional formulas over those structures and also with the
combinations of classes of flows of time.

Items (b), (c), (d) and (e) may conflict with each other. In fact, the rest of this
paper shows that this is the case, as we try to compromise between expressivity, in-
dependence of the underlying flow of time and the transfer of logical properties.

4 Temporalizing alogic The first of the combination methods, known as “adding
atemporal dimension to a logic system” or simply “temporalizing a logic system,”
has been extensively discussedah [

Temporalization is a methodology whereby an arbitrary logic sydteran be
enriched with temporal features to create a new sy3téth The new system is con-
structed by combinind. with a pure propositional temporal logic (such as linear
temporal logic with “Since” and “Until”) in a special way.
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Although we are interested here only in temporalizing an already temporal sys-
tem, so as to generate a 2DTL, the original method is more general and is applicable
to a generic logid_; L is constrained to be an extension of classical logic, i.e., all
propositional tautologies must be valid in it, but such a constraint does not affect us,
for we are assuming that both temporal syst@nasidL are extensions diS/X jiy,.

The language of a temporalized system is based ob$&anguage and on a sub-
set of the language df, £,. The sets, is partitioned in two setsBC, and ML, .

A formulaA € £, belongs to the set dfoolean combination88C, iff it is built up
from other formulas by the use of one of the boolean connectivasA or any other
connective defined only in terms of those; it belongs to the setarfolithic formula
ML, otherwise.

The result of temporalizing oveK the logic systenlL is the logic system
T(L)/X. The alphabet of the temporalized language uses the alphabgilo$ the
two-place operatorS andU, if they are not part of the alphabetlgfotherwise, we
use S andU or any other proper renaming.

Definition 4.1 (Temporalized formulas) The setLr of formulas of the logic sys-
temL is the smallest set such that:

1. If Ae ML, thenA e Ly,
2. If ABe LT(L) then—A e LT(L) and(AA B) e LT(L);
3.IfA Be LT(L) thenS(A, B) LT(L) andU(A, B) LT(L)-

Note that, for instance, B is an operator of the alphabetlofand A and B are two
formulas in£,, the formula®U (A, B) is notin Lr,. The language of (L) is in-
dependent of the underlying flow of time, but its semantics and inference system are
not, so we must fix a clasg of flows of time over which the temporalization is de-
fined; if M is a model in the class of models bf X , for every formulaA € £,

we must have eithed/| = Aor M| = —A. Inthe case thdt is a temporal logic we

must consider a “current timeaJ as part of its model to achieve that condition.

Definition 4.2 (Semantics of the temporalized logic)Let (T, <) € X be a flow of
time and letg : T — K| be a function mapping every time pointTnto a model in
the class of models df. A model of T(L) is a tripIeMT(L) = (T, <, g) and the fact
that Ais true inM at timet is written asM, t = A and defined as:

MT(L),t':A,AG ML iff g(t):ML andML':A.

My, t=—A iff itis not the case thaf/r(.t = A.
MT(L)vt = (AAB) iff MT(L)»t = AandMT(L),t = B.
M+ t = S(A, B) iff there existss e T such thats < t and

M+, sk= Aand foreveryu e T, if s <
u < tthenM+qy, u = B.

MT(L),t = U(A, B) iff there existss € T such thatt < s and
M+, sk Aand foreveryu e T, if t <
u < sthenMr),u = B.

FigurelZlillustrates a temporalized model. The inference systeM(bf/ X is given
by the following.

Definition 4.3 (Axiomatization forT(L)) An axiomatization for the temporalized
logic T(L) is composed of:
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e The axioms ofT/X;

e The inference rules of/K;

e For every formulaAin £, if - Athent+q) A, i.e., all theorems ot are
theorems off (L). This inference rule is calleHersist.

Example 4.4 (Temporalizing propositional logic) Consider classic propositional
logicPL = (Lp_, FpL, EpL). Itstemporalization generates the logic sysi€RL) =
(L1pLy, F1(PY)s ET(PL))-

Itis not difficult to see thalrp ) = Lys and-rp=tHys, i.e., the temporalized
version ofPL over anyX is actually the temporal logi€ = US/K . With respect to
EMT(L), the functiong actually assigns, for every time pointP& model.

Example 4.5 (Temporalizingd Stemporal logic) If we temporalize overX the
one-dimensional logic systedS/K we obtain the two-dimensional logic system
T(US) = (Lrws), Frus). F1us)) = T2(PL)/17(. Inthis case we have to rename the
two-place operatorS andU of the temporalized alphabet to, s&/andU.

In order to obtain a model faF(US), we must fix a “current time, b, in Mg =
(Tq, <1, 01), S0that we can construct the modMT(US) = (T, <, go) as previously
described. Note that, in this case, the flows of tifig <1) and(T,, <») need not to
be the same(T,, <») is the flow of time of the upper-level temporal system, whereas
(Ty, <1) is the flow of time of the underlying logic which, in this case, happens to be
atemporal logic. The logic system we obtain by temporalidifgtemporal logic is
the two-dimensional temporal logic describedih |

Example 4.6 (n-dimensional temporal logic) If we repeatthe process started in the
last two examples, we can construct maimensional temporal logi@"(PL)/ X
(its alphabet including, andU,) by temporalizing an — 1)-dimensional temporal
logic.

