157

Notre Dame Journal of Formal Logic
Volume 39, Number 2, Spring 1998

Reverse Mathematics
and Fully Ordered Groups

REED SOLOMON

Abstract We study theorems of ordered groups from the perspective of re-
verse mathematics. We show tha€'4, suffices to prove Elder's Theorem

and give equivalences of boflir KL (the orderability of torsion free nilpotent
groups and direct products, the classical semigroup conditions for orderability)
and A CAy (the existence of induced partial orders in quotient groups, the exis-
tence of the center, and the existence of the strong divisible closure).

1 Introduction The fundamental question in reverse mathematics is to determine
which set existence axioms are required to prove particular theorems of ordinary
mathematics. In this case, we consider theorems about ordered groups. Whereas this
section gives some background material on reverse mathematics, itis not intended as
an introduction to the subject. The reader who is unfamiliar with this area is referred
to Simpson[[5] or Friedman, Simpson, and Smiffj] [for more details. This article
is, however, self-contained with respect to the material on ordered groups.

Wewill be concerned with three subsystems of second-order arithniefiety,
WKLy, andACAq. RCAp contains the ordered semiring axioms for the natural num-
bers plusA? comprehensionz formula induction and the set induction axiom

VX((0e X AVN(ne X — n+1e X)) - Vn(ne X)).
The A9 comprehension scheme consists of all axioms of the form
vn(p(n) «— ¥(n)) - IXVn(ne X «— ¢(n))

wheregp is aE? formula, vy is al‘lfl’ formula, andX does not occur freely in either
or ¥. The E(l’ formula induction scheme contains the following axiom for eﬁl?h
formula g,

(¢(0) A Vn(p(n) > p(n+1))) = ¥n(p(n)).
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We will use N to denote the set defined by the formula x. Notice that in the com-
prehension schemgmay contain free set variables other thaas parameters.

The computable sets form the minimusamodel of RCAg and anyw-model
of RCAy is closed under Turing reducibilityRCAq is strong enough to prove the
existence of a set of unique codes for the finite sequences of elements from any set
X. We use Firx to denote this set of codes. Also, we useb), or more gener-
ally (xo, ..., Xn), to denote pairs, or longer sequences, of elemenit &for any se-
quences andr, wedenote the length af by Ih(o), thek™ element of by o (k), and
the concatenation af andt by o x r. The empty sequence is denoted{pyand has
length 0. Tha™ column of X is denotedX; and consists of ath such thatn, i) € X.

Definition 1.1 (RCAp) A binary branching tree is a setT C Fing q, which is
closed under initial segments. @ath throughT is a functionf : N — {0, 1} such
that for alln, f[n] = (f(0),..., f(n—1)) e T.

Lemma 1.2 (Weak Konig's Lemma) Every infinite binary branching tree has a
path.

WK Lqg consists ofRCAg plus Weak Kinig’'s Lemma andd C'Aq consists ofRCAq

plus arithmetic comprehension. Amymodel of ACAy is closed under the Turing

jump and the arithmetic sets form the minimwymodel of ACAy. The w-models

of WK Lg are exactly the Scott sets and by the Low Basis Theorem each must contain

a ®t of low Turing degree (on the Low Basis Theorem, see Jockusch and Bbare [
We ue RCAy as our base system, which means thdt@Aq - T, we will not

look for a proof of T in a weaker subsystem. However, if we find a proofToin

ACAqg or WKL and not inRCAyp, then we will try to show thaRCAq + T suffices

to prove the extra axioms id CAg or WKLy. When proving such a reversal, the

following theorems are extremely useful (for proofs, $E8)[

Theorem 1.3 (RCA4p) Thefollowing are equivalent:

1. WKILq

2. For every pair of functions f, gsuchthat for all m, n, f (n) # g(m), thereexists
aset X suchthat for all m, f(m) e X and g(m) ¢ X.

Theorem 1.4 (RCAg) Thefollowing are equivalent:

1. ACAy
2. Therange of every 1 — 1 function exists.

Given the characterizations of themodels ofRCAg, WKLy, andACAgin terms of
Turing degrees, it is not surprising that equivalences in reverse mathematics have im-
mediate consequences in computable mathematics. Any theorem provatdlel in
is effectively true, whereas the effective version of any theorem equivalé#itda,
or ACAp is not true. Results in computable mathematics are stated as corollaries
throughout this article.

In Sectionl2] we present the basic definitions for partially and fully ordered
groups. The main resultis thRIC'A suffices to prove the existence of the induced or-
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der on the quotient of a fully ordered group by a convex normal subgroup! @4
is required for the induced order on the quotient of a partially ordered group.

Sectiong€lnd4ldeal with group conditions that imply full orderability. Downey
and Kurtz[3] were the first to explore the computational content of the classical theo-
rem stating that every torsion free abelian group is fully orderable. They constructed
a mmputable torsion free abelian group with no computable full order. Hatzikiriakou
and Simpsor{{] went on to show that this theorem is equivalentdLy. In Sec-
tion[3] we show that WK Ly is in fact equivalent to the theorem that every torsion free
nilpotent group is fully orderable. In Sectifihwe consider direct products of fully
ordered groupsRCAy suffices to prove that any finite direct product of fully order-
able groups is fully orderable, but because of uniformity issSWé&Lg is required
for countable products.

As a side issue from the work on nilpotent groups, we examine the center of
agroup in Sectiofb] Not surprisingly, the existence of the center is equivalent to
ACAp. As acorollary, we show that the center of a computable nilpotent group can
be as complicated as,@ven if the length of the lower central series is three and the
group is computably fully orderable. This resultillustrates the computation difference
between finitely and infinitely generated nilpotent groups (see Baumslag[&al. [

In addition to studying group conditions, algebraists have looked at semigroup
conditions that imply orderability. We consider three of these conditions in Sé&tion
and prove that each is equivalentioK L.

Holder’s Theorem states that every Archimedean fully ordered group is order
isomorphic to a subgroup of the additive group of the real numbers under the standard
order. In Sectiolrlwe show that lder’s Theorem is provable iRCAq and hence
is effectively true.

Finally, we turn to the divisible closure of an abelian group. There are three inter-
esting questions to ask about divisible closures in reverse mathematics: which axioms
are required to prove that they exist, which are required to prove that they are unique,
and which are required to prove that the original group is isomorphic to a subgroup of
the divisible closure. In the context of ordered groups, we can also ask if the answer
to any of these question is affected by having a full order on the group. Siith [
proved that each computable group has a computable divisible closure. Friedman,
Simpson, and Smitl] showed thaf? CAq suffices to prove the divisible closure ex-
ists and thatd CAy is equivalent to its uniqueness. Downey and Kiglzdroved that
each computably fully ordered computable group has a uniqgue computably fully or-
dered computable divisible closure whose order extends that of the original group. In
SectiorB]we consider the notion of the strong divisible closure and prove that the ex-
istence of a strong divisible closure is equivalentitdAy, even if the group is fully
ordered.

The notation for objects from computability theory will follow Sodi&]. For
example, we user to denote Turing reducibility and @or the Turing jump of the
empty set. The notation for ordered groups will follow FudBkdnd Kokirin and

Kopytov [10].

2 Ordered quotient groups  The main result of this section is th&C'Ay suffices
to prove the existence of the induced order on the quotient of a fully ordered group,
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but ACAy is required if the group is only partially ordered.

Definition 2.1 (RCAp) A group is a setG € N together with a constantgl(or
sometimes @), and an operationg, which obeys the usual group axioms.

Definition 2.2 (RCAp) A partial order is a set X together with a binary relation
<x which satisfies the standard axioms for a partial order.

Definition 2.3 (RCAp) A partially ordered (p.o.) group is a pair(G, <g) where
G is a group,<g is a partial order on the elements of G, and for an, c € G, if
a<gbthena.gc<gb.-gcandc.ga=<gc-gb. If the orderis alinear order, the pair
(G, <g) is called afully ordered (f.0.) group. A group for which there exists some
full order is called arD-group.

Except for cases when they are needed to avoid confusion, the subscriptarmeh
<g are dropped.

Example2.4 The additive groupsR, +), (Q, +), and(Z, +) with the standard
orders are f.0. groups. L&" andR™ be the strictly positive rational and real num-
bers. The multiplicative group® ™, -) and(Q™, -) are f.0. groups under the standard
orders.

Example2.5 The most important example for our purposes is the free abelian
group onw generators. LeG be the free abelian group with generataror i € w.
Elements ofG have the formd_;_, ria; wherel C w is a finite setr; € Z andr; # 0.
Tocompare the element above with; . ; g;a;j, let K = 1 U J. For eactk € K, define
r«=0ifke J\ I andgx =0isk e | \ J. Letk be the maximum element & such
thatr # dx. The order is given by} ;_  riai < }_;.;9;a; if and only ifre < o.

This order make§ into an f.o. group.

As expected RCAg suffices to prove many basic facts about p.o. groups.
Lemma2.6 (RCA4p) Let (G, <) beap.o.group.

1. Ifa< bthenac < bcand ca < ch.
2. Ifa < bthen ctac < ¢ 1bc.

3. Ifa<bthenb !l <al

4. Ifa< bandc < dthenac < bd.

Defining a partial order can sometimes be notationally complicated. It is frequently
easier to specify only the elements which are greater than the identity. Such a speci-
fication uniquely determines the order.

Definition 2.7 (RCAp) The positive cone, P(G, <g) of a p.o. group is the set of
elements which are greater than or equal to the identity.

PG, <¢) ={0eG|1lc=<c 0}

Each element € P(G, <) is calledpositive. Sometimes we consider tbgict pos-
itive cone which contains only the elements strictly greater than the identity.
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When the intended ordet is clear,P(G) is used instead oP(G, <¢). Because
P(G) has azg definition, RCAq is strong enough to prove its existence. Conversely,
the relationship between any two elements can be definét’idy using P(G) as

a parameter because< b if and only if a~'b € P(G). Hence,RCA, suffices to
prove that each positive cone uniquely determines an ord&. dotice that ifG is
acomputable group, we have dd®fG)) = deg(<g) for any partial ordexg and

its associated positive cone.

