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Connection Structures: Grzegorczyk’'s and
Whitehead'’s Definitions of Point

LOREDANA BIACINO and GIANGIACOMO GERLA

Abstract  Whitehead, in his famous book Process and Reality, proposed a
definition of point assuming the concepts of “region” and “ connection relation”
as primitive. Several years after and independently Grzegorczyk, in abrief but
very interesting paper, proposed another definition of point inasysteminwhich
theinclusion relation and the rel ation of being separated were assumed as prim-
itive. In this paper we compare their definitions and we show that, under rather
natural assumptions, they coincide.

1 Introduction When facing the literature on the axiomatic foundation of geome-
try, we notice surprisingly that, although the primitive relations and the axioms may
vary, there is a primitive term that remains in all cases the same: the point. On the
other hand, sinceit isevident that nature does not provide objects without dimensions
(aproperty that geometry ascribesto points), it should be of someinterest conceiving
axiomatic systemsin which the concept of point is defined from primitive terms more
easily interpretable in nature (information about the attemptsin this direction can be
found in Gerla fg]).

Now, an interesting possibility isto consider as primitive the regions, theinclu-
sion between regions, and the “ connection relation,” that is, the relation between two
regions that overlap or have at least a common boundary point. Structures of such
atype, which we call connection structures, were first examined by Laguna [4] in
1922 . Successively, in 1929 Whitehead [[B] put the connection relation on the basis
of avery extensive analysisof the abstraction process|eading to the concepts of point,
line and surface. Whitehead listed a very large sequence of properties which a con-
nection relation has to verify—In Chapter 2 Whitehead exposed 31 assumptions!—
but no attempt was made to frame his analysis into a mathematical theory. In partic-
ular, no attempt was made to reduce his system of assumptions and definitions to a
logical minimum. A first step in this direction was made in Gerla and Tortora[E]; a
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rather different version of Whitehead's system was proposed by Clarke [[2] and [[3]
and criticized by Biacino and Gerla[[I].

Independently from Whitehead's work, Grzegorczyk [7] assumed as primitive
the inclusion relation and the relation of being separated. Like Whitehead, the pur-
pose of Grzegorczyk is*to make more precise the well-known conviction that geom-
etry may be built without speaking about points.” Indeed, by avery simple system of
axioms he was able to obtain arepresentation theorem relating his*topol ogy without
points’ with the classical topology theory. Now, as a matter of fact, if we substitute
the relation of being separated by its negation, it becomes clear that Grzegorczyk's
work isvery close to Whitehead's ideas and therefore that it furnishes avery power-
ful mathematical treatment of connection structures.

In this note we confine ourselves to rewrite in a more manageable manner the
system of axioms of Grzegorczyk and to compare the definitions of point given by
Whitehead and Grzegorczyk respectively.

2 Preliminaries  We begin by considering Grzegorczyk’s axiom system for the ge-
ometry without points. Grzegorczyk [7] assumed as primitive a set X whose ele-
ments are called spatial bodies, the inclusion relation and the relation of being sep-
arated. However, in order to emphasize the similarity with the analysis proposed by
Whitehead [[8], we prefer to assume the negation of the relation of being separated,
which we call connection relation. We will rewrite Grzegorczyk’s axioms in accor-
dance with such achoice. So, we consider structures (R, <, C), which we call con-
nection structures, such that < and C are binary relationsin R satisfying the axioms

Go (R, =<)isamereologica field;
G; XCxforevery xe R;

G, XCy= yCxforeveryx,ye R;
Gy x=y=Cx <cC(y)

where

e amereological field isthe structure obtained from a complete Boolean algebra
B by deleting the zero-element, i.e., R = B — {0};

e C(2)={xe R|zCx} forevery ze R.
We call regionsthe elements of &, inclusion relation the relation <, and connection
relation the relation C. As an immediate consequence of G; and Gz, we have that
every region isconnected with the unity 1 of & . Inthe following we say that aregion
x overlapsaregion y and write xOy if aregion zexistssuchthatz< xandz< y (i.e,,
XAY#0). Also, weset O(2) = {x e R | zOx}.

Proposition 2.1  For every pair of regions x, y

1. xCy,y < z= xCz
2. X<y= xCy;
3. X0y = XCy.