Every time we add a temporal dimension, we are able to describe changes in
the underlying system. Temporalizing the systemnce, we are creating a way of
describing the history df; temporalizing for the second time, we are describing how
the history ofL is viewed in different moments of time. We can go on indefinitely,
although it is not clear what the purpose of doing so would be.

To present the transfer results we restrict the logic systenis%dJS/K andT =
US/K, whereX, X < K in. We write US(US) instead ofT(L) and the generated
class of models is referred to &(%). For this system, we enumerate a series of
results that are proved i] Those results will be useful for the discussion of the
independent combination method.

Theorem 4.7 (Transfer via temporalization) Let L_Jé/f and US/X be two logic
systems such tha(, X € X in-

@ If US is sound with respect t& and US is sound with respect t&, then
US(US) is sound W.r.t& (X).

(b) If US is complete w.rtX and US is complete w.r.t.X thenUS(US) is
complete w.rtx (X).

(c) If US is complete w.r.tX, thenUS(US) is a conservative extension of both
US andUS.
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(d) If USis complete and is decidable ov&f and US is complete and decid-
able overX thenUS(US) is decidable oveX (X).

5 Independent combination We have seen in the previous section how to add a
temporal dimension to a logic system. In particular, if a temporal logic is itself tem-
poralized we obtain a two-dimensional temporal logic. Such a logic system is, how-
ever, very weakly expressive;fS is the internal (horizontal) temporal logic in the
temporalization process-(is derived inUS), andUS is the external (vertical) one

(F is defined inUS), we cannot express that vertical and horizontal future operators
commulte,

FFA< FFA.

In fact, the subformuld&F A is not even in the temporalized IanguageL_Ii_f(US),
nor is the whole formula. In other words, the interplay between the two-dimensions
is not expressible in the language of the temporall_zécﬁUS).

The idea is then to define a new method for combining logic systems that puts
together all the expressivity of the two component logic systems in an independent
way; for that we assume that the language of a system is given by a set of formation
rules.

Definition 5.1  Let Op(L) be the set of non-boolean operators of a generic lbgic

Let T andT be logic systems such th&@p(T) N Op(T) = @. Thefully combined
languageof logic systemsT andT over the set of atomic propositiofsis obtained

by the union of the respective sets of connectives and the union of the formation rules
of the languages of both logic systems.

Let the operator) and Sbe in the language d#S andU and S be in that ofUS.

Note that the renaming of the temporal operator is done prior to the combination, so
that the combined system contains the set of boolean opefatorg coming from

both components, plus the set of temporal opergldrsS, U, S}. Their fully com-

bined language over a set of atomic propositidhs given by

every atomic proposition is in it;

if A, Bareinit, soare-AandAA B;

if A,Bareinit, soardJ(A, B) andS(A, B).
if A, Bareinit, soardJ(A, B) andS(A, B).

In general, we do not want any non-boolean operator to be shared between the
two languages, for this may cause problems when combining their axiomatizations.
For example (this example is due to lan Hodkinson), if a generic opérav@longs
to both temporal logic systems such tfatontains axiont < Clgq and systemr
contains axiom~( < [1q, the union of their axiomatizations will result in an incon-
sistent system even though each system might have been itself consistent. To avoid
such behavior the restricticBp(T) N Op(T) = @ is imposed on the fully combined
language ofT andT.

This new combination method is call@ilependentbecause it takes the inde-
pendent union of the axiomatization of its two component systems, and it is based on
their fully combined language.
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Definition 5.2 LetUS andUS be twoU Stemporal logic systems defined over the
same sefP of propositional atoms such that their languages are independent. The
independent combinatiodS & US is given by the following:

e The fully combined language &fS andUS.

e If (X, I) is an axiomatization fouS and (%, T) is an axiomatization fousS,
then(S U X, I U T) is an axiomatization fouS & US. Note that, apart from
the classical tautologies, the set of axiomandX are supposed to be disjoint,
but not the inference rules.

e The class of independently combined flows of timekisp X composed of
biordered flows of the form{T, <, <) where the connected components of
(T, <) are in’X and the connected components(@f <) are inK, and T
is the (not necessarily disjoint) union of the sets of time poinand T that
constitute each connected component; such a biordered flow of time has been
discussed in[Ig] for the case of the independent combination of two mono-
modal systems.

A model structure foUS @ US overXK @ K isa 4—tup|e('f', <,<,0),where

(T, <, <) e K@K andg is an assignment functiog: T — 27. Aninde-
pendently combined model is illustrated in Figlile

The semantics of a formula in a modelM = (T’, <, <, Q) is defined as the
union of the rules defining the semantic$48 /% andUS /%K. The expression
M, t = Areads that the formuld is true in the (combined) modél/ at the
pointt € T. The semantics of formulas is given by induction in the standard

way:
MtE=p iff pegt)andpeP.
M, t=-A iff itis notthe case thaf/,t = A.

M,t=AAB iff M,t= AandM,t = B.

M,t= S(A, B) iff thereexistsarse T withs<tandM,sk= Aand
foreveryue T,if s< u < tthen™,u = B.

M, t=U(A, B) iff thereexistsarse T witht <sandM, s Aand
foreveryue T,if t < u < sthenM, u = B.