Example2.8 The complex numbersC, 4+) with the set of positive elements
P(G)={x+Vi|x>0V (x=0AYy>0)}forms an f.0. group. The grou@®*, -)
with the order determined biy(G) = N7 is a p.o. group. Unraveling the definition
of the positive cone shows thatifb € Q1 thena < bif and only if a dividesb. This
order is not a full order but does form a lattice.

There are classical algebraic conditions which determine if an arbitrary subset of a
group is the positive cone for some full or partial order on that group.

Definition 29 (RCAg) If XS G,thenX1={g™! | ge X}. Xis afull subset of
Gif XUX™1=GandXis apuresubset of G if XN X~ C {1g}.

Theorem 2.10 (RCAp) Asubset P of agroup G isthe positive cone of some partial
order on G if and only if P isanormal pure semigroup with identity. Furthermore,
P isthe positive cone of a full order if and only if in addition P isfull.

Proof: The standard proof of this theorem carries througR@W,. For details, see
[Ld] or []. O
One can state a similar result for the strict positive cdnés the strict positive cone
of a full order if and only ifP is a normal semigrouf? U P~ = G\ {1¢}, andP N
Pl=0.

In the study of ordered groups, itis natural to ask which theorems of group theory
hold for ordered groups and which theorems either fail completely or require extra
conditions. For example, il is a normal subgroup d@&, thenG/H inherits a group
structure fromG. However, if G is partially ordered, theid must also be convex
(defined below) for the partial order @dhto induce a natural partial order @y H.

To formulate this statement in second-order arithmetic, we first need a definition for
the quotient group. Unique representatives of each gidéh G/H are chosen by
picking the<y-least element ofH. These choices can be madeRid’'Ag because

mH = nH if and only if m~'n e H.

Definition 2.11 (RCAp) If Gis agroup andH is a normal subgroup @3, then the
quotient group G/ H is defined by the set

(NnneGAVM<nNn(MZGvm? ngH)}
and the operatioa g,y b= cifand only ifa,b,ce G/H andc ! .ca.gb e H.
Definition 2.12 (RCAg) A subsetX of a partial ordelY is convex if
va,b,xeY((a,be Xra<x=<b)— xe X).

A subgroupH of a p.o. groupG is convex if it is convex as a subset @3.
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Definition 2.13  Let (G, <) be a p.o. group anHl aconvex normal subgroup. The
induced order, <g,H, 0N G/H is defined bya <g,n bif and only if 3h € H(a <¢
bh).

A useful variant of this definition is thd(G/H) is the image ofP(G) under the
canonical mafis — G/H.

P(G/H)={ge G/H|dhe H(ghe P(G))}

As above, the subscript ofg,H is dropped as long as it is clear whetleandb are
being compared as elements®@br G/H. When the context is not clear, we denote
elements of5/H by aH andbH.

We would like to know which set existence axioms are required to form the in-
duced order o/ H. Itturns out that the answer depends on whether we have afull or
partial order orG. The condition in Definitiof2.13]s X2, soE‘l) comprehension cer-
tainly suffices. The following theorem shows that in the case of fully ordered groups,
we can do better than tHg definition.

Theorem 2.14 (RCAp) Let (G, <) beanf.o. group and H a convex normal sub-
group. The induced order on G/ H exists.

Proof: Leta,be G/H anda # b. Becausea andb are representatives of different
cosetsab~1 ¢ H.

Clam 215 3FJhe H(a<bh)ifandonlyifa<b.

If a < bthen, becausegle H, it follows that3h € H (a < bh). For the other direc-
tion, supposéh € H(a < bh) andb < a. Thenb <a<bhandso § < b—la<h.
SinceH is convex,b~ta € H which gives a contradiction. The induced order can
now be given by 538 condition:aH < bH ifand only ifaH = bH ora < b. O

Corollary 2.16 If (G, <g) isacomputably fully ordered computable group and H
is a computable convex normal subgroup, then the induced order on G/H is com-
putable.

Itis also important to know when we can combine full orders&sitd andH to form
afull order onG under whichH is convex and the induced orders drandG/H are
the ones with which we started. Notice that an ordeHds not necessarily preserved
under conjugation by arbitrary elements@fbut that any order o must have this
property. Hence a necessary condition for an ordeifldn extend to all ofG, isthat
a<p bimpliesgag™ <y gbg~! for all g € G. This condition is also sufficient.

Definition 2.17 (RCAp) Let H be a normal subgroup @& and < afull order on
H. (H, <) isfully G -ordered if foranya,be Handge G,a< b impliesgag—l <
gbg~*.

Theorem 2.18 (RCAp) Let (H, <y) be a fully G-ordered normal subgroup and
(G/H, <g/n) anf.o. group. G admits a full order under which the induced orders
on H and G/H correspond to those given and H is convex.

Proof: The standard proof goes throughRt'Ay. The idea is that given, b € G,
we definea <g b if and only if eitheraH <g, bH oraH = bH anda b e P(H).
For more details, seE0). O
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Next we show thatd C'Ag is equivalent to the existence of the induced order on the
quotient of a p.o. group. By Theordind] ACAq is equivalent to the existent of the
range of an arbitrary % 1 function. Given such a function, the strategy is to code its
range into a group in such away that it can be recovered from the order on the quotient
group. The torsion free abelian grodpon generators;, b for i € N is used to do
the coding. The first step is to present this group formally. Bec@uisean abelian
group, we use additive notation.

The elements ofA are quadruples of finite set$, g, J, p) wherel and J are
finite subsets oN and p andg represent functions

g:l —7Z\ {0} and p:J— Z\{0}.

The element represented bl g, J, p) is denoted _;_, qia; + ZjEJ pjbj. The el-
ements represented I8y, g, J, p) and(l’, ¢, J', p’) are equal if and only if = I,
J=J,g=q andp= p’. The sum

(ZQiai + ijbj) + <Zrkak + Zs'bl)

iel jed keK leL

IS Y mem tmam + X ey Unbn WhereM = (1 UK) \ {x e | N K| gy +rx = 0} and

Om if mel\K
th=1 'm if meK\I
On+rm if meKnl.

N and u, are defined similarly. The identity elementa,0is represented by
(2,9,9,2)andifgis represented byl, g, J, p), theng—1 is the sum

Z_qiai + Z—pjbj-
il jed
Theorem 2.19 (RCAp) Thefollowing are equivalent:

1. ACAy
2. For every p.o. group (G, <g) and every convex normal subgroup H, the in-
duced order <G,y on G/H exists.

Proof:

Cael (1) = (2.

Forx,y e G/H, useE‘l’ comprehension il CAg to define the relation
X<g/HY «— JheH (x=gyh.

Case2: (2)= (1):

Let f : N — N be a 1- 1 function. By Theorenfil.4] it suffices to show that the
range of f exists. DefineP(A) to be the semigroup generated by #ys using 28
comprehension.

P(A) = ZQiai + ijbj ‘ J=aAViel(g >0

i€l jed

This definition isT) becaus#i € | is a bounded quantifier.
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Claim 2.20 P(A) isthe positive cone for a partial order on A.

It suffices to show thaP(A) is a pure normal semigroup with identity. By definition,
0a € P(A). P(A) is normal because it is a subset of an abelian groupR#) is

a emigroup since it is closed under componentwise addition. Finally, $néeA)

is defined by

P(A) =1 ga + Y pjb;

iel jed

J=0AViel(g <0},

it is clear thatP(A) is pure.

Let H be the subgroup generated by elements of the fean + by, where
f(n)=m. Formally,} i, giai + >_;c; pjbjisinHifand onlyif eitherl = J =2
or |l # @ and

Viel(f(i))e INg =—pri) AVjeddiel(f@i)=|jAq =—p)).
This condition isZ since all the quantification is boundeld.is normal because the
group is abelian.

Claim2.21 H isconvex.

It suffices to show that there are no nontrivial intervalklinThat is, for anyc, d € H,
¢ < dimpliesc = d. Notice that any, d € H can be expressed as

c=) —ga + Y gbrsy and d=)_ —pjaj + > pjbr.
iel iel jed jed

If c < d,then—c+de P(A). Since P(A) is generated by the’s, the b; part of
the sums must cancel out. Heng& | —qibti) + >_jc; Pjbr(j) = 0. Since O'is
represented by the quadrugle, @, @, @), we havel = J andq = p. Hencec = d
as required.

Now thatA, P(A), andH are defined, all that remains to show is how the range
of f can be defined from the induced ordeg,4 on A/H. This definition follows
from the final two claims.

Claim 2.22 Theexistence of <, implies the existence of P(A) + H.

Givenx € A, we need to decide ik € P(A) + H. Letn € A/H be such thah +
H = x+ H. Sincex andn differ by an element oH, x € P(A) + H if and only if
ne P(A) + H. However,

OA/H Sa/HN <— JheH (n+he P(A) «— ne P(A)+ H.
Thus,P(A) + H is definable from< a/p in RCAp.
Claim 223 bme P(A)+H «<— merange(f)
First assume thdt,, = p+ h for somep € P(A) andh € H. Thenby, can be written

as
bm = ZQiai + (Z—pjaj + ijbf(j)>-

iel jed jed
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The parts of the equation with’s must cancel out, leaving = J. Furthermore,
because onlyy, appears on the left of the equatioh= {n} where f (n) = mand
pn = 1. Hencemis in the range off.

For the other direction, assume timats in the range off. For somen, f (n) =
m, and hence-a, + by, € H anda, € P(A). Adding these equations shows that
bm e P(A) + H. O

Corollary 2.24 Thereisacomputably partially ordered computablegroup (G, <g)
and a computable convex normal subgroup H such that the degree of the induced
order on G/H isO'.