Proof: (1) is aconsequence of Gz, and (2) follows from G, and (1). To prove (3)
assume that xOy and therefore that z € R existssuchthat z< xandz< y. Asa
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consequence, since C(z) € C(x), wehave zCx and, by G,, XCz. SinceC(z) € C(y),
thisimplies xCy. O
Proposition[2.1]3 says that C containstherelation O. Let B be any complete Boolean
algebraand set R = {Xx € B| x # 0} then a“minimal” connection structurein % is
obtained by setting C equal to the overlapping relation O. A “maximal” connection
structure is obtained by setting C equal to therelation ® x X, i.e., the relation sat-
isfied by any pair (x, y) of regions.

Definition 2.2 We say that x is nontangentially enclosed in y and we write x «
yif C(x) € O(y).

The following proposition gives a simple characterization of the relation « .

Proposition 2.3  For every pair of regions x and y, withy # 1,
XLY &= XZ—-Y.

Proof: Letx <y, thenC(x) C O(y) andtherefore, since —ydoesnot overlapy, —y
does not belong to C(x), that isx € — y. Conversely, assumethat X € — y then x €z
forevery z< —y. So, if zisconnected with x, wehave z# —y and thereforezA y £ 0.
Thus C(x) C O(y) that is, x < V. O

Proposition 2.4  The following statements hold for every X, y, z, v € R,

1l XKy < —y<K —x(providedthat x# 1land y # 1),
XLYy=X=Y,

XLKyandy<z=x<«K2z

X<yandy<«z= XKz

XKuanduKy= X<y,

6. X<« 1.

Proof: To prove (1) notice that by Proposition[2.3]

akrowbd

XLKY = XC—y & —YIX & -y —X

Implication (2) is obvious in the case y = 1, otherwise, from —y €x, we have that
—y does not overlap x and therefore x < y. (3) follows from Proposition[2.1]1. To
prove (4) assumethat X < yand y « z, then —x > —y and —y > —z. Consequently,
by (3), —x > —z and therefore x « z. Finaly, (5) is a consequence of (3) and (2),
and (6) follows from the equality O(1) = R..

The converse of (2) isfase, in general. Asan example, if C = R x R then
since, C(x) = R, for every x € X, we havethat x < yonly if y= 1. Asamatter of
fact, as Proposition[2.3khows, only if C coincides with the overlapping relation then
« isequal to < . From (6) it followsthat 1« 1 and therefore that « isnot a“strict”
order. O

Remark 2.5 Perhapsit is worth noting that we can assume as primitive the non-
tangential inclusion instead of the connection relation. Indeed, assume that & is a
mereological field, then Proposition R.4lsays that the nontangential inclusion satis-
fies the properties
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Al XKy <= —-y<K —Xx(providedthat x# 1andy # 1)
Ay XLKYy= X<y
A; Xgyady<z=Xx«Kz

Conversely, let « be abinary relation in a mereological field R satisfying A1, Ao,
and A3. Then we can define arelation C by setting xCy provided that y = 1 or X «
—Vy. Itiseasily proventhat (X, <, C) isaconnection structure. Indeed, by definition,
we have that 1C1 while, in the case x # 1, since by A, we have that X « —X, itis
XCx. To prove G,, assume that XCy, then if x = 1 itisimmediate that yCx. If x # 1
and y = 1then y « —x since otherwise by A, we have —x = 1 and therefore x = 0.
So, we can conclude that yCx. If x # 1 and y # 1 then by A,

XCy = XK —y= Yy K —X= YyCxX.

Finally to prove Gz, assume that x < y and that zCx. We have to prove that zCy.
Now, inthecase x = 1, sinceitisaso y = 1, we have that zCy. Inthecase x # 1
andy = litisimmediatethat zCy. Inthecase X # 1and y # 1 we havethat z &« —x
and thereforesince —y < —x by Az itisalso z « —y and therefore zCy.

Now, denote by «’ the relation of nontangential inclusion associated with the
structure defined above. Thenif y # 1 we have

XL Y & XC-y < XK.

Inthe case y = 1, we have that X «’ 1 but it is possible that x <« 1 does not hold.
As an example, let « be the empty relation, i.e., no pair of regions x and y satisfies
X < y. Then A1, A, and Az are trivially satisfied but, while x «’ 1 we have that
X « 1. (Notice that the associated relation C defines the maxima model in X..) So,
if wewant «’ to coincide with <« we have to add the axiom

A4 XK 1.

3 Thedefinition of pointin Grzegorczyk By following Grzegorczyk, we say that
aset p of regionsis a representative of a point if:

A. piswithout minimum and totally ordered with respect to «<;
B. giventwo regions u and v, uOx and vOx for every x € p impliesuCv.