M,t= S(A, B) iff there exists arse T with s<tandM, sk Aand
foreveryue T, if sSu=<tthen™, u = B.

M,t=U(A, B) iff thereexistsarse T witht<sandM,sEk Aand
foreveryue T, if t<u<sthen, u = B.

Note that, despite the combination of two flows of time, formulas are evaluated ac-
cording to a single point. The independent combination generates a system that is
two-dimensional according to the first criterion but fails the second one, so it is not
broadly two-dimensional.

The following result is due to ThomasdaiJland is more general than the inde-
pendent combination of twidS-logics.

Proposition 5.3 With respect to the validity of formulas, the independent combina-
tion of two modal logics is a conservative extension of the original ones.

Note that we have previously defined conservative extension in proof-theoretic terms;
completeness for the independently combined case will lead to the conservativeness
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with respect to derivable theorems.

As usual, we will assume th&, X < X ji,, SO< and< are transitive, irreflex-
ive and total orders; similarly, we assume that the axiomatizations are extensions of
US/XK jin -

The temporalization process will be used as an inductive step to prove the trans-
fer of soundness, completeness and decidability®rd US over X & K. Let us
first consider thelegree of alternationf a (US & US)-formula A for US, dg(A),
andUS, dg(A).

dg(p) =0 dg(pp=0

dg(—A) = dg(A) dg(-A) =dg(A)

dg(A A B) = maxdg(A), dg(B)} dg(AA B) = maxdg(A), dg(B)}
dg(S(A, B)) = maxdg(A), dg(B)} dg(S(A, B)) = max dg(A), dg(B)}
dg(U (A, B)) = maxdg(A), dg(B)} dg(U(A, B)) = max dg(A), dg(B)}
dg(S(A, B)) = 1+ max dg(A), dg(B)} | dg(S(A, B)) = 1+ maxdg(A), dg(B)}
dg(U(A, B)) =1+ maxdg(A), dg(B)} | dg(U(A, B)) = 1+ maxdg(A), dg(B)}

Any formula A of US @ US can be seen as a formula of some finite number of
alternating temporalizations of the fordS(US(US( ... ))); more preciselyA can
be seen as aformulabiS(Ly), wheredg(A) = n, US(Lo) = US, US(Lo) = US, and
Ln-2i = US(Ln-2i-1), Ln—2i-1 = US(Ln_2i-2), fori = 0,1, ..., [3] — 1. This fact
is illustrated in Figurkt] The following Lemma actually allows us to see the indepen-
dent combination as the (infinite) union of a finite number of alternating temporaliza-
tions of US andUS; it will also be used in the proof of the transfer of completeness
and decidability (given completeness) {68 @ US.

Lemma54 LetUS and US be two complete logic systems. Then, A is a theorem
of US @ US iff it is a theorem ofUS(L,)), where dgA) = n.

Proof: If Ais atheorem ofJS(L,), all the inferences in its deduction can be re-
peated inJS @ US, so it is atheorem ofUS & US.

SupposeA is a theorem otJS & Us: let B4, ..., Bm= Abe adeduction oA
in US @ US and letn’ = maxdg(B;j)}, " > n. We claim that eactB; is a theorem
of US(Ly). In fact, by induction orm, if B; is obtained in the deduction by substi-
tuting into an axiom, the same substitution can be dongS(Ly); if B; is obtained
by Temporal Generalization fro;, j < i, then by the induction hypothesiB; is a
theorem olUS(Ly) and so isB;; if Bj is obtained by Modus Ponens fro) and By,

J, k < i, then by the induction hypothesiB; and B, are theorems dfS(L/) and so
is Bj.

SoAis a theorem obS(Ly) and, sinc&JS andUS are two complete logic sys-
tems, by Theorefd.Zleach of the alternating temporalizationdB(L,,) is a conser-
vative extension of the underlying logic; it follows thatis a theorem oUS(L,), as
desired. O

The transfer of soundness, completeness, and decidability follows directly from this
result.

Theorem 5.5 (Independent Combination) LetUS andUS be two sound and com-
plete logic systems over the clasgésand &K, respectively. Then their independent
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combinationUS @ US is sound and complete over the clagsd %K. If USandUS
are complete and decidable, sdU§ & US.

Proof: Soundness follows immediately from the validity of axioms and inference
rules. For completeness, suppose thas a consistent formula iS & US; by
Lemma=.4] A is consistent itJS(L,), So we construct a temporalized model for it,
and we obtain a modélTy, <1, g1, 01) over X (KX (X(...))), whereo; is the “cur-
rent time” necessary for the successive temporalizations. We show now how it can
be transformed into a model ovéf @ X .

Without loss of generality, suppose thi is the outermost logic system in the
multi-layered temporalized systedS(US(US( ... ))), and letn be the number of
alternations. The construction is recursive, starting with the outermost logic.<et
ndenote the step of the construction; i$ odd, it is aJS-temporalization, otherwise
itisaUS- -temporalization. At every stapve construct the se&rl, irpand<i,1
and the functiorg; ;1.

We start the construction of the model at step 0 with the temporalized model
(Ty, <1, 01, 01) such tha(Tl, <1) € X,and wetake< ; = @. At step| < n, consider
the current set of time poinf; according to the construction, each T, is associated
to:

¢ atemporalized mode; (t) = (T!
if i is even; or

¢ atemporalized modag; (t) = (T
if i is odd.

