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Homeomorphism and the Equivalence
of Logical Systems

STEPHEN POLLARD

Abstract  Say that a property istopological if and only if it isinvariant un-
der homeomorphism. Homeomorphism would be a successful criterion for the
equivalenceof logical systemsonly if every logically significant property of ev-
ery logical system weretopological. Alas, homeomorphisms are sometimesin-
sensitiveto distinctionsthat logiciansvalue: properties such asfunctional com-
pleteness are not topological. So logics are not just devices for exploring clo-
sure topologies. One still wonders, though, how much of logic is topological.
This essay examines some logically significant properties that are topological
(or aretopological in someimportant class). Inthe process, welearn something
about the conditions under which the meaning of aconnective can be “given by
the connective'srole in inference.”

1 Introduction Hereisaguessing game. | have in mind a two-valued sentential
logic with a denumerable set of well-formed formulas A and a consequence relation
E. (X = ¢if and only if no interpretation assigns 1 to each member of X and 0to ¢).
Say that asubset X of Aisclosed under = justincase X ={p € A: X = ¢} (thatis,
just in case each conseguence of X isamember of X). Aitself isclosed; andthelogic
| havein mind has exactly three other closed sets. B, C, and D. All are denumerable.
Alistheset of consequences of somewell-formedformulag : A= {y € A: {¢} = ¥}
Furthermore, A= (BUC) and D = (BN C). So the closed sets of my logic form
the following lattice under inclusion:
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So what logic do | have in mind? Well, the question turns out to be unfair. You can
infer that my logic has no more than two sentential variables (since the number of
variables cannot exceed the width of the lattice of closed sets). But you have no way
of knowing whether my logic has as many astwo or asfew asone. You can provethat
my logic has denumerably many tautologies (since D = {y € A: @ =y} ={y €
A yisassigned 1 by every interpretation}). But you do not know whether my logic
has even one unsatisfiable well-formed formula. (For all you know, my logic might
alow an interpretation that assigns 1 to every well-formed formula.) A result given
below assures you that my logic expresses conjunction and the T-constant function.
But you have no way of telling whether my logic expressesall truth functions or only
apitiful few. | might have in mind, say, the classical logic of negation, conjunction,

and asingle sentential variable:
PA=P

<N
NS

—(PA=P)

But then, | could just as well be thinking of the classical logic of conjunction, T-
constant, and two sentential variables:

N\
%

T(P, Q)

The topological and implicational structures are the same in each case.

Now it so happens that any logics (indeed, any closure spaces) with the proper-
ties| have attributed to my mystery logic will be homeomorphic to one another. So
homeomorphism would be “an excellent criterion for the equivalence of logical sys-
tems’ (Pollard and Martin [[L1], p. 127) only if there were no logically significant dif-
ferences between any logical systems satisfying the conditions of my mystery logic.
This, in turn, would require that properties such as functional completeness or the
existence of an unsatisfiable well-formed formula not be logicaly significant. Does
this seem right? My idea of alogically insignificant property is, say, the use of ‘>’
rather than ‘' —’ as the symbol for material implication. Should we insist that func-
tional completeness is that sort of property? Keen as | am on the closure theoretic
approach, | declineto do so. Logicswith the same closure topology can differ inlog-
icaly significant ways. So logic is hot entirely topological.

That's the bad news. The good news is that, in the case of classical sentential
logics, this concession does not amount to much. Consider the property of expressing
an unsatisfiable well-formed formula. We saw that this property is not preserved by
homeomorphisms:. in asuitably impoverished logic, the conjunction of all sentential
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variableswill imply all well-formed formulas and hence, will play the same topol og-
ical roleasacontradiction. Of course, if we make the standard assumption that there
aredenumerably many sentential variables, then thereis(classically) no such thing as
the conjunction of all variables. In this setting then, we might hope that no satisfiable
well-formed formula can impersonate an unsatisfiable one. This hopeisrealized: in
aclassical sentential logic with infinitely many variables, a well-formed formulais
unsatisfiableif and only if it hasthetopological property of implying all well-formed
formulas. This happy result generalizes: it is arguable, in fact, that all logically sig-
nificant properties of classical sentential logicswith infinitely many variablesare pre-
served by homeomorphisms.® Of course, one normally does assume that one’s logic
has infinitely many variables. So, while the misbehavior of homeomorphismsin the
finite case is disappointing, their performance under more standard conditions is a
considerable consolation.

