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On a Consistent Subsystem
of Frege’s Grundgesetze

JOHN P. BURGESS

Abstract  Parsons has given a (nonconstructive) proof that the first-order
fragment of the system of Frege's Grundgesetze is consistent. Here a construc-
tive proof of the same result is presented.

1 System Russell showed that the system of Frege's Grundgesetze is inconsis-
tent. But the theme of much recent work on Frege (as represented, for instance, in
Demopolous [2]) has been that the inconsistent system has consistent subsystems
in which a significant amount of mathematics can be developed. In particular, Par-
sons|H] (seealso thediscussion by Boolos[[T]) has proved the consistency of thefirst-
order fragment of Frege's system. Heck [] has extended the proof to cover predica-
tive second-order fragments, while moreover showing that a well-known system Q
of formal arithmetic can be interpreted in such afragment.

These results|leave a gap between the strongest system that has been interpreted
within a predicative fragment of Frege's system and the weakest system in which the
consistency of such afragment hasbeen proved. For ontheonehand, whereasQ isby
no meansatrivial system, itisalso by no meansasstrong asystem asfirst-order Peano
Arithmetic PA. And on the other hand, the original consistency proof for the first-
order fragment and its extension to predicative second-order fragments are model-
theoretic and nonconstructive and cannot be formalized even in PA. The first step
toward narrowing this gap would be to produce a proof-theoretic and constructive
proof of the consistency of thefirst-order fragment of Frege'ssystem. Thisfirst stepis
taken in the present note. Further stepstoward pinning down just how weak asystem
suffices to prove the consistency of predicative fragments of Frege's system, and just
how strong a system can beinterpreted in such fragments, must await the publication
of Heck’sresults.

Thefirst-order fragment of Frege's system may be presented as afirst-order the-
ory in thefollowing way. Let L o be the language of the first-order theory of identity.
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Let L, add to Lo afunction symbol e,(y) for every formula¢(x,y) of Lo. (Herey
represents a “vector” of any length m > 0 of additional free variables yy, ..., Ym.)
Let L2 addto L1 afunction symbol e,(y) for every formulag(x, y) of L1 that
isnot aready aformulaof L. Let L, betheunionof thelL, andlet T,, bethe theory
in L, having as axioms the following for all pairs of formulas of L ,:

V) VYVz(e,(Y) = €y (2) <— VX(p(X,y) <— ¥ (X, 2))).

Then T,, isanotational variant of thefirst-order fragment of Frege's system. A more
traditional notation would be {x|¢ (X, y)} for e,(y). Let T, be the subtheory of T, in
the language L , whose axioms are al axioms of T, that are formulas of L. Then
T,, isthe union of the T, and to prove the consistency of the first-order fragment of
Frege's system it suffices to prove the consistency of each T,,. Thiswill be proved in
Section 3 on the basis of three lemmas established in Section 2. The lemmas may be
of someindependent interest, but also seem individually so elementary that it is hard
to believe they have not aready been noted by othersin some context, though | know
of no referencein the literature.

2 Lemmas

Lemma?2l LetT beafirst-order theory implying the existence of infinitely many
objects. Then the extension of T obtained by adding the axioms

(A1) 0 # (X, y) and
(A2) (X, Y)=m(U,v) > (X=UAY=")

iS consistent.

Proof: It is to be understood that what are taken as axioms are the universal clo-
sures of what isdisplayed in (A1) and (A2). It isaso to be understood that the con-
stant omicron (o) and the two-place function symbol pi () do not already occur in
the language of T. Similar remarks apply in the other lemmas below. What is meant
by saying that T impliesthe existence of infinitely many objectsisthat for each k, the
formulaly of the first-order language of identity saying that there exist more than k
objectsisatheoremof T.

Toward proving the lemma, let S be the theory with 0 and r asits only nonlog-
ical vocabulary and with (A1) and (A2) asits only nonlogical axioms. There will in
addition be the logical axioms of identity, namely, reflexivity and indiscernibility of
identicals for atomic formulas:

(AOa) X=X,
(AOb) X=UAy=v) = 7(X,y) = m(U,v).

First notethat Sisconsistent. For by Herbrand'stheorem, if it wereinconsistent there
would be somefinite set of instances of (A0), (A1), and (A2), obtained by substituting
terms of the language of Sfor the variables, that was truth-functionally unsatisfiable.
But thisisimpossible, since any finite set of such instancesis truth-functionally sat-
isfiable by assigning the value ‘true’ to all and only thoseidentitiest = sin whichthe
termst, s on the two sides are literally the same sequence of symbols. Further note
that Sitself implies each I . Indeed, if we let

0=0,1=7(0,0),2=m(0,1),...
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thenitisatheoremof Sthat 0, 1, ..., k are all distinct.

What is to be proved isthat T U Sis consistent. If not, then there would be a
finite conjunction t of axioms of T and a finite conjunction o of axioms of S such
that © — —o is atheorem of first-order logic. But then by the Craig interpolation
theorem there would be a formula ¢ such that 1 — ¢ and ¢ — —o are theorems of
first-order logic, and ¢ contains no nonlogical vocabulary except what is common to
the languages of T and S, which is to say, contains no nonlogical vocabulary at al,
but only theidentity predicate. But asiswell known, thefirst-order theory of identity
is decidable by elimination of quantifiers, and the quantifier elimination shows that
any closed formula of the language is equivaent to a truth-functional compound of
the I for various k. Since T is consistent and implies each I, and since |, implies
I for h < k, it followsthat ¢ isimplied by some I for k sufficiently large. But then
since Sisconsistent and implies|y, ¢ — —o cannot be atheorem of first-order logic.