The pointt is made identical tof_ ; € T ;, so & to add the new model to the
current structure; note that this preserves the satisfiability of all formulasLat
'ﬁ+1 be the (possibly infinite) union of alrlt+1 forte Ti; similarly, <j.; and <j1
are generated. And finally, for eveng T, 1, the functiong;_; is constructed as the
union ofallgt, , fort e T;.

Repeating this constructiontimes, we obtain a combined model o&r® X,
M = (Tn, <n, <n, gn), such that for allt € T,,, gn(t) € P. Since satisfiability of for-
mulas is preserved at each step, it follows thats a model forA, and completeness
is proved.

For decidability, suppose we want to decide whether a forhAuaJS & US is
atheorem. By LemmB.4] this is equivalent to deciding whethére US(L,) is a the-
orem, wheren = dg(A). SinceUS/X and US/K are both complete and decidable,
by successive applications of Theorb) and (d), it follows that the following
logics are decidabldJS(US), US(US(US)) = US(Ly), .. ., US(Ln_1)= Ln; so alast
application of Theorerﬁb) and (d) yields that/S(L,, ) is decidable. O

i+1° |+1’ g|+1’ |+1) € K and take<,+1 =4,

i+1° <i1 G, o ,,) € X andtake<| =&,

6 Fulljoin Withrespecttothe generation of two-dimensional systems, the method
of independent combination has two main drawbacks. First, it generates logic sys-
tems whose formulas are evaluated at one single time point, not generating a broadly
two-dimensional logic. Second, since the method independently combines the two
component logic systems, no interaction between the dimensions is provided. As a
consequence, although a formula lik& A < F FA is expressible in its language,
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it will not be valid, as can easily be verified, for it expresses an interplay between the
dimensions. We therefore introduce the notion tiva-dimensional plane model

Definition 6.1 Let X andX be two classes of flow of time. Awvo-dimensional

plane modebver thefully combined clas& x X is a 5-tupleM = (T, <, T, <, 9),
where(T, <) e K, (T, <) e K andg: T x T — 2% is a two-dimensional assign-
ment. The semantics of the horizontal and vertical operators are independent of each
other.

M, t,x = S(A, B) iff thereexistss < tsuchthatM,s, x = Aand for all
us<u<t M, u, x = B.

M, t,x = S(A, B) iff there existsy<xsuch thatM,t, y = Aand for all
Z, y<Z<x, M,t,z = B.

Similarly for U andU, the semantics of atoms and boolean connectives remaining
the standard one. A formulais (strongly) valid ovetX x X if for all models M =
(T,<,T,<,g), forallt e Tandx e T we have, t, x = A.

With respect to the expressivity of fully combined two-dimensional languages, Ven-
ema 2] has shown that no finite set of two-dimensional temporal operators is ex-
pressively complete over the class of linear flows with respect to dyadic first-order
logic — despite the fact th&tS-temporal logic is expressively complete with respect
to monadic first-order logic oveX and overR, and that, with additional operators
(the Stavi operators), we can get expressive completenes@@amX |, (see Gab-
bay [L0J). So expressive completeness is transferred by neither full join nor any other
combination method.

It is easy to verify that the following formulas expressing the commutativity
of future and past operators between the two dimensions are valid formulas in two-
dimensional plane models.

I1 FFA< FFA
12 FPA< PFA
13 PFA< FPA
|14 PPA< PPA

Therefore, if we want to satisfy both the syntactic and the semantic criteria for two-
dimensionality, we may define the methodialf join containing the fully combined
language otJS andUS and their fully combined class of models. The question is
whether there is a method for combining their axiomatizations so as to generate a
fully joined axiomatizationhat transfers the properties of soundness, completeness,
and decidability. The answer, however, is no, not in general. In some cases we can
obtain the transfer of completeness, in some other cases it fails. To illustrate that, we
consider completeness results over classes of the form&% .

We start by defining some useful abbreviations. pdie a propositional atom,
and define:

hor(p) = O(pAH-pAG-p)
ver(p) = O(pAH=pAG=p).
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It is clear thathor(p) makesp true along the horizontal line and false elsewhere;
similarly for ver(p) with respect to the vertical.

The axiomatization o£JS x US over K i, x K, extends that ofJS & US
over X jin ® X in by including the join axiom$1-4 and the following inference
rules:

IR1 if - hor(p) — Aandp does not occur irA, then- A
IR2 if - ver(p) — Aandp does not occur irA, then A.

IR1andlR2 are two-dimensional extensions of the irreflexivity inferrence rule (IRR)
defined in Gabbayd] for the one-dimensional casetifp A H—p — Aandp does
not occur inA, thenk A.

Theorem 6.2 (2D-completeness) There is a sound and complete axiomatization
over the class of full two-dimensional temporal models &g x XK jin-

The proof consists of a Henkin-style construction of a two-dimensional grid, where
each pointis a maximally consistent set. The basic step of the construction is the elim-
ination of “defects” from the grid, i.e., adding new points to the grid for a semantic
condition that fails for the grid. The final model is obtained as the (infinite) union of
all steps, and the grid thus constructed is shown to Bg;a x X i, model for an
original consistent formula. The full details of the proof can be founijndut due
to space limitations (the full proof takes up to ten pages) we omit it het&. 4|f is
the class of all linear and discrete flowg] plso shows completeness results for the
classes gis X K giss @ X Q, Kjin X Kgisy Kiin X Q, andQ x XK gis.