A pointisafilter P generated by arepresentative of apoint p,i.e., P={ye R |y > X
for asuitable x € p}. A point P belongs (is adherent) to aregion r provided that r is
an element of P (r overlaps with all the elements of P). If p represents the point P
and z € p, thenthe“cut” {x € p|x < z} represents P too. Consequently, if P belongs
totheregionr we may represent P by achain of regionsall containedinr. We denote
by P the set of points and by P(x) the set of points belonging to the region x.

Proposition 3.1 Let z, Z beregions, z# 1 and Z # 1, and P a point. Then the
following statements hold.

1l P¢z < Pisadherentto —z
2. Padherenttozandz« 7 = P e 7.
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Proof: (1) P¢z <= VXxe P(X£2) < Vxe P(XA—-z#0) <= Pisadher-
entto —z (2) Suppose P adherentto z, z« Z and P ¢ Z. Then by (1) P isadherent
to —Z <o, by (B), we have —Z'Cz Thisisan absurdity since z « Z is equivaent to
-7 Cz O

The following two axioms concern the existence of points:

G, everyregion hasapoint;
Gs XCy= apoint P existssuchthat P isadherentto x and y.

Observe that (B) entailsthat if there is a point adherent to both regions x and y, then
X is connected with y. Axiom Gs claims that the converse implication holds, too.
Also, notice that, since a representative of a point is an infinite class of regions, the
existence of apoint entailsthat & isinfinite. Consequently, each minimal connection
structure in afinite mereological field isamodel of Go—G3 in which neither G4 nor
Gs is satisfied. This shows that these axioms are independent from Gy—Gs.

Remark 3.2 Axioms G4 and Gs enable usto prove that, asamatter of fact, theim-
plication in Gz isan equivalence. Indeed, suppose C(x) € C(y) but x £ y. Then x A
—y#0and, by AXiom Gy, 3P € XA —Yy. Sodr € Psuchthatr <« xA —y < —yand,
by Propositionlﬁ]r Zy. Ontheother handr € C(x) and, sinceC(x) € C(y), rCy, an
absurdity. This meansthat, by following Whitehead, it should be possible to assume
as primitive only the connection relation and to define the order relation by setting
X < y provided that C(x) € C(y).

Grzegorczyk proves two basic theorems. Although these theorems are not used in
this paper, we will enunciate them for their intrinsic interest. In fact, they state that
the pointless theory of the connection structuresis, in asense, equivalent to the point-
based theory of topological spaces. Recall that a subset x of atopological spaceis
called (open) regular provided that x = x. The first theorem shows how to obtain a
connection structure by starting from atopological space.

Theorem 3.3 Let 7 be a Hausdorff topology on the set S, R the class of the
nonempty regular elements of 7" and put, for every x, y € R, XCy if XNy # &. Then
(R, C, C) isaconnection structure in which x <« y means X C y. Moreover, if every
point is the intersection of a strictly decreasing (with respect to «) family of open
sets, then (R, C, C) satisfies G4—Gs, too.

In any connection structure we havethat 1 <« 1. Now, in the structure (R, <, C) de-
fined above, aregion x # 1 exists such that x <« xif and only if thetopology 7 is not
connected. Indeed, recall that 7 is not connected if and only if a coplen set x (a set
that isboth open and closed) existsdifferent from @ and S. Moreover, itisimmediate
that every coplen set xisaregular set such that X C x and that every regular set x such
that X C x isacoplen. Notice also that if P isan element of Sthen by hypothesis a
representative of a point p exists such that P coincides with the intersection Np. In
other words, every element of Sis associated with a point in the sense of Grzegor-
czyk. The converseimplication is not true, in general, since if 7 is not compact and
p is arepresentative of point, then N p can be empty or not.

The second theorem shows that every connection structure can be obtained by
starting from a suitabl e topol ogical space.
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Theorem 3.4 Assume that (R, <, C) is a connection structure satisfying G4—Gs
and let 7 be the topology on P generated by {P(x) | x € R}, then

1. {P(x)|x € R} isthe class of the nonempty regular elements of 7’
2. X<y <= P(X) S P(y); xKy <= P(X) € P(y);
3. XCy < P(X)NP(y) # @, Pisadherentto x <= P € P(x).

4 Some consequences of Grzegorczyk’s system  In the following proposition we
give some immediate consequences of axioms G4 and Gs that will be useful in the

sequel.
Proposition 4.1  The following statements hold.

1. xC(zvZ) <= xCzor xCZ.
2 XKZYKZISXAYKINZ, XVYyKzZVTZ.