Proof: Let f be a computable £ 1 function that enumerates.0Since f is com-
putable, the p.o. group in the proof of Theollm9ls a computably partially ordered
computable group. The range bis computable from the induced order GyfiH, so
0’ <7 deg<g,/H). Onthe other handsg,H has aZg definition, so deg<g,H) <710

O

3 Group conditionsfor orderability  Any group can be partially ordered: take the
trivial partial order under which no two distinct elements are comparable. Determin-
ing when a group admits a full order is more complicated question. Being torsion free
is a necessary condition, but unfortunately not a sufficient or@.idfthe group pre-
sented by the lettesandb with the relatiomaba—! = b1, thenG is torsion free but
not orderable. Indeed, i > 1g thenaba—! = b~ forcesb™! > 15 and ifb < 1g
thenaba—1 = b~1 forcesb~! < 1.

The simplest group condition that implies full orderability is being torsion free
and abelian. A proof of this fact can be found[& ¢r [[L.0].

Theorem 3.1  Every torsion free abelian group is an O-group.

The effective content of Theordfm1]was first explored ifd]. They constructed a
computable group classically isomorphicd®,, Z which has no computable full or-
der.

Theorem 3.2 (Downey and Kurtz) There is a computable torsion free abelian
group with no computable full order.

Hatzikiriakou and Simpsoi] used a similar proof in the context of reverse mathe-
matics to show that Theordgnl]s equivalent tolWKLq. By the Low Basis Theorem,

this fact implies that every computable torsion free abelian group must have a full or-
der of low Turing degree.

Theorem 3.3 (Hatzikiriakou and Simpson)RCAp) Thefollowing areequivalent:

1. WKLy
2. Everytorsion free abelian group is an O-group.

Theoren3_1lis generalized id1J] to torsion free nilpotent groups.
Theorem 3.4  Every torsion free nilpotent group is an O-group.

The goal of this section is to use arguments similar to thogdjtd show that The-
oremZ.4lis equivalent tolWKLg. Notice that as long aBCAj suffices to prove that
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every abelian group is nilpotent, TheorE#lalready shows that Theordadlim-
plies WKLgy. To state the result precisely, we need a formal definition of nilpotent
groups in second-order arithmetic.

In keeping with standard mathematical notatior ifs a normal subgroup @3,
we letw : G — G/H denote the projection function. Thatispicks out the<-least
representative afjH. Frequently, we writegH instead ofr(Q).

Definition 3.5 Thecenter of a groupG is defined as
C(G) = {geG|Vxe G(gx=xQg)}.

In general, the existence of the center is equivalentdby, as we shall see in Sec-
tionEl However ifC(G) is given, the next two lemmas can be provedif'Ag.

Lemma3.6 (RCA4p) If C(G) existsthen C(G) isanormal subgroup of G.

Lemma3.7 (RCAp) If Hisanormal subgroupof G, 7: G — G/H and C(G/H)
exists, then K = {g € G| m(g) € C(G/H)} = 7~1(C(G/H)) isa normal subgroup
of G.

Definition 3.8  Let G be a group. Thepper central seriesof G is the series of sub-
groups¢oG < §1G < §G < - - - defined by;oG = (1), ¢1G = C(G), and¢i1G =
7 1(C(G/¢iG)) wherer : G — G/¢;G. Gis nilpotent if {,G = G for somen € .

Notice that¢;, 1G/¢iG = C(G/¢;G). In order to use nilpotent groups RCAg, we
need to define a code for them that explicitly gives the information contained in the
upper central series.

Definition 3.9 (RCAp) The pairN € N andn € N is acode for a nilpotent group
G if the firstn 4 1 columns ofN satisfy

1. No = (1G)
2. Ny = C(G)
3. Nhn=G

4. For0<i <n,if 7: G— G/N;, thenNi;1 = 771 (C(G/N))).
A group G isnilpotent is there is such a cod&\, n) for G.

Lemma3.10 (RCAp) Every abelian group is nilpotent.

Proof: If Gis abelian then we can define a code®as a nilpotent group by setting
n=21andN C N with Ny = (1g) andN; = G. O

Lemma3.11 (RCAg) If (N, n)isthecodefor anilpotent group G then for all 0 <
i <n, Nii1/N;isabelian.

Proof: By definition, Nii; = 77 1(C(G/N;)) with 7 : G — G/N,. Therefore,
Nit1/Ni = C(G/N;). O
Theorem 3.12 (RCAp) Thefollowing are equivalent.

1. WKLy
2. Every torsion free nilpotent group is an O-group.
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The idea of the proof is that a nilpotent group is formed from a finite number of abelian
quotientsN;, 1/ N;. These quotients are torsion free, so each is fully orderable by The-
orem3.3 We need to put these orders together using a finite number of applications
of Theoreni2.18 Notice that if (N, n) is the code for a torsion free nilpotent group

G andn > 1, thenN; must be torsion free since it is a subgroupof

Definition 3.13 The commutator of x and y, denoted X, y], is the element
x~1y=Ixy.

Lemma3.14 (RCAp) Let (N, n) beacodefor anilpotent group G. If 0 <i < n
and x € Ni;1, then [x, g] € N; for all g.

Proof: Notice that fori = 0, the lemma follows trivially becaus¥; is the center
of G. Asuumei > 1. By definition,x € Nj; meansxgN; = gxN,; for all g. For any
particularg, there is a € N; such thatg = gxc and hence alsog~'x! = x~1g—1.
Let h be any element o6.

[x,g]-h=x"1g7'xg-h=x"tg~lgxch = ch

Sincec € N;, we know thatch = hcé for some€ € Nj_;. We now have:

ch = hcé = heg~1x 1xgé = hx 1g~Ixgé.

Thus, we havey, g] - h=h-[x, g] - € for some€ € N;_; and hence
[X,g]-hNi_y =h-[X, g]Ni_1.

This equality implies that{, g] N;_1 is in the center o6/ N;_1 and hence that] g] €
N;. O

Lemma3.15(RCAp) Let (N, n) beacodefor anilpotent group G. If 1 <i <n
and x € N, 1, thenfor all m> O, [x, g]™N;_1 = [X™, g]Ni_1.

Proof: BecauseX, g]"Ni_1 = [x™, g]Ni_1 is aEg statement, we can prove this
lemmainRCAg by induction orm. Thecase fom = 1istrivial, so assume the equal-
ity holds form and we prove it fom+ 1. Since k, g]™* =[x, g]™ - [x, g], we can
apply the induction hypothesis in the form g]™ = [x™, g] - ¢ for somec € N;_;.
We now have

[x, g™ =[x, g] - c-[x, g = x Mg~ *x"gc- [x, g].
By Lemmd3.14] x € Ni; implies [x, g] € N; and so k, g] commutes with elements

of G moduloN;_;. Therefore, for somé € N;_; we have

“MogiXMge-[x g = x™-[x,g]-g'x"gee
= x ™ 1g7ixgg~ixMgcé

[X™*, g] - cE.

Because&c€ € N;_1, this calculation establishes the induction case. O
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Lemma 3.16 (Mal'cev) (RCAp) Let (N, n) bea code for atorsion free nilpotent
group G. For every0 <i < n, Ni;1/N; istorsion free.

Proof: We prove this theorem by bounded inductioniorBecauseNy = (1g) we
haveN;/Ng = Nz, which establishes the theorem foe 0. Assumé > 1 and the
theorem holds for — 1. The induction hypothesis tells us thst/N;_; is torsion
free. Letx € Ni;1 and suppose that" € N; for somem > 0. We need to show that
x € Ni. Foranyg e G, Lemma3.15limplies that k, g]™N,_1 = [x™, g]N;_;. By
Lemmd3.14 x™ € N; implies that k™, g] € Ni_;. Therefore, k, g]™ € Ni_1. Ap-
plying Lemmd3_14lto x € Ni4 tells us thatk, g] € N;. Putting these facts together,
we have k, g]Ni_1 € Ni/Ni_; and [x, g]"N;_1 = 1gNj_;. Since N;/N;_; is torsion
free, it must be that{, g] € N;_1. However, this fact implies thagN;_; = gxN,_1
for all gand sox € N; as required. (]

Lemma3.17 (WKLg) Let (N, n) bea code for atorsion free nilpotent group G.
For every 0 <i < n, Ni;1/N; isafully G/N;-orderable group.

Proof: Weneed to show that there is a full order bin_; / N; such that for alk, b €
Ni11/N; andg € G/N;, if aN; < bN; thengag™*N; < gbg~'N;. By Lemmad3.11]
and3:18 Ni_1/N; is a torsion free abelian group and hence by The@&hWKLq
proves that it is fully orderable.

Let < be any full order on\;, 1/N;, leta < b be elements oN;;/N; and let
ge G/N;. SinceN,1/N; = C(G/N;), wehavegag™'N; = aN; andgbg—!N; = bN;.
HenceaN; < bN; impliesgag=*N; < gbg™!N;. O

We are now ready to prove Theorésl 2]
Proof:
Casel: 2)= (1)

Assume every torsion free nilpotent group is an O-group. By Lef&m§ this as-
sumptionimplies that every torsion free abelian group is an O-group. From here, The-
orem2.3limplies (1).

Cae2: (1) = (2

For each 1< i < n, let If’I be the strict positive cone of a fulb/N;_;-order on
Ni/Ni_1. Seth = {xe N [ xNi_1 € B} andP = (U, P) U {1g}.

The following series of claims proves thatis the positive cone for a full order
onG.

Claim 3.18 Pisasemigroup with identity.

It suffices to showP is closed under multiplication. Let y € P with x, y # 1.
There ard, j such thatx € B andy € Pj. If i = j thenxNi_1, yNi_1 € P and so
xyNi_1 € P andxy € P. If i # j then, without loss of generality, assume that j.
Sincex e B, it follows thatx € N; and hencex e Nj_;. But then,xyN;_1 = yNj_;
and soxy € Pj.

Claim 3.19 Pisnormal.
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Letx € P, x # 1g andg € G. There is ani such thatx € B. Since P is the strict
positive cone of a fullG/ N;_;-order onN;/N;_1, we have thatxN;_; € B implies
thatgxg™'N,_; € P.. Hencegxg! € P.