The negative result is the following.

Proposition 6.3 (2D-unaxiomatizability) There are no finite axiomatizations for
the (strongly) valid two-dimensional formulas over the claséesZ, N x N, and
R x R.

This proposition follows directly from Venema'’s proof that the valid formulas over
the upper half two-dimensional semi-plane are not enumerablé foZ, N x N,

or R x R, which in turn was based on Halpern and ShohB#].[ Since there are
sound, complete, and decidallss-temporal logics ovetZ, N, and R (cf. ﬂ
Reynolds[[8], Buchi [2], Burgess and Gurevick]), the general conclusion on full
join is the following.

Theorem 6.4 (Full Join) Completeness and decidability do not transfer in general
through full join.

It has to be noted that two-dimensional temporal logics seem to behave like modal
logics in the following sense. We can see the result of the independent combination
of US andUS as generating a “minimal” combination of the logics, i.e., one without
any interference between the dimensions. The addition of extra axioms, inference
rules, or an extra condition on its models has to be studied on its own, just as adding
anew axiom to a modal logic or imposing a new property on its accessibility relation
has to be analyzed on its own.

The full join method illustrates the conflict between the generality of a method
and its ability to achieve the transfer of logical properties. We next restrict the join
method so as to recover the transfer of logical properties.



TEMPORAL LOGIC SYSTEMS 223

7 Restrictedjoin  The fact that the transfer of logical properties fails for the join of
two US-temporal logics does not mean that the join of any two temporal logic systems
fails to achieve this transfer. We restrict the vertical logic system to a temporal logic
NP with operatorsD for Next time and@ for Previous time; the formation rules for

the formulas oNP are the standard ones. This restriction ofltf&language forO
and @ can be defined in terms &f and S, namely by

OA=getU(A, L)
@ A=qer S(A, L)

Not only is the expressivity of the language reduced this way, but also the underlying
flow of time is now restricted to a discrete one; in fact, we concentrate our attention
on integer-like flows of time.

Leth:Z — P be atemporal assignment over the integers so that the semantics
of NP over the integers is the usual one for atoms and boolean operators and

(Z,<,h),t=OA iff (Z,<,h),t+1=A
(Z,<,h),t=@A iff (Z,<,h),t—1A.

An axiomatization foNP/Z is given by the classical tautologies plus

NPL O@p— p

NP2 O—p< —Op

NP3 O(pAg)— OpAOq

NP4 The mirror image oNP1-3 obtained by swappin® and @.

The rules of inference are the usual Substitution, Modus Ponens, and Temporal Gen-
eralization (fromAinfer O Aand @ A).

The converse of each axiom can be straightforwardly derived, so the formulas
on both sides of the>-connective are actually equivalent. It follows that evidiy-
formula can be transformed into an equivalent one by “pushing in” the temporal op-
erators, e.g., by following the arrows of the axioms, and by “cancelling” the occur-

to @ p. The resultingNP-normal formformula is a boolean combination of formulas

of the form O~ p and ® g, wherep andq are atomsk, | € N and Ofisa sequence

of O-symbols of size, similarly for 5'; it isuseful sometimes to considenega-

tive or 0, so we defin® ‘A= @ AandO°A= A Asa example, the formula
such normal form gives us very simple proofs for completeness and decidability of
NP/Z that we outline next.

For completeness, |&t be a possibly infinite consistent set\P-formulas and
assume all formulas in the set are in the normal foEhean be seen as a consistent set
of propositional formulas where each maximal subformula of the f@r'ﬁp is under-
stood as a new propositional atom, sdigbe a propositional valuation assigning ev-
ery extended atom intdrue, falsg. Forne Z, leth(n) = {pe P | ho(O" p) = true}.
Clearly (Z, <, h) is a model for the original set.

For decidability, letA be a formula oNP and letA* be its normal form; clearly
there exists an algorithm to transforninto A*. By considering subformulas of the
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form C_)kp as new atomsk possibly negative, we apply any decision procedure for
propositional logic toA*. Ais aNP-valid formula iff A* is a propositional tautology.

Definition 7.1 Therestricted joinof temporal logic systemgS/X and NP/Z is
the two-dimensional temporal logic systéhs x NP given by:

e the fully combined language &fS andNP;

¢ the two-dimensional plane model oVv&r x Z, equipped with the broadly two-
dimensional semantics;

e the union of the axioms d#S/X andNP/Z plus the join axioms

OU(p,a) — UOp. Oa)
OS8(p,q) > SOp, Oq)

plus their duals obtained by swapping with @; the inference rules are just
the union of the inference rules of both component systems.

What has therefore been restricted in the interlacing process is the expressivity of the
language over the vertical dimension, which also restricted the underlying flow of
time to a discrete one. The following gives us a normal formU8rx NP.

Lemma7.2 Let Abe aformulaofJS x NP. There exists a normal form formula
A* equivalent to A such that all the occurrences(ofand @ in it are in the form

(_)kp and ilq, where p and g are atoms.