U

Lemma?2.2 LetT beaconsistent first-order theory whose axiomsinclude (Al) and
(A2) above. Then the extension of T, obtained by adding for every formula ¢ in the
language of T the axiom,

(B1)  Vyduvx(p(X,y) <— A(u, X)),
is consistent.
Proof: It suffices to show that for any finite number of formulas ¢4, .. ., ¢n, there
isaformulas(u, x) of the language of T such that instances of Axiom B1 for these

¢; become theorems of T when § issubstituted for A. Andindeed if the total number
of free variables additional to x occurring in these ¢; is m, then writing 72 = 7 and

(Y1, Yo, - Vi) = (YL 7Y, L Vi),

it sufficesto let § bethedigunctionfori =1, ..., nof

o (X, y) Au=m(i,z"(y)).

O

For technical purposes connected with the next lemma, note that (B1) implies that
YX(A (U, X) <— A(v, X)) isan equivalence relation, and that it has infinitely many
equivalenceclasses(sincetheu correspondingtotheformulasx=0,x=1,x=2, ...
must all be distinct). Moreover, it may be assumed that each equivalence classisin-
finite and that the following axiom holds.

(B2 YUYX(A(u, X) — Jt(u=m(1,1)).
For if not, simply replace the original A by A’ defined asfollows.

A'(U, X) <— FoFwUu =731, v, w) A A(w, X)).
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Lemma23 LetT beafirst-order theory and ¢ (u, v) a formula with two free vari-
ablesin the language of T such that T impliesthat ¢ is an equivalence relation, that
it has infinitely many equivalence classes, and that each equivalence classisinfinite.
Then the extension of T, obtained by adding the axiom,

(Cy) YU e(u, v(u)) AYuvuv(e(u, v) = v(u) = v(v)),
is consistent.

Proof: The hypothesis that T implies that there are infinitely many equivalence
classes, and that each equivaenceclassisinfinite, isnot actually needed but doessim-
plify the proof. What is meant by this hypothesisisthat for each mand n the formula
E.mn Of the first-order theory of one equivalence relation saying that there exist at
least m equivalence classes each having more than n elementsis a theorem of T, and
so isthe negation of the formula E_p, , saying that there exist at |east m equivalence
classes each having exactly n elements. It may be assumed that ¢ is a primitive two-
place predicate, since such a predicate could always be added to the language with an
axiom defining it to be equivalent to any desired formulawith two free variables.

If the lemma failed, there would be afinite conjunction  of axioms of T such
that © — —y is atheorem of first-order logic, where y is the formula displayed in
(C1). But then by the Craig interpolation theorem there would be aformula ¢ such
that T — ¢ and ¢ — —y are theorems of first-order logic, and ¢ contains no non-
logical vocabulary except what is common to the languages of T and y, which isto
say, contains no nonlogical vocabulary except the two-place predicate e. But asis
well known, the first-order theory of an equivalence relation is decidable by elimi-
nation of quantifiers, and the quantifier elimination shows that any closed formula of
thelanguage is equivalent to atruth-functional compound of the E- yn , and E_m  for
variousmand n. Andindeed, |etting Fy be the conjunction of E. i x and the negations
of the E_n,, for al m, n <k, since each Fy isatheorem of T and since Fy impliesFy,
for h < k, it follows that ¢ isimplied by some Fy for k sufficiently large. But each
Fy has afinite model withjust k- (k4 1) elements, and any such finite model can be
expanded to a finite model of (C1). So ¢ — —y cannot be a theorem of first-order
logic. O

3 Proof Let TO bethe theory in the first-order language of identity whose axioms
arejustthel, fork =2, 3,4, ..., and apply Lemmas . Tland[ZZlend[2:3]to T° to
add the pairing apparatus 0 and 7 and predicate A1 and function symbol v, for which
(A1), (A2), (B1), (B2), and (C1) al hold. Write A% (u, x) for

A1(U, X) AU=v(U).

Then for any formula ¢ of the language of T?, the following is a theorem.
(DD VyAlu{[—Ixe(X, ¥) Au=m(0,0)]Vv
[Fxp(X, ¥) AVX(@(X, y) «— AT(U, X)]}.
Add function symbols e, and axioms defining e, (y) to bethe unique u asin (D1) and

call theresulting extension T. Then T? isconsistent and moreover it has astheorems
all pertinent instances of (V) in 81.
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Now apply Lemmas2.2bnd[23to T* to add apredicate A, and function symbol
vy for which (B1), (C1), and the following variant of (B2) hold:

YuVx(As(u, X) — At(u=m(2,1)).
Write A% (u, x) for
=JvVZ(A2(U, 2) <— A1(v,2)) A Az(U, X) A U= v(U).

Then for any formula ¢ of the language of T2, the following is a theorem.

(D2) Vy3lu{[—-3Ixe(X,y) Au=m(0,0)]V
[IX@ (X, y) AVX(@(X,Y) «<— AT (U, X))V
YX(@ (X y) <— A3 (U, x))]}

Add function symbols e, and axioms defining e,(y) to be the unique u as in (D2)
and call the resulting extension T2. Then T2 is consistent and, moreovey, it has as
theorems al| pertinent instances of (V) of Section 1. lterating, obtain T3, T4, TS, ...
inthe sameway and consider their union T*. ThisT* isconsistent and hasall axioms
of T,, of 81 astheorems, completing the proof that T,, is consistent. O
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