Claim 3.20 Pispure.

Let x € P andx # 1g. We need to show that™! ¢ P. There is an such thaix e
P. BecauseP is the strict positive cone oN;/N;_1, we know thatx € N; andx ¢
Ni_1. Hencex™! e N, andx~ & N;_;. However, becauseN;_; € R, it follows that
xINi_1 ¢ P, and sox ! ¢ P.. Toshowx~! ¢ P; for j > i, notice that sincec! e
Ni, we dso havex! e Nj_;. Thereforex *N;j_; = 1gNj_; and hencec! ¢ P;.
Finally, assume for a contradiction tha& i andx~! € P;. Itfollows thatx~* € Ni_;.
However, above we showed that! ¢ N;_;. Thus,x~ ¢ P; for anyj.

Claim3.21 Pisfull.

Letx € P andx # 1g. We need to show that eithere P or x~ € P. There is ari
such thaix € Nj andx ¢ N;_1. SinceB is a full order onN;/N;_;, eitherxNi_; € B
orx IN_; € P. Thus, eithexxe P orx 1 e P. O

4 Direct products Groups are frequently constructed by means of a direct product.
These constructions preserve full orderability. A proof of the following theorem can
be found in eitheld] or [{L0].

Theorem 4.1  Any direct product of O-groups is an O-group.

To examine this theorem in reverse mathematics, we need to distinguish between fi-
nite and restricted countable direct products. The finite direct proégict A; x

.-+ x An_1 consists of sequences of lengtiuch that thé" element of each sequence

isin A;. Multiplication is componentwise. The elements of the restricted direct prod-
uct of A; for i € N are finite sequencessuch that for ali < Ih(o), (i) € A;. The

idea s that the element representedihas 1, as itsj" component for alj > Ih(o).

In order to make each sequence represent a distinct element, we add the requirement
that the last element in the sequence is not an identity element. The formal definitions
are given below.

Definition 4.2 (RCAp) If ne Nandforalli < n, A isagroup, then thiénitedirect
product G = []=3 A is defined by:

G={oeFiny|lh(c) =nAVYi <n(s(i) € A)}

1c = (1a, 1ags -5 1A, )
0-cT=(0(0)-a7(0),...,0(N=1)-a,, (N—1)).

Theorem 4.3 (RCAg) Ifne Nandfor ali < n, A isan O-group, then G =
1" A isan O-group.

Proof: Let P*(A)) be the strict positive cone of a full order @g. OrderG lexico-
graphically:

PT(G)={oeG|3i<n (o) e PT(A)AV] <i(a()) =1a)))
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P(G) =P "(G)U{(lay---,1p,,) }

From this definitionP(G) is clearly full, pure, and contains the identity. It remains to
check that it is a normal semigroup. SineéG) is closed under multiplication, it is
a €migroup. To see that it is normal, lete P(G) have its first nonidentity element
ato(i). If t=1(go, ..., On_1) € Gthentortis

<gO’ ceey gl’l—l) ‘G <1A0, ceey lAi_l’ a,..., an—l) ‘G <gal’ ceey g;ill)

The first nonidentity element in this productdsag;X. Becauses € P (A), we
havegiaig ! € P*(A) and henceor™! € P*(G). O

Corollary 4.4 Thedirect product of a finite number of computably fully orderable
computable groupsis computably fully orderable.

Definition 4.5 (RCA4o) Let A be a set such that for eachthe i column A is a
group. Therestricted direct product G = [[,,.y An is defined by:

G={oeFiny | Vi <Ih(o) (o(i) € Al Ao(lh(o) = 1) # 1p,,, )}

le=(

where () is the empty sequence. Multiplication is componentwise, removing any
trailing identity elements.

Theorem 4.6 (RCAp) Thefollowing are equivalent:

1. WKLy
2. 1fVi (A isan O-group) then G = [ [,y Ai isan O-group.

Proof:
Casel: (1) = (2):

We know Vi 3Y (Y is a positive cone o) and by Theorerfit.3] for eachn € N,
RCAqg suffices to prove that there exists a positive cong i, A:.

A uniform (strict) order on the\’s is asetP such that itd™ columnP, is the
(strict) positive cone of a full order oA;. To prove thatG is an O-group, it suffices to
prove the existence of a uniform order on #ye From a uniform order, we can define
the lexicographic order o as in Theorert3 To show the existence of a uniform
order, we build a tre@ such that any path on the tree codes such an ofdrbuilt
in stages such that at the end of stagall nodes of lengtts are defined. Each node
onT keeps a guess at an approximation to a uniform strict order. Suppssenode
onT atlevels, s+ 1= (e i), e# 1la, andP, is ¢'s approximation. At stage+ 1
we check if J; € P, for any j. SinceP; is a finite set, this can be done computably.
If1a € P, then P, cannot be a subset of a uniform strict order, so we terminate
this branch. Otherwise, we define two extension®pfone by adding € A; to P,
and the other by adding™! € A to P,. These sets are each closed under one step
multiplication and conjugation by elements less tea@ne extension becoméy..o
and the other becomds,..;. This construction is presented formally beloly.is the
set of nodes of of lengths.



REVERSE MATHEMATICS 171

Construction
Stage 0: SetTp = {()} andP,, = @.
Stage s+ 1: Assumes = (g, i). For eaclv € Ts do the following:

1. Check if 1a; appears irP; for any j. If so,o has no extensions oh, so move
on to the next node ifis. If not, addo x 0 ando * 1 to T, ; and move on to 2.

2. If e= 1, oredoes not represent an elementgfthen setP,.0 = Pyi1 = Py
and move on to the next nodeTg. Otherwise, move on to 3.

3. Ifee A ande # 14, define

Phno=P,U{(eli)} and P,i=P,U{ei)}
Extend these by:

(K. j) € Po «— (K, j) € Poo Vv
3(m, j), (N, j) € Pro(M-a n=K) v
In<sIm, j) € Pro(Ne AjAn-a m-p nt=k)

<ka J) € Pa*l e (k’ J) € Iso*l \%
3(M, ), (N, j) € Poaa(m-p n=k) v

In < sAm, j) € Pa(nNe Ajan-a m-a nh=Kk).

End of Construction
Claim 4.7 T isinfinite.

For a contradiction, suppose thafis not infinite and hence there is some lemeit

which T has no nodes. Because the standard coding for pairs satisfies the inequal-
ity (X, y) >y, we know that if (X, y) occurs in the construction before stagehen

y < n. Thatis, at stage, T has only considered elements frolg throughA,. By
Theorentt3) RCA, suffices to prove thaif[i”:o A is an O-group. LeK be the strict
positive cone for a full order on this finite product and Ret(Ay) be defined by

X e P+(Ai) <> <1A0’ e 1Ai—1’ X, 1Ai+1’ ey 1An> e X.
For eachk < n, k= (x, i) for somei < n. Defineo € Finy with Ih(o) = n by

1 ifk=(xi)Axe PT(A)

(k) :{ 0 otherwise

From the definition it is clear that
o(k)=0<«— x=1p vXx e PT(A)VvXEA. 1)

To prove the claim, it suffices to show thate T. We how by induction that for all
k<n, oKl =(0(0),...,0(k—1)) e TandP,q € X. Clearly,o[0] = () € T and
Pojo) = @ € X. Assume that[k] € T andP,g € X. Because A; ¢ P,q we know
thato[k + 1] € T. From the definition oé and equatiofL]it is dear thatl50[k+1] Cc X.
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BecauseP, (k1] is obtained by multiplying and conjugating elementsfpp‘k+1], it
follows thatPy1) € X. Thus,o[n] =o€ T.

SinceT is infinite, WKLq provides a pathf throughT. Let f[n] denote the
sequencgf(0),..., f(n—1)) and define

Z=\JPim

neN
Z=7U {(1p.i) | i e N}.

Z has ax? definition, but forx # 1, we have(x, i) € Z < (x71,i) ¢ Z. Thus,
Z has aA? definition and so botlZ and Z exist. It remains to show the; is the
positive cone for a full order o#.

To stow Z; is full, consider anyx € A, X # 1. Leto = f[n] with Ih(o) =
(x,1). Sincef is a path, eithes *« 0= f[n+ 1] orox1= f[n+1].

ox0= f[n+1] = (X,i) € Poyo=—= X€ Z

oxl=fln+1l]l= (xLi)eP, 1 =x1ez

To show Z; is pure, suppose # 1 andx, x~1 e Z. It follows that for somen, both
(x,iyand(x~1,i) arein P¢(n). From the construction, sl appears in bott®s .0 and
Ptnj«1 SO neitherf[n] x 0 nor f[n] x 1 has an extension. This contradicts the fact that
f is a path.

Z; is a semigroup since K, y € Z then there is am such that(x, i), (y,i) €
Psn). By the one step multiplicative closurg - 4, Y, i) € Ptnr1pand hences-p y €
Z;. Showing Z; is normal is similar but uses the one step closure under conjugates.
ThusZ; is a full order onA; and we have constructed the desired uniform order.

Case2: (2) = (1):
Assume the restricted countable direct product of O-groups is an O-groud, g.et

be functions such that for ail, m, f (n) # g(m). By TheoreniL_3lit suffices to prove
the existence of a s&such that

ranggf) € S A rangegg) C N\ S

Recall from the first half of this proof that an order on the direct product is equivalent
over RC'Ap to a uniform order on the componers The idea of this proof is to give
abelian group®\, each of which has two generatoag,andb,,. If nis in the range of
f, we forcea, andby, to have the same sign in any order Ap. That is, either both
are positive or both are negative.nfs in the range o, we forcea, andb, to have
different signs in any order. If neither of these holds, then wé\ldbe a free abelian
group on two generators. Since the groups are abelian, we use additive notation. The
groups look like:

Atm = (@tmy, Dy | @rmy = Pnbt(n))

Agm) = (8gm)» by | 8gm) = — Pnbg(n))
wherep, is then™ odd prime. Ifnis not in the range of or g then

An = (an, bn | _>-
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Formally, the elements o4, are formal combinationsa, + db, wherec, d € Z and
=3Ji(pi < 2|d| A f@i)=n) A =3i(p;i < 2/d] Ag(i) =n).