Proof: First we show that the converse of the join axioms are theorems too. For
that, note that! and Srespect the&ongruence property.e., if A<~ CandB < D
thenU (A, B) < U(C, D) andS(A, B) < S(C, D). Also note that

(equiv) F(p< O@p) andk (p< @O Dp).

The transitivity of the—-operator connects the steps in the proof of the formula
UOp, Oq) — OU(p, q) below:

UOp,0q) - O@U(Op, Oq)  byequiv
- OU(@Op, @0OQ) by join axiom
— OU(p, Q) by equiv and congruence
It follows thatU (O p, Oq) < OU(p, g). Itiscompletely analogous to show the
converse of other join axioms, so we omit the details.

Given A in the language oS x NP, the equivalence between both sides of
the join axioms allows for “pushing in” the vertical operatgpsand @, so asimple
induction on the number of nested temporal operatofsshows an algorithmic way
to generate an equivalent formu in the desired normal form. O

Theorem 7.3 (Completeness via restricted join)Let US be a logic system com-
plete over the clas& C K i, Then the two-dimensional systéis x NP is com-
plete overk x Z.

Proof: Consider dJS x NP-consistent formula and assume it is in the normal
form. So we can seA as aJS-formula over the extended set of atoﬁ)'s(, k possibly
negative or 0. From the completenes&J&/K there exists a one-dimensional model
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(T, <, hys) for Aat a pointo € T, where(T, <) € K. Define the two-dimensional
assignment

hik.t) = {pe P | Op e hys®)}.

Clearly,(T, <, Z, <z, h) is a two-dimensional plangS x NP-model forA at (o, 0).
O

Corollary 7.4 If US/K is strongly complete, so IS x NP/ K x Z.

Theorem 7.5 (Decidability via restricted join) If the logic systenS is decidable
overk, soisUS x NP overX x Z.

Proof: The argument of the proof is the same as that of the decidabildPofAll

we have to do is note that there exists an algorithmic way to convert a combined two-
dimensional formula into its normal form, so it can be seenldSdormula, and we

can apply theJS-decision procedure to it. O

So by restricting the expressivity and the underlying class of flows of time, we can
obtain the transfer of the basic logical properties via restricted join. It should not be
difficult to extend these results 1§ instead ofZ, although we do not explore this
possibility here.

Itis also worth noting that the restricted join method answers a conjecture posed
by Venema[PZ] on the existence of some expressively limited two-dimensional tem-
poral logic overZ x 7Z that was “well behaved” in the sense of having the complete-
ness and decidability properties.

8 The two-dimensional diagonal We now study some properties of the diago-

nal in two-dimensional plane models. The diagonal is a privileged line in the two-
dimensional model intended to represent the sequence of time points we call “now,”
i.e., the time points on which an historical observer is expected to traverse. The ob-
server is, therefore, on the diagonal when he or she poses a query (i.e., evaluates the
truth value of a formula) on a two-dimensional model. The diagonal is illustrated in
Figurelg]

So lets be a special atom and consider the formulas:
D1 08 A 08

D2 § - (G—=8 A H=8 A G=8 A H=6)

D3 § —» (HG—8 A GH=$)

Let Diag = OJO(D1 A D2 A D3). The intuition behindDiag is the following.
D1 implies that the two-dimensional diagonal can always be reached in both verti-
cal and horizontal direction®2 implies that there are no two diagonal points on the
same horizontal line and on the same vertical line, @Bdmplies that the diagonal
goes in the direction SW-NE. We say thaiag characterizes a two-dimensional di-
agonal in the following sense.

Proposition 8.1 LetM = (T, <, T, <, g) be a full two-dimensional model over
K x K, K, K € K,in, and lets be a propositional letter. Then the following are
equivalent.

(a) M, t, x = Diag, for some tc T and xe T.
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T2 Fs Lo
Ps '

Ps

(T,<)

Figure 8: The two-dimensional diagonal

(b) M, t,x = Diag,forallt € T andxe T.
(c) There exists an isomorphismT — T such thatM, t, x = § iff x = i(t).

Proof: Itis straightforward to show that (&= (b) and (c)= (a); we show only
(b) = (c). So assume th&¥, t, x |= Diag, forallt € T andx e T. Define

i={t,X)eTxT|MtXxE=S§.
All we have to show is thatis an isomorphism.

e i,i~tarefunctions such thaiom(i) = T anddom(i—1) = T. Suppose that both
(t, X1) and(t, xo) are ini; thenM , t, x; =8 andM,, t, X, |= 8. By linearity of
T, X1 = Xo, X1 < X2 OF Xo < X1, butD2 eliminates the latter twd)1 gives us that
dom(i) = T. Similarly, the linearity ofT andD2 gives us thai! is a function
andD1 gives us thatlom(i—%) = T.

e i(t)=x iff i~1(x) =t follows directly from the definition. Sois a bijec-
tion.

e i preserves ordering. Suppdse< t; by the linearity of T we have three pos-
sibilities:

— i(ty) = i(tp) contradictd is a bijection.
— i(ty) <i(ty) contradictd3.
— i(ty) <i(tp) is the only possible option.