Proof: At first wewill prove that
Z2KZ =VYXx(xe C(2) = xAZ € C(2).

Indeed, let x € C(2), then by Gs there exists a point P adherent to z and x. So for
every regionr in P,rOzand rOx. Since P isadherent to zand z « Z, from Propo-
sition[2.1]2 it follows that P € Z. Then we may represent P by achain p of regions
containedinZ. Sincer A x# Oforeveryr € p, wehaveasor A XA Z # Ofor every
r € p and therefore P isadherent to zA Z. Since P is adherent to z aso, by (B) we
havethat x A Z € C(2).

(1) Assumethat xC(zvVv Z) and that x €z, x €Z. Then x « —zand x« —Z, that is
C(X) € O(—2) and C(x) € O(—7Z). Let y € C(x), then by the above proven impli-
cation we havethat y A —z € C(X). Since C(x) C O(—Z) itisyAn —zAn —Z #0.
Thus, for every y € C(x), wehavethat yA —(zVv Z) # 0, thatisyO — (zv Z). This
meansthat X « —(zVv Z) and so x €(zV Z) despite the hypothesis.

(2 Let x < zand y « Z, then, by Proposition23] x € — zand y € — Z and so
XAYZ—zandXAYEZ—Z. By (DXAYy@Z—zv—-ZthaisxrnyZ— (znZ)and
thismeansthat x Ay < ZA Z. Inasimilar way oneprovesthat xvy kK zvz. O

The following proposition shows an interesting property of the regions that was em-
phasized by Whitehead. In particular, from this property it follows that no region is
an atom, i.e., that the Boolean algebra under consideration is not atomic.

Proposition 4.2  Every region contains two subregions that are not connected.

Proof: Letr bearegion, then by G4 apoint P exists belonging tor and if p repre-
sents P then x € p existssuch that X « r. Since p iswithout minimumthereisx’ € p
suchthat X' « x, and X' # X. So x — X' isaregion. By G4 apoint P’ exists belonging
tox— X and, if p’ represents P/, theny € p’ existssuchthat y <« x — X' = XA (—X)).
Thereforey € — (x — X') thatisy €(—x Vv X). Thus, y €x so y and X’ are two sub-
regions of r that are not connected. O
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5 Thedefinition of pointin Whitehead ~Whitehead [[8]] defined a connection struc-
tureasapair (X, C) where R is aset whose elements are called regionsand C isa
binary relationin &, the connection relation. The basic subject of Whitehead's book
isthe abstractive process enabling usto define points, lines and areas by starting from
the primitive concepts of region and connection relation. The properties assigned to
the connection structure look different from the oneslisted in Grzegorczyk’s system.
For example, theinclusion relation is not primitive, but is defined by the equivalence

X<y < Cx) CC(y).

Also, the class of regions does not constitute a mereological field. Indeed, while the
ideaof regionin Grzegorczyk isrelated to the whol e class of the regular open subsets,
Whitehead seems to confine his attention only to the connected subsets. On the other
hand, the class of connected subsetsis not closed with respect to the unions. However,
sincethe differences are not substantial (see for example the remark in Section 3), we
will refer to Grzegorczyk’s system of axioms, just comparing, in such a frame, the
definitions of point proposed by Whitehead and Grzegorczyk.
Whitehead defined an abstractive set as a class « of regions such that

(j) «istotaly ordered with respect to «;
(i) thereisnoregionincluded in every element of «.

An abstractive set o covers an abstractive set 8, in brief o > 8, if for every x € o
there exists y € B such that x > y. The covering relation is a preorder and therefore
it defines an equivalence relation = in the following way.

a=p < a>pandp>a.

Given an abstractive process «, we denote by [«] the related complete class of equiv-
alence. Whitehead calls such a class a geometrical element. The covering relation
induces an order relation on the set of geometrical elements. A point isageometrical
element minimal with respect to such arelation. We call a W-representative of point
every abstractive set o such that [«] isapoint. Then a W-representative of point isa
class « of regions such that (j), (jj) are satisfied and the following holds

(i) o <o = o =« for every abstractive set o'

Theterm G-representative will be used to denote a representative of point as defined
by Grzegorczyk. We will compare the two concepts above and study under what hy-
potheses they coincide. To this purpose, we associate every abstractive set o with the
filter Fy, = {x € R |3y € a: X > y} generated by «. It isimmediate that

a>p < F, CFg

and therefore that
a=p<— F, = Fﬂ.