To addca,, + db,, andc’a,, + d’b, we check whethefc + ¢') a, + (d + d’) by, violates
either of these conditions. If there is aguch thatp; < 2|d +d’| and f (i) = n, then
we use the relatioa, = pjbn to rewrite(d + d) b, asc”an + d”’b, where|d”’| < pi/2.
If the second condition is violated, we do the same thing except we use the relation
an = —pibn.

Because the definition &, is uniforminn, the sequencé, exists. It remains to
show that eacld, is orderable and that the separating set is definable from a uniform
order of theA.

Claim 4.8 Each A, isan O-group.

The proof of this claim splits into two cases. RCAp, we cannot tell which case
holds, but we know that one of them must hold.fifi) = norif n ¢ rangg f) U
rangeg) thenP(A,) = {ca, +db, |[c>0Vv (c=0Ad > 0)}. If g(i) = nthen
P(Ay) ={ca,+db, | c>0v(c=0Ad < 0)}. Ineach case it is easy to ver-
ify that the set given is the positive cone of a full order. This shows Bt -
vn(A, is an O-group. By assumption, there is a uniform order on thg. Let P be
the uniform positive cone. That B, is the positive cone of a full order ofy,. Define
Shy
S={n|aye P, «<— b,e PR,}.

Sis the desired separating set sinceis in the range off thena, € P, <— bp € P,
while if nis in the range ofy thena, € P, «— —b, € P,. O

Corollary 4.9 There is a uniform sequence of computably fully orderable com-
putablegroups G;, i € w, suchthat I, G; isa computable group with no computable
full order. Ijc,,G; does have a full order of low Turing degree.

5 Thecenter In this section we show that the existence of the center is equivalent
to ACAg and that this result holds even for 2 step nilpotent groups, which are intu-
itively the simplest nonabelian groups.

Definition 5.1 G is n step nilpotent, for n > 1, if £{,G = G. G is properly n step
nilpotent if G is n step nilpotent an¢gh,_1G # G.

According to the definitionG is properly 2 step nilpotent €(G) # G andG/C(G)

is abelian. These groups can also be defined in terms of the lower central series. The
following lemma states the essential property of this alternate definition.

Lemmab.2 Gis2 step nilpotent if and only if each commutator [x, y] commutes
with all the elements of the group.

Lemmds5.2kan be used to establish the following identity for 2 step nilpotent groups.

Xyl = xy Ity = xy I tyxct

=x- [y, - X =[y. 4
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Similarly, we have, y ™11 = [y, X, [x L, y Y] =[x yl,and [, y] "t =y, X].

Let G be a free 2 step nilpotent group on the genera#grs € N. That is,G
is presented by the generat@sand subject to the relationsg[h], k] = 1¢ for all
g, h, k e G. We have the following identity:

aia); = ajaia taj taia) = aja - [a, a].
Using the identities above and performing similar calculations, we get
a 'aj=aja ' [aj, &]

aa;t = ajta - [a), al
—1-1_ o-1.-1
aajt =aja -[a,a.
Because these identities allow us to commute any pair of generators modulo a
commutator of generators, we can write any elemei@ ab

aogle ... gk

Jo i1 J'|'C

wherejp < j1 < --- < j, kt € Z\ {0} andc is a product of commutators. Further-
more, we can write€ as a product of powers of commutators of the foam ;] or

[a, aj]—l with i < j. Toget a unique normal form for each element, we arrange these
commutators so that a power @ [a;] occurs to the left of a power oé{, a] if and
onlyifi <kori=kandj <.

These normal forms give us a computable presentation of the free 2 step nilpo-
tent group. Furthermore, since we can write down a description of the normal form
using only bounded quantifiers, we can define the free 2 step nilpotent group on gen-
eratorsa;, i € w, in RCAg. Because an element is in the center if and only if it is a
product of commutators? C'Aq suffices to prove that there is a nilpotent code for this
group.

Theorem 5.3 (RCAg) Thefollowing are equivalent:

1. ACAp
2. For every group G the center of G, C(G), exists.
Proof:
Casel. (1) = (2)
The center ofG is defined by a'Ig formula, soA C'Aq suffices to prove its existence.
Case2: (2) = (1)

By Theorenfl 4] it suffices to prove the existence of the range of an arbitraryll
function f. Let G be the free 2 step nilpotent group on generatpendb; fori € N
with the following extra relations

aaj =aja forall i, jeN
bibj = bjbi forall i,jeN
aibj =bja < Vk<i(f(k) #j).
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Formally, elements o6 have unique normal forma - --afb{™ --- b} - c where
i< <igpji<--<j,np#0forl<p=<k myg#0forl<gqg<=<l, andc
is a product of commutators with those which match the added relations removed.
By the comments abové&; exists as a group iRCAp. However, as we are about
to see,RCAq is not strong enough to prove that there is a codéd@s a nilpotent
group.

Let C(G) be the center o65. To define the range of we use the following
equivalences:

bj e C(G) <= Vi(abj=bja)
& Vivk<i(f(k) #]j)
& Vk(f(k)#j).

Thereforep; € C(G) ifand only if j is notin the range of . This equivalence allows
us to give a28 definition of the range of.

ranggf) = {jIb; ¢ C(G)}
(]

Corollary 5.4  Thereis a computably fully orderable computable 2 step nilpotent
group G such that C(G) =1 0.

Proof: Consider the groufs constructed in the theorem whdnis a computable
1-— 1function enumerating’'0G is clearly a computable 2 step nilpotent group. Since
we can define the range dffrom C(G), we have 0 <t C(G). However, because
C(G) has al‘[‘l) definition fromG andG is computable, we know th&(G) <7 0'.

It remains to show thab is computably fully orderable. Léd be the subgroup
generated by the commutatord. is normal becaus6 is 2 step nilpotent andl is
computable because we can tell if an element is the product of commutators by look-
ing at the normal formH is generated by commutators of the foran p;] for which
dk <i (f(k) = j). There are no relations between these commutatond, isaa tor-
sion free abelian group which can be computably fully ordered lexicographically from
its generators. Sinc@ is 2 step nilpotent, the elements dfcommute with all ele-
ments ofG. Therefore, any full order ol is a full G-order.G/H is the abelianiza-
tion of G, so it isthe free abelian group generateddyandb; for i, j € w. Again,
there are no extra relations between these elemer@ i, so G/H can be com-
putably fully ordered from its generators. Using Theoler the orders orH and
G/H can be combined into a computable full order@n O

The use of infinitely many generators in the proof of Thedke&is unavoidable due
to the following result.

Theorem 5.5 (Baumslag et al.) The center of a finitely generated nilpotent group
is computable.

6 Semigroup conditions In addition to examining which group conditions imply
full orderability, algebraists have also looked for semigroup conditions which imply
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full orderability. Thatis, given a grou@, state conditions in terms of subsemigroups
of G which imply the full orderability ofG. In this section, we study three theorems
giving such semigroup conditions. The versions stated in Kokorin and Kodyv [
are given below. Inthese theoren$gay, . .., a,) denotes the normal semigroup gen-
erated by, ..., ay. Recall that a semigroup is normal if it is closed under inner au-
tomorphisms.

Theorem 6.1 (Fuchs[E]) A partial order on G with positive cone P can be ex-
tended to a full order if and only if for any finite sequence of nonidentity elements,
ai, ..., an € G, thereisa sequenceey, ..., ey With ¢ = 1 such that

PNS@y,....a") =a@.

Theorem 6.2 (tos [12], Ohnishi [L4]) G isan O-group if and only if for any finite
sequence of nonidentity elements ay, . . ., a, there exists a sequence ¢4, .. ., €, with
each ¢; = 1 such that

1o ¢ S@2, ..., aM).

Theorem 6.3 (Lorenzenm) GisanO-groupif and only if for any finite sequence
of nonidentity elementsay, ..., an

ﬂS(ajl,...,a;“):z

where the intersection extends over all sequencesey, ..., en With ¢, = £1.

The first step in studying these theorems in reverse mathematics is to translate the
semigroup conditions into the language of second-order arithmetcisla code for
afinite sequence of elements Gf let S(A) denote the normal semigroup generated

by A. Think of S(A) as built in stages witlg(A) = Aand S,,1(A) containing all

the elements that can be formed by conjugating a memb@gn(@f) or by multiplying

two members 05, (A). Formally, we define a functiogsuch thatx € S,(A) if and

only if s(A, n,m, x) = 1 for somem. Defines by recursion om with A andm as
parameters.

1 ifxeA

S(A,0,m, x) :{ 0 otherwise

1 ifs(A,nmx)=1or
da,g<m(s(A,nm,a)=1AX= gag—l) or
sS(A,n+1,m,x) = da,b<m(s(A,n,m,a)=s(A,n,mb) =14
A X = ab)
0 otherwise

Definition 6.4 (RCAg)  If Aisacode for afinite sequence of element&piet A~*
be the code for the finite sequence defineddy (k) = A(k)~1 for 0 < k < Ih(A).

Lemma6.5 (RCAp) If Aisa code for a finite sequence of elements of G and
s(A,n,m, x) =1, thenIp(s(A~%,n, p,x 1) =1).
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Proof: The proof is byx induction onn. For the base case, assume that
S(A, 0, m, x) = 1and sax € A. By definition,x 1 € A~tands(A=1,0, m, x 1) = 1.
For the induction case, assum@, n+ 1, m, x) = 1 and split into three subcases.
First, if (A, n,m, x) = 1 then the induction hypothesis implies there i duch
thats(A=%,n, p, x1) = 1 and hences(A~1,n+ 1, p,x 1) = 1. Second, if there
areg, a < mwith s(A, n, m, a) = 1 andx = gag™}, then by the induction hypothesis
there is ap with sC(A=%, n, p,a™!) = 1. Sincex ! = ga—1g}, taking p to be the
largest ofp, ganda~! givess(A~1, n+ 1, p, x 1) = 1. Third, if there ar@, b < m
with s(A,n,m,a) = s(A,n,m,b) = 1 andx = ab, then by the induction hypoth-
esis there argy, p, such thaiss(A=%, n, p;,a™!) = 1 ands(A™1, n, pp,b™1) = 1.
Let p be the largest opq, py, a* andb~!. Sincex ! = b~1a™?, if follows that
sS(A™Ln+1, p,xH=1. O

Lemma6.6 (RCAp) Let Pbethepositiveconeof afull order on G and Abeacode
for afinite sequence of nonidentity elements of P. If S(A, n, m, X) = 1 then x > 1.