Therefore is an isomorphism, which proves the result. O

This result shows that by addiil-D3 to the axiomatization over the two-dimen-
sional planeX ;;, x K i, of SectiorEhives us completeness over the class of models
ofthe form(T, <, T, <, g), where(T, <) € K ;. Itfollows from [E however, that
such a logic system is undecidable.

The diagonal is interpreted as the sequence of time points we call “now.” The
diagonal divides the two-dimensional plane in two semi-planes. The semi-plane that
is to the (horizontal) left of the diagonal is “the past,” and the fornfedaholds over
all points of this semi-plane. Similarly, the semi-plane that is to the (horizontal) right
of the diagonal is “the future,” and the formulRb holds over all points of this semi-
plane. Figuruts this fact in evidence. If we assume tBaag holds overM such
thati is the isomorphism defined in LemBal]t < siff i(t) <i(s), then
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M, t,x=F§ iff existss> tsuchthatM,s, x = § andi(s) = x
iff existsy=i(t)<xsuchthatM,t,y=é
iff M, t, xE= PS.

Similarly, it can be shown that:
M, t,x=Ps iff M, t xkE=Fs.
It follows that the following formula is valid foUS x US overX in x K in:
Diag — ((F§ <> P8§) A (P§ <> F3§)).

As a consequencé$ holds over all points of the “past” semi-plane aRd holds
over all points of the “future” semi-plane, as is indicated in Figglre

The formulaDiag is in the language oS x USbut not in the language of
US x NP, for Diag contains the vertical temporal operat@sH, 0 and¢. Tochar-
acterize a two-dimensional diagonalits x NP we do the following. We say that a
formula A holds overor is valid overa two-dimensional modeM if for everyt € T
and everyx e T, itisthe case tha®/, t, x = A. Consider the formulas

d1 ¢s
dl § - (G=8 A H=é)
dl § < 008

wheres is a proposition. Those formulas are all in the languadé®# NP for Diag
(so also in the language OIS x US), and they can characterize the two-dimensional
diagonal due to the following property.

Proposition 8.2 Let M be a two-dimensional plane model ov&ix Z. Then the
formulaD1 A D2 A D3 holds overM iff d1 A d2 A d3 holds overM.

Proof: From Propositiof8.1lwe know thatD1 A D2 A D3 holds overd/ iff the
relationi defined as
i = {(t,X) € Z X Z| M.t,X =68}

is an isomorphism iZ. So dl we have to do is to prove thats defined above is an
isomorphism iffd1 A d2A d3 holds overM. Theonly if part is a straightforward
verification that for allx andt in Z, M, t, x =d1Ad2Ad3.

For theif part, assumdl A d2A d3holds overM. Then:

(a) d1 gives us that for every there exists @ such thatM, t, x |= §;

(b) d2 gives us that for every, t,t', t £ t/, M, t, x = § implies M, t', X |}~ §;

(c) d3 give us that for every, t, M, t,x = §iff M, t+ 1, x+ 1 = § iff for
everyne Z, M, t+n,x+n = 6.

The first two items give us that' : Z — Z is a function. To show thatis also
afunction, suppose that, x;), (t, xo) € i. By linearity of Z, it follows that either
X1 < X2 OF Xp < X1 OF X3 = Xo. LetX; — xo = m; then, by the third item abovét +
m, Xo + M= X;) € i, sot = (t+ m) andm= 0. It follows thatx; = x,, S0i : Z — Z
is a function. Directly by the definition af it follows thati is a bijection.

By the third item above, if(t;) = x; andi(ty) = Xo, thent; — to = X; — Xo. It
follows thati is order preserving and hence an isomorphism, which finishes the proof.

O
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It would be desirable to generalize the idea of a diagonal as the sequence of “now”
moments to any pair of flows of time that are not necessarily isomorphic. For that,
we would have to create an order between the points of the two flows, i.e., we would
have to merge the flows.

So let(T, <) and(T, <) be two flows of time such thak andT are disjoint.
Then there always exists a flo@W’, <’) and a mapping : TUT — T’ such thatf
is one-to-one and order preserving. Thenerge of(T, <) and (T, <) is the flow
of time consisting of the image df ordered by the restriction of’ to the image of
f. An example of anf-merge is shown in Figu where f (y) is made equal, via
merge, tof (X) and on the merged flow the order is preserved, i.e., originakyy
andx< y and o the f-merged flowf (x) <’ f(y) = f(X) <’ f(y).

T< X y T.2)

I
- X
<

Figure 9: Thef-merge

We can then construct a two-dimensional model with two copies of fthe
merged flow, in which we can define a diagonal o¢EY, <’) x (T’, <’) as shown in
FigurellQ] Another particularly interesting situation arises when fhmerged flow
(T’, <’) is identical to one of the component flows, e@., <), sothat f is anem-
beddingof (T, <) into (T, <). In this case, the flowT, <) could be viewed as a
more “abstract” representation 0T, <) wherein several details, i.e., pieces of in-
formation, points in time, are ignored.