As aconseguence the correspondence associating ageometrical element [«] with the
filter F, isinjective and we may define the geometrical elements as the filters gener-
ated by suitable abstractive sets. In particular, we may define the points as the filters
that are maximal in the class of the filters generated by the abstractive sets.
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Theorem 5.1 If pisa G-representative then p isa W-representative and therefore
the points as defined by Grzegorczyk are also points in the sense of Whitehead.

Proof: Assume that p is a G-representative; then Condition (j) is satisfied, obvi-
oudly. In order to prove (jj) we notice that, if aregion r exists such that r < x for
every x e p then, by G, and Proposition[4.2] r admits two subregions u and v that are
not connected. The fact that uOx and vOx for every x € p contradicts (B).

We now prove (jjj). Let q be an abstractive set such that g < pthat is

Vze pdweq:z> w. (D]

We will provethat g = p, thatisVx € gy € p: X > y. Suppose that thisis not the
case, thendx e q:Vy € pwehavex # y, thatisyO — x. Thismeansthat pisadherent
to —x. Now, by (jj) we havethat x isnot contained in every element of g, thatisx’ € q
exists such that x is not contained in X’ and, since q is totally ordered with respect to
&, X « x. Then, by Proposition[Z411, —x' > —x and, by Proposition[41PR, p €
—X'. Therefore, aregion z € p exists such that z < —x'. We claim that, for every
w € q, Z # w, indeed otherwise from z > w we have that —x' > w with X' € g and
w € g. Now, either X' « w or w <« X'. Both these inequalities are incompatible with
—x' > w. This contradicts Equation 1. O

To establish a converse of the previous proposition we have to consider the following
axiom we call the normality axiom.

(Gg) For every xand y such that X < y, aregion zexistssuchthat x < z < y.

Such an axiom is satisfied by a very large class of connection structures as the fol-
lowing proposition shows.

Proposition 5.2  The connection structure associated with a Hausdor ff topology 7
satisfies Gg if 7 isnormal. In particular the connection structure associated with a
Euclidean space satisfies Gg.

Proof: Recall that a Hausdorff space 7 isnormal if whenever we consider two dis-
joint closed subsets C; and C, an open set A exists such that A © C; and Aisdis-
joint from C,. Let X and Y be regular sets such that X C Y; then X is disjoint from
(S—Y) and therefore an open set A existssuchthat AD> X and AN (S—Y) =@,
thatisAC Y. Set Z = &, thenZ isaregular set containing A and therefore X, i.e,
Z> X. Also, since Z C A, we havethat Z C A and therefore, since AC Y, ZC Y,
ie,Z<KY. U

Theorem 5.3  If (R,C) satisfies Gg then if a sequence is a W-representative then it
is a G-representative, too.

Proof: Let p= (pi)ien beaW-representative. To provethat pisaG-representative
it isenough to provethat, givenu, v € R

uOp; and vOp; for everyi € N = uCu.

Assume, by absurdity, that u and v exist such that uOp; and vOp; for every i € N but
u Cv. Then u <« —v and by Gg a sequence (Uj)icn exists, decreasing with respect
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to « such that u; = —v and A{uj]i € N} > u. Observe that for every i, j € N, u; A
pi #0and ui A pi # pj, since p;Ov and u; A pi < —v. Now, by Proposition A1,
(U A pPi)ien isasequence decreasing with respect to « and, sinceu; A pi < p;, NO

region exists contained in al theregionsu; A p;. Thusthe sequence p isnot minimal
and this contradicts the hypothesis. O

Although Theorem holds for every G-representative, the just proved theorem
holdsfor W-representativesthat are expressible by sequences. We do not know if this
result holds in any case. However, since our task is to give a pointless foundation of
Euclidean geometry rather than a pointless foundation of the topological spaces, we
are not too much interested in this question. Indeed, it is possible to define directly
arepresentative of a point as a suitable sequence (rather than a class) of regions, in
accordance with the fact that our intuition of the abstraction activity leading to the
concept of point is a step-by-step process. In thisway, anew theory is obtained since
the meaning of axioms G4 and Gs is modified. Nevertheless, it isimmediate that the
connection structure associated with the Euclidean space (and with every topological
space satisfying the first axiom of enumerability) satisfies thistheory and thereforeit
furnishes a good basis for a pointless foundation of the Euclidean geometry. In such
atheory, Theorems[5.1land[5.3khow that Grzegorczyk’s and Whitehead's definitions
of point coincide.
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