Proof: The proof is by induction onn. For the base case, assume that
S(A,0,m,x) = 1. SinceAcC Pand ks € A, X > 1. For the induction case, use
the same three subcases as in Lerbnzh O

The next step is to write the semigroup conditions usifiy, n, m, x). Let Finy,; de-
note the set of codes for finite sequences of 1's-ah. If A € Fing, o € Finyq, and
Ih(A) = Ih(o), then letA, € Fing be defined by

lh(As) =Ilh(A)

Vk < Ih(Ay) (A, (k) = A(k)°®).

For example, ifA = (1g, @) ando = (+1, —1) thenA, = (1g, a%).

In the remaining equations in this section, it is assumed &aanges over
Fing\1, ando ranges over Fip;. Theorems5.1J[6.2]and6.3lcan now be stated in
the language of second-order arithmetic. Notice that siiace Fin..; with Ih(o) =
Ih(A) is a bounded quantifier, each of the semigroup conditioﬁ@is

Theorem 6.7 (WKLp) Apartial order on G with positive cone P can be extended
to a full order if and only if

VA3ovx,n,m(Ih(A) =lh(o) A (S(As,n,m,x) =0V x & P)). 2)

Theorem 6.8 (WKLp) GisanO-groupif and only if

VYA3ovn, m(lh(A) =Ih(o) AS(A,,n,m, 1g) = 0). (3)

Theorem 6.9 (WKLp) GisanO-groupif and only if

VAVx3o¥m, n (Ih(A) = Ih(o) A S(A;,n,m, x) = 0). 4)
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There are several connections between these theof@mnssan O-group if and only
if the trivial partial order with positive conB = {1g} can be extended to a full order.
By Theorent6. 7] this condition is equivalent to:

VAJoVx, n,m(lh(A) = lh(o) A (S(A;, N, M, X) =0V X # 1g))

which in turn is equivalent to equati@@ Hence,RCAg proves that Theoref@.Slis
a special case of Theorefa7] Furthermore, setting = 1¢ shows that equatidal
implies equatioft]

Showing that equatidélimplies equatioftkequires more work. Far € Fin, 4,
leto~! have the same length asvith 0= (k) = —o (k). Notice thatA 1 = A;1and
(A1)t = A,. For a contradiction, suppose that equafidmolds and equatidl
does not. Because equatlElfaiIs, there areA andx such that

Vo € Fingidm, n(Ih(o) = Ih(A) — s(A,,n,m, x) = 1). (5)
Fix A andx. Because equatid@lholds, there is & such that Iiic) = Ih(A) and
vn, m(s(A,,n,m, 1) = 0). (6)

Fix o. Applying equatiofElwith o~1, we haves(A_ -1, n, m, x) = 1 for somem, n
and hence by Lemmag s(A,, n, p, x 1) = 1 for somep. Applying equatiorfs]
with o we haves(A,, i, M, X) = 1 for somern, A. Without loss of generality, assume
n > A. By definition, s(A,, n, M, X) = 1 and so ifk is larger tham, mand p, then
s(A,, N, Kk, 1g) = 1. This fact contradicts equati@

Theorem 6.10 (RC'Ap) Thefollowing are equivalent:

1. WKL

2. TheoremlE.7]
3. Theorem[G.8]
4. Theorem[6.9]

By the comments above, we know that statement 2 implies statement 3 and that state-
ment 3 and statement 4 are equivalent. It remains to show that statement 1 implies
statement 2 and that statement 3 implies statement 1.

Lemma6.11 (RCAg) Ifapartial order on G with positive cone P can be extended
to a full order, then equation2holds for P.

Proof: AssumeQ is the positive cone of a full order extendiriy Given any
A € Fing\1., let o € Finyy be such that Ifo) = Ih(A) and for everyk < Ih(o),
Ak)~?® e Q. For a contradiction, assume for somen, mwe have

S(As,n,mXx)=1AXxe P.

BecauseP C Q, we have thatx € Q. Applying Lemmd6.5lto s(A,, n, m, x) = 1,
we haves(A,-1, n, p, x 1) = 1 for somep. However by our choice of, A -1 must
be contained irQ \ 1g and hencex! > 1g by Lemmd6.6 Thusx, x~ € Q and so
x = 1g. This conclusion contradicts * > 1. O
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Proposition 6.12 (WKLg) If P c Gand equation2holdsfor P then P can be ex-
tended to the positive cone of a full order on G.

Proof: This proof is similar to the proof of Theordfm6] Without loss of generality
assume that the domain Gfis N and that O represents the identity. We sometimes
useg; instead ofi to indicate that we are thinking ofas an element d&. We build
abinary branching tre@ which codes the positive cone of a full order along every
path. Equatiof2lwill imply that T is infinite and solWKLq guarantees that it has a
path. To simplify the notation we construtt< Fin.4 instead ofT C Finy 1y. For
eacho e T with Ih(o) =k, let Q, € Fing,1, be

1 k-1
Q= (g7, ).

For example, it = (+1, —1, —1) thenQ, = (g7, g, 1). The reason for not includ-
inggoin Qs issothatt & Q,. Q, represents’s guess at a subset of a strict positive
cone extendind®. T, denotes the nodes @fat the end of stagle

Construction
Sage 0: SetTyo = {()} andQy = ().

Sage 1. SetT; = {(), (—1)} and Q1) = (). The purpose of this stage is to codg 1
into every path without coding it into an®,

Sage s= k+1: For eachr € T, check if equatiofhas been violated with witnesses
belowk:
x,n,m=<k(s(Q,,n,mx)=1Axe P).

If equationi2]has been violated, then do not put eithef —1 or o x +1 into T 1.
Otherwise, extend by putting botho « —1 ando * +1 into Ty 1.

End of Construction

Weneed to verify various properties of the construction. kbH(ds, ..., Ok_1)

and Kl = (g7®V,..., g?% ™).

Lemma6.13 (RCAp) T isinfinite.

Proof. It suffices to show that for eadhthere is an element of of lengthk. Fix
k > 0. SinceP satisfies equatidﬁlthere is a € Fingq with Ih(o) = k and

vx, n,m(s([Kls,n,m,x) =0V x & P).

In particular, this condition holds if we bound the quantifier&bifrom the definition
of T, it follows that for alli <k, (c(0),...,0(i—1)) € Tand hence € T. O

By Weak Konig’'s Lemma there is a patinthroughT. Let

h[n] = (h(0),...,h(n—1)) € Finy,

h(1) h(n—1)
1

hin] = [nlnm = (@1, ..., ghY) € Fing.
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Lemma6.14 (RCAg) Foranyxe G\ 1g, h(x) =1 <«— h(x1) = -1

Proof: Supposeh(x) = h(x 1) = 1, x ! = gj, andk is the maximum ofj and
x. By definition, x, x 1 € h[k + 1] and sinces(h[k + 1], 0,0, x) = 1 ands(h[k +
1],0,0, x~1) =1, it follows thats(ﬁ[k+ 1],1,k, 1g) = 1. But, I € Pand so ly the
construction ofT, h[k + 1] has no extensions. This statement contradicts the choice
of h as a path. The case fotx) = h(x™1) = —1 issimilar. O

We are now in a position to defin® and verify that it is a full order extending.
geQ<«—h()=-1

Q exists byAcl’ comprehension. It containgsbecauser(0) = —1 for everyo € T
and it is both full and pure by Lemrita14] To simplify the notation, we writé(g;),
or h(a) if a= g; instead oth(i).

Clam6.15 PcQ

For a contradiction suppogg € P\ 1g andh(g;) = 1. By definition,g; € hli + 1]
and sos(h[i +1],0,0, g) = 1. Asin Lemmd.14 s(h[i +1],0, 0, gi) = 1 andg;
P contradicts the fact thdtis a path.

Claim 6.16 Qs closed under multiplication.

Suppose tha#, b € Q andab ¢ Q. From Lemmab.14and the definition ofQ, it
follows thath(a™!) = 1, h(b~1) = 1 andh(ab) = 1. For a large enougk, we
havea!, b1, ab € f[k] and hence ifm is the maximum of2, b~! andab, then
s(ﬁ[k], 2,m 1g) = 1. Since k € P, this statement contradicts the fact timais a
path.

Clam 6.17 Qisnormal.

Suppose] € Q, g € Gandgag~! ¢ Q. Asabove,h(q?) =1, h(ggg™?) = 1 and
there is ak with g1, gqg~* € h[k]. There is arm such thass(h[K], 2, m, 1) since
the definition ofs yields the normal semigroup. As aboWwgk] cannot be on a path.
This claim completes the proof th@tis a full order extending. O

Together Lemm&.11land Propositiof5.12lshow (1) implies (2) in Theoreffd. 10]
The last step is to show that (3) implies (1) in Theofgr(l

Proposition 6.18 (RCA4g)  For an abelian group G, equation[3holdsif and only if
Gistorsion free.

Proof:

Casel: Equatiod3lholds=> G is torsion free.

For a contradiction assume that equafidimolds anda # 1¢ is a torsion element of
G.

Claim 6.19 For all k> 1, 3p[s((a), k— 1, p, &) = 1].