(T, <) (T, <"

(T, <) (T, <)
Figure 10: The diagonal of two distinct flows

The f-merge construction serves as motivation for another method of combining
two one-dimensional temporal logics, this time generating another one-dimensional
logic. This could be achieved over the class of &iinerges of its two-component
flows of time or subclasses of it. We could then study the transfer of logical properties
in the same way as we have done in this and the previous section, but those matters
remain beyond the scope of this paper.
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9 Conclusion This paper dealt with the combination of two logic systems in order
to obtain a new logic system. The issues were:

e Several methods of combination of two logic systems were presented. Each
combination involved at least one temporal logic system. Each method had a
particular discipline for combining the language, the semantics, and the infer-
ence system of two logic systems. Each combination generated a single logic
system.

e The study of the transfer of logical properties from the component systems
into their combined form has been the major point in the analysis of combina-
tion methods. The basic logical properties whose transfer was analyzed were
soundness, completeness, and decidability; for some combination methods,
the transfer of other properties, such as conservativeness and the compactness
property (in the form of strong completeness), was also investigated.

e The investigation of four basic methods has been accomplished. The temporal-
ization method and the independent combination method were shown to trans-
fer all basic properties, although they do not generate a sufficiently expressive
system to be called fully two-dimensional. The full join method does generate
a fully two-dimensional temporal system, but in many cases it fails to trans-
fer even the completeness property. As a compromise, it was shown that a re-
stricted join method, although generating two-dimensional temporal logic sys-
tems that were not as expressive and generic as the fully interlaced one, accom-
plishes the transfer of all basic logical properties.

Another contribution of our analysis was to answer a question raised by Ven-
ema 2] on the existence of a fragment of the two-dimensional plane temporal logic
that, in his own words, was “better behaved” than the two-dimensional plane system
with respect to completeness and decidability properties. We have shown that the
two-dimensional temporal logic systems obtained by restricted join are an example
of such fragments.

Another question raised by Venema in that work remains open, namely, whether
there exists a complete axiomatization over the two-dimensional model using only
canonical inference rules, i.e., without using the special inferencelfRlieandl R2.

This problem seems to be a very hard one. Nevertheless we succeeded in extending
Venema’s completeness result, which originally holds for only two-dimensional flows
built from two identical one-dimensional flows, to any two-dimensional flow built
from any flow in the classeX jin, X gis» K dense aNAQ.

9.1 Comparisons, extensions, and further work  With respect to combination of
logics, the works found in the literature that most closely approximate ours in spirit
and aims are Kracht and Wolt&d] and an unpublished paper of Fine and Schurz.
Both works concentrated on monomodal logics and investigated the transfer of logi-
cal properties for only the method we called here independent combination. However,
their work investigated several paths that suggest that further work may be done in
our studies. First, they analyzed the transfer of many other properties from two logic
systems to its combined form, e.g., finite model property and interpolation. Second,
both works did not concentrate only on linear systems, and they were able to extend
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their results to any class of underlying Kripke frames. Third, Fine and Schurz’s work
generalized the independent combination method to more than two monomodal log-
ics.

Those two papers cited above therefore suggest several extensions to our work.
Note, however, that the temporalization method was easily shown to be extensible to
many temporal logic systems in Example 2.4. The focus on linear flows of time was
due to database applications of two-dimensional temporal logics[&kand [B], but
we believe that this restriction may be lifted without damaging the transfer results of
the temporalization and independent combination methods. These have to be further
investigated, and the transfer of any other logical property has to be analyzed on its
own.

The generalization of combination methods other than the independent combi-
nation method to modal logics is another area for further work. As notdgl,ithie
temporalization process is directly extendable to monomodal logics. It may even be
the case that, for monomodal logics, the full join method achieves transfer of com-
pleteness over several classes of fully two-dimensional Kripke frames using only
canonical inference rules, as suggested by the resuli$]n [

The complexity class of the decision problem for the combined logic is another
interesting subject for study. For the independent combination of monomodal logics,
such a study was done by Spad][ and the conclusion was that the satisfiability
problem of an independently combined logic is either reducible to that of one of the
component logics, oritiBSPACEhard oritis in NP. We believe a similar result can be
obtained for the temporalization and the independent combination of temporal logics,
although the details have not yet been worked out. The complexity of the full and
restricted join methods still have to be studied.

All the systems dealt with in this paper were extensions of classical logic. It is
possible that the temporalization process preserves its transfer properties even when
the underlying system is not an extension of classical logic. What if the external tem-
poral logic is nonclassical itself? The same question applies to other combination
methods. Do they transfer logical properties when one or both of the combined tem-
poral of modal logics is not classical? GabHag][has recently posed that question
in a very generic framework involving Labelled Deductive Systems (LDS) and found
that in order to obtain the transfer of completeness we do not need the full power of
classical logic but only some weaker form of monotonicity. He has also developed
general methods of combination calli#ring that depend on the choice of a fibring
function. A fibring function maps the truth value of atoms in one logic’s semantics
to the semantics of formulas in another logic's semantics. GabHayistailingpro-
cess, obtained with a certain class of fibring functions, is similar to the independent
combination method extended to logics respecting those weaker conditions of mono-
tonicity. More work on this area is needed to clarify exactly how fibring is related to
existing combination methods.

There are also other possible types of combinations of one-dimensional temporal
logics that may be explored. As pointed out in SedBbtwo linear flows of time can
be merged into another one; the question is then how to combine two one-dimensional
temporal logics into another one-dimensional temporal logic over the merged flow.
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