The claim is proved byE(l) induction onk. If k = 1, thena € (a) implies
s({a),0,0,a) = 1. Fork + 1, the induction hypothesis states that there mand
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p’ such thas((a), k— 1, p, a) = 1ands((a), k — 1, p’, a) = 1. If p” is the largest
of p, p’ anda, thens((a), k, p”, a“t1) = 1, which proves the claim.

If ais a torsion element then for sorkgak = (a1)k = 1. Equatiori2lfor the
sequencea) says that either

vn, m(s((a), n,m, 1g) = 0)

or  vn,m(s({a™),nmilg)=0).

But the claim implies there is p such that
s((@,k—1,p,1c) =s((a),k—1,p,a) =1

and s({@?l),k—1,plg) =s(a?t),k—1p @hH =1
Case2: Gis torsion free= equatiorZlholds.

The first step is to show that for an abelian grdBphe normal semigroup gener-
ated byA € Fing,1,, is the same as the semigroup generatedbyrhat is, if A =

(a1, ...an) then any element dB(A) can be written aa'i1 e a,'ﬁ" for some choice of
ki, ...kn € Nwith at least ond > 0. Informally this statement is clear because any
subset of an abelian group is normal. To prove this fa@ i, we use the function
prod(A, o) from Fing x Finy to G that takesA = (ay, ..., an) ando = (01, ..., op)

to a‘lIl ---aj". Formally, prod A, o) is defined by recursion on (&). The next two
lemmas follow by straightforward induction proofs.

Lemma6.20 (RCAg) If AcFing\1,, 0, T € Fingy andIh(A) = Ih(o) = Ih(z) then
prod(A, o) - prod(A, ) = prod(A, o + 1) where o + t € Finy is defined by (o +
7)(K) = o(k) + t(K).

Proof: This lemma is proved by induction on(lA). O

Lemma6.21 (RCAg) If AeFing\1., ne N, xe Ganddm[s(A,n,m,X) = 1]
thenthereisao € Finy withh(o) = Ih(A) and at least onek < lh(o) witho(k) > 0
such that x = prod(A, o).

Proof: This lemma is proved by induction an O
We can now prove that i is torsion free abelian then equat{@holds byl‘l? in-
duction on IA). For the base case, we need to show that for esel® \ 1 either

vn, m(s((a), n,m, 1g) = 0)

or  vnm(s(a™t),nmlg) =0).

Suppose that neither equation holds and §&), n, m, 1) = 1. By Lemmd5.21]
1g = prod({(a), o) for someo with ¢(0) > 0, and so & = a’@ by the definition of
prod. Thereforais a torsion element which contradicts the fact {&as torsion free.

The induction step will be presented less formally to avoid an undue amount
of notational baggage. Assume equati@olds for (ay, ..., a,) and fails for
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(a1, ...,an, b). Let (e, ..., €n) be the exponents in equatiEIfor (ai,...,an). By
assumption, there arg, my, ny, My such that

s((@, ...,ar, b),n, m, 1g) =1

s(@f, ...,ae, b, mp, my, 1) = 1.
By Lemmd6.21] there areky, . .., khyq andly, ..., 41 such that

agfe.ggkpkes =15 and  afh...aghbT =16
which givesail(k1'”+1+k”“'1)---aﬁ”(k”l”+l+k“+l'”) = 1g. This equation contradicts
equatiorBlfor (ay, ..., an). O

Propositiorb.18khows that statement (3) in TheorEmdimplies that every torsion
free abelian group is an O-group. By Theoi@ this statement implie®/ K Lo. We
have now completed the proof of Theoremidl

7 Holder’'sTheorem  An early conjecture about ordered groups was that the num-
ber of full orders of a given O-group was always a power of 2. This conjecture
included the statement that a group could not have a countable number of orders.
Buttsworth [2] constructed a group with a countably infinite number of orders and
Kargapolov et al[J] showed the conjecture was false for groups with a finite number
of orders. A more difficult problem is to classify all possible full orders for a given
class of O-groups. One of the few classes for which this problem has been solved is
the class of torsion free abelian groups of finite rank. These results can be found in
several places, including Tehd]. The key ingredient in each of these results about
counting or classifying full orders is éider's Theorem. For a more in-depth dis-
cussion, see eithell 0] or Mura and Rhemtulldl[3] In this section, we will show

that Holder’s Theorem is provable iRCAp. It remains open whether the classifica-
tion theorems mentioned above can also be provétlidy, or whether they require
somewhat stronger set existence axioms.

Definition 7.1 (RCAp) If Gis an f.0. group, then thabsolute value of x € G is
given by
|X|_{x if xe P(G)
| xt if x¢P(G).

Definition 7.2 (RCAp) If Gis an f.o. group, thea € G is Archimedean less than
b € G, denoteda « b, if |a"| < |b| for all n € N. If there aren, m € N such that
|a"| > |b|and|b™| > |a|, then a and b arArchimedean equivalent, denoteda ~ b.
The notatiora < b meansa~ b v a « b. Gis anArchimedean fully ordered group
if Gis fully ordered and for alh, b £ 15, a~ h.

It is not hard to check that is an equivalence relation and thatis transitive, an-
tireflexive, and antisymmetric. The next lemma lists several other straightforward
properties ok and<. For proofs, sedd)].

Lemma7.3(RCAp) If Gisaf.o. group, then the following conditions hold for all
a,b,ceG.
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Exactly one of the following holds: a <« b, b « a, or a~ b.
a < bimpliesthat xax~* « xbx~1 for all x € G.

a<k banda~ cimplythat c <« b.

4. ak bandb~ cimplythat a « c.

w DN P

Holder’s Theorem states that every f.0. Archimedean group can be embedded in the
naturally ordered additive group of the reals. In this section we show tilales
Theorem is provable i CAg. Recall that real numbers in second-order arithmetic
are given by functions frori¥ to Q with appropriate convergence properties, so the
first step towards proving dlder’s theorem is to decide what a subgroup of the real
numbers should be in second-order arithmetic.

Definition 7.4 (RCAp) A real number is a functionf : N — @, usually denoted
by (ax |k € N), such that for alk andi, | gx — Oti | < 27%. Two real numbers =
(aklke N)andy = (q, |k e N) areequal if for all Kk, [qx — ¢ | < 27%+1 Thesum
X+ yis the real numbefqy1 + 0 1 [k € N).

Definition 7.5 (RCAp) A nontrivial subgroup of the additive real numbers
(R, +r) is a sequence of real& = (r, | n € N) together with a functiont-a :
N x N — N and a distinguished numbee N such that

1.r=0
2. n+am=pifandonlyifrn+grm=rp
3. (N, + ) satisfies the group axioms witlas the identity element.

Combining these definitions, we see tieis a double indexed sequence of rationals
A= (Qnm|Nn, meN) wherer, = (0nm| me N).

Let (G, <) be an Archimedean fully ordered group. BecaGsmust be abelian
(see Lemm&_6), we use additive notation fd@. The idea of the proof of Blder’s
theorem is to pick an elemente P(G), a # 1, and define a subgroup aiR, +)
usinga to approximate the other elements®@f For now, assume that'2lividesa
in G for all n. That is, assume there exist€ G such that 2c = a. To construct the
real corresponding tg # 1¢, wefirst find pg € Z such thatppa < g < (pg+ 1) a.
Such apg exists becaus6 is Archimedean. Next we fing; such thatp;(a/2) <
g < (p1+ 1)(a/2) and continue to fingy; such thatpi (a/2') < g < (pi + 1)(a/2").

The real corresponding tpwill be (pi/2'|i € N). Because the elemerag2' may not

exist, we achieve the same effect by choosimguch thatp;a < 2'g < (pi + 1) a.

The standard proofs ofélder’s Theorem are similar but use Dedekind cuts instead

of Cauchy sequences. The motivation for using Cauchy sequences here is they are
simpler to use in the context of second-order arithmetic.

Lemma7.6 (RCAp) Every Archimedean fully ordered group is abelian.
Proof: The standard proof goes throughRtT Aq. For the details, se€[]. O

Theorem 7.7 (HOlder’'s Theorem) RCAp)  Every nontrivial Archimedean f.o.
group is order isomor phic to a nontrivial subgroup of the naturally ordered additive
group (R, +).
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Proof: Let (G, <) be an Archimedean f.o0. group aggl, g;, ... be an enumeration
of G with no repetitions such thag = 1 andg; € P(G). We construct a subgroup
Aof (R, 4+) by constructing, = (gn,m | m € N) uniformly in nfrom g, andg;. For
simplicity of notation, lela = g;. The first two elements of arerp = (0| me N)
andr; = (1| me N). To constructr, for n > 1, definep, m € N andg, m € Q by

_ Pnm

Phma =< 2Mgn < (Phm+1a and On,m = om

Becauses is Archimedean, thg, m exist and are uniquely determined. DefiRe=
(gn.m | me N). It remains to show thafA = (r, | n € N) is a subgroup ofR, +)
and that the map fror® to A sendinggn to ry is an order preserving isomorphism.

Claim 7.8 Eachr, isareal number.
To prove this claim we must verify th@tin, m — Qn.m+k | < 2~ " for all mandk. It fol-
lows from ppma < 2™g, < (Pnm + 1) a that 2pp ma < 2™g, < 2pmn + 2 a.

Hence eitherpnmi1 = 2pn.m (@Nd Gn.m+1 = Gnm) OF Pamil = 2Pn.m + 1 (and
Onme1 = Onm+ 1/2™1). Thus,

I
*

i 1 1
[ On,m — On,mek | =< i omiT < o

1
i

Clam7.9 Ifgn+9m=0acthenr,+rm=ry.

As above, this claim reduces to checking the convergence rates. By definjtipn,
'm= (0ni+1+dmi+1|i € N). Toprovern +rm=r¢ we need to show thatin i1 +
Omist — Okil < 27'"+1for everyi e N. Adding the equations defining, ;1 and
Pm.it1 yields

(Pnis1+ Pmiz1)a<271ge < (Pnits+ Pmitt+2)a

Thuspy,i+1 is eitherpnita + Pmi+1 O Pni+1+ Pmit+1+ 1. In either casegy i1 —
On,i+1 — Omii+1 < 2~'-1 and we have the following inequalities.

[Oni+1 + Omi+1 — kil =< |Onits+Omi+r1 — Oki+1!+ 10k it1 — kil
< o7i-l o
27i+1

A

The map sending, to ry is onto by definition and the following claim shows it is
1-1.

Clam 7.10 Ifn#m,thenr, #rp.

To establishr # iy, we nee tofind ani such thai gnj — Qm,i | > 2-+1 or equiv-
alently,| pni — Pmi| > 2. Becausen # mimplies gn # gm assume thagl, < gm.
There are four cases to consider.

Casel: 0On<1lg<0m

BecauseG is Archimedean there is drsuch that 2g, < —3a < 1g < 2 g It fol-
lows thatpni < —3and pmi > 0. Hence pni — Pm,i| > 3.
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Case2: On=1G < On
There is ari such that ¢ < 3a < 2' gn,. It follows thatp, ; = 0 while pp,; > 3.

Since &k < gm — On, there is an which yields the following equations:
1o <a<2(gm—0gn) =2 gm—2 0n
2gh<a+2gn<2gn
2i+2 On < 4a+ 2i+2 On < 2i+2 Om.

There is & such thaka < 2142 gn < (k+ 1)a. Combining these equations yields
ka<2*lg, < (k+4)a<4da+2+?g, < 2+2gny. It follows thatpn ;o = k and
Pm.it+2 > k+ 4.

Case4d: Oh<dm<lg

In this case, & < gm — gn and so the previous argument works. This case completes
the proof of the claim and shows the map is 1-1.

The claims showA is a subgroup ofR, +) and is isomorphic t@. Finally, to
show thatg, < gm impliesr, < ry, notice that ifg, < gm thenqgn; < qm, for every
i. Thus,r, < rnq. But, sincegn # gm impliesr, # rm, we haver, < rm. O

8 Strong divisible closures The algebraic closure of a field, the real closure of an
ordered field and the divisible closure of an abelian group are three naturally occur-
ring notions of closure in algebra. Every abelian group has a unique divisible closure
up to isomorphism and is isomorphic to a subgroup of its divisible closure. Similar
results hold for the other notions of closure. From the perspective of reverse mathe-
matics, it is useful to separate three aspects of these closure operations and examine
each individually. That is, we ask the following questions about the divisible closure.
How hard is it to prove that each abelian group has a divisible closure? How hard is
it to prove that this divisible closure is unique up to isomorphism? How hard is it to
prove that each abelian group has a divisible closure for which it is isomorphic to a
subgroup of that divisible closure? Similar questions can be asked about the other
notions of closure, and the questions can easily be reworded to reflect concerns about
computable mathematics instead of about reverse mathematics.

Friedman et al. proved several results about these closures, including the follow-
ing theorem which illustrates that the answers to these questions need not be the same.

Theorem 8.1 (Friedman, Simpson, and SmithR('Ag)

1. Every field has an algebraic closure.

2. WKL is equivalent to the statement that every field has a unique algebraic
closure.

3. ACAp isequivalent to the statement that every field has an algebraic closure
such that the original field isisomorphic to a subfield of the algebraic closure.

Friedman, Simpson and Smiffif[give the following definitions.
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Definition 8.2 (RCAp) Let D be an abelian groupD is divisibleif for all d € D
and alln > 1 there exists & € D such thahc = d.

Definition 8.3 (RCAp) Let A be an abelian group. Aivisible closure of Ais a
divisible groupD together with a monomorphisim: A — D such that for ald €
D, d # 1p, there exists1 € N with nd = h(a) for somea € A, a # 1.

Smith proved that every computable abelian group has a computable divisible
closure and that this divisible closure is unique if and only if there is a uniform algo-
rithm which for each prime decides if an arbitrary element of the original group is
divisible by p. Friedman, Simpson, and Smiti][proved the following theorem.

Theorem 8.4 (Friedman, Simpson, and SmithR('Ao)

1. Every abelian group has a divisible closure.
2. ACAqisequivalent to the statement that every abelian group has a unique di-
visible closure.

In this section, we extend these results to strong divisible closures. Downey and
Kurtz [B]l considered another possible extension. They proved that every computably
fully ordered computable abelian group has a computably unique divisible closure.
An examination of their proof shows th&CAq suffices to prove the uniqueness of
the divisible closure for fully ordered abelian groups.

Theorem 8.5 (Downey and Kurtz) RCAg) Every fully ordered abelian group G
hasaf.o. divisible closure h : G — D such that hiis order preserving. Thisdivisible
closureis unique up to order preserving isomor phism.

Definition 8.6 (RCAp) Let Abe an abelian group. &rong divisible closure of A

is a divisible closurén : A — D such thah is an isomorphism of onto a subgroup
of D. If Aisaf.o. groupD is fully ordered andh is order preserving, then we call
h: A — D anf.o. strong divisible closure.

Because&iCAg suffices to prove the uniqueness of the divisible closure for f.0. abelian
groups, butd CAq is required to prove the uniqueness for abelian groups in general,

it is reasonable to hope that proving the existence of a strong divisible closure would
be easier for f.0. abelian groups than for abelian groups. The next theorem shows this
is not the case.

Theorem 8.7 (RCAg)  Thefollowing are equivalent:

1. ACAp
2. Every abelian group has a strong divisible closure.
3. Every fully ordered Archimedean group has an f.o. strong divisible closure.

The idea of proving (3) implies (1) is fairly simple. Lek be an enumeration of the
primes in increasing order. Given a 1-1 functibnlet G be the subgroup dd gen-
erated by 1 ang—K for eachk in the range off. This group has an Archimedean full
order and the range df can be recovered from the strong divisible closure by

range f) = {k|% e h(G)}.
k
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Lemma88 (RCAy) Let px enumerate the primesin increasing order. If k € Z,
jeNandvi<jO=m < pi),thenzisjmi/pi =kimpliesthatk=0andm; =0
foralli < j.

Proof: Let p be the producpy - - - pj and letp, be p/ p;. If we multiply the sum by
p we obtain

> mpi = kp.

i<j

This equation must hold modulg for all | < j. However, ifu # |, then(my py =
0) modp, becausep, divides p,. Therefore, we have

(Zmﬁi =m le) modp;.

i<j
Also, (kp = 0) modp, and so we havém p; = 0) modpy. It follows thatp, divides
m. Because & my < p;, my must be 0. O
Using LemmdB.8] we can give a proof of Theore[@.7]
Proof:
Casel: (1)= (2
ACAq suffices to prove that the image of the embeddiraxists.
Cae2: (2) = (3)

The following full order onD makesh order preserving.
P(D) = {de D|3n> 03ge P(G)(nd = h(g))}

= {de D|Vn> 0vge G(nd =h(g) > g€ P(G))}

Becausdé?(D) has aA(l) definition, RCAg suffices to prove it exists and to verify that
it is a full order onD.

Case3: )= (1)

Let f be a 1-1 function and lgi, be an enumeration of the primes in increasing order.
It suffices to show that the range éfexists. LetG be the group with generatoas
andx; fori e N, and relationp¢ ;)X = a. The intuition is thaiG is isomorphic to a
subgroup ofQ with ar—~ 1 andx; — p?(li). In RCAp we represent the elements®f

by finite sumska + »;_; m x; wherek € Z, 0 < mi < p¢(, andm; # 0. Using the
relation equations, any element@fcan be reduced to one of these finite sums. We
need to show that no two of these finite sums represent the same elen®nt of

Claim89 Ifka+ Y ,.;mx =ka+ Y ;_;mx thenk =k, j =  and for all
i< j, (M =m).
First notice that ¢ has a unique representation as the finite suam hdeed, if

ka + Ziij m; X; = 1g = 0- athen using the relations, we obt@jiSj mi(a/pt)) =
—ka. BecauseG is torsion free, this equation impliegiSj mi/pPsiy = —k. By
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Lemmd8.8]k = 0 andm; = 0. To show thatj must equalj in the claim, suppose

thatj < jand i
ka + Zmixi =ka + Zrﬁixi.

i<] i<]

Reducing(k — k) a+ i (M —M)X + 3, _;MX;, we obtain

K'a+ Zm’xi + Zﬂmxi =1c

i<y j<i<]j

for somek’ andm. Because ¢ has a unique normal fornm)- = 0 which gives the

]
desired contradiction and show/s= .
A similar argument shows that = m; for all i < j. Suppose there is d@n< |
such thatm; # M. Since we can always subtract off equal terms, we can assume
without loss of generality thah; < m;. If

(k—ka+ Y (v —m)x

i<j-1

reduces to the normal foriia + > ;_; mx for somej” andny, then (k — kya +
>_i<j (M —m)x reduces to the normal form

Ka + ZI’T]/Xi + (Mj —mj)X; = Og.
i<j
By the uniqueness of the normal form fog,0we have thath; — m; = 0, which~is
a contradiction. Therejorerﬁ =m foralli < j. Our equation reduces & = ka
which implies thak = k.

Claim 8.10 Gisfully orderable.

Define the positive conB(G) by
m.
ka+ ) mxeP(G) <« k+» — >0.
i<] iy Pro)
P(G) is normal becaus@ is abelian. To verify the other properties, notice that if two
finite sumska + Ziij m; X; andka + Zigrﬁixi, not necessarily in normal form, are
equivalent under the group relations then

K BLLLIN M
+§ Pt * <7 Pt

This property is proved by induction on the number of applications of relation equa-
tions it takes to transform one sum into the other. This property immediately yields
that P(G) is a pure, full semigroup with identity. Furthermore, it shows tBat
Archimedean under this order becalé Archimedean.

Applying condition (3) from the theorem, we have a divisible closur& — D
and the imagd(G) exists.

X = {k|@ ch(G)}
Pk



REVERSE MATHEMATICS 189

? € h(G) «— py dividesain G
k
<« Ji(pXi = a)
<~ 3Ji(f@i)=Kk)
Thus X is the range off. O
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