2 Preliminaries It will be convenient to concentrate on classical sentential logics
whaose connectives are all binary. (The restriction to binary connectives will help us
with some bookkeeping later on. There is no deeper motivation.) Moreformally, say
that atwo-valued logic with binary connectivesis atriple (V, CON, %) where V isa
nonempty set of variables, CON is a nonempty set of binary connectives, and x isa
functionthat assignsabinary, two-valued truth functionto each member of CON. The
well-formed formulas of such alogic are the variables and any expressions g(¢, ¥)
where ¢ and y are well-formed formulas and g is a connective. An interpretation
isany 0, 1-valued homomorphism on well-formed formulas. That is, if F isanin-
terpretation, then 7(g(p, ¥)) = g*(F (), F, (¥)). If ¢ isawell-formed formula
and Aisaset of well-formed formulas, then, as usual, we say A = ¢ just in case ho
interpretation assigns 1 to each member of Aand0to ¢. Welet CI(A) = {¢ : A &= ¢}.

Each such function Cl is a closure operator. That is, A C CI(B) if and only if
CI(A) < CI(B).? Notethough that Cl will not necessarily satisfy all of the K uratowski
closure axioms characteristic of atopological space. There are two reasons. First of
all, in some of our logics, the empty set has a nonempty closure: {¢ : @ = ¢} # @.
This just means that some of our logics feature well-formed formulas assigned 1 by
every interpretation. (Think of Cl(@) asthe set of all tautologies.) Secondly, it takes
a bit of work to find alogic in which CI(AU B) € (CI(A) U CI(B)) for al sets (of
well-formed formulas) A and B. That is, it is common for (AU B) to imply well-
formed formulas implied by neither A nor B. So our nation of closure is not really
the topological one, but rather its generalization from the more abstract theory of clo-
sure spaces. We a so employ the closure theoretic, rather than the strictly topological,
notion of homeomorphism. Some of usfindit natural though to say that propertiesin-
variant under (closure theoretic) homeomorphism are “topological.” (Cf. Martin and
Pollard [B], p. 91.)

If I'; and I, are logics with closure operators Cl; and Cl, and if f is a bijec-
tion that assigns well-formed formulas of I', to well-formed formulas of 'y, then f
is ahomeomorphismjust in case f[Cly(A)] = Clo(f[A]) for each set A of I'y-well-
formed formulas. Just as in topology, a homeomorphism is a continuous bijection
whoseinverseiscontinuous. (Cf. [[8], p. 85.) Notetoo, that if f isahomeomorphism,
then{p1,...,om} EvinTyifandonly if {f(¢1),..., f((pm)} = f(¥) inT, So
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homeomorphism isisomorphism with respect to the consequence relation. The ques-
tion then is whether logics should be considered equivalent whenever they have the
same implicational structure.

If ® isan n-ary truth function, I" isalogic, and ¢ is a I'-well-formed formula
with occurrences of exactly n variables Py, ..., Py, then ¢ expresses ® in T if and
only if ®(F(Py), ..., F(Py)) = F(p) for every interpretation 7. A truth function
is expressible in alogic I if and only if some I'-well-formed formula expresses it
inT. Let FNC(I") be the set of truth functions expressible in I". Then, for example,
if [CONJ* (the set of truth functions assigned to members of CON by ) is any func-
tionally complete set of two-valued truth functions, then FNC(T") isthe set of all two-
valued truth functions. If the only members of [CON]* are material implication and
two-valued conjunction, then FNC(T") isthe set of Post’s g-functions. thetwo-valued
truth functions ® suchthat ®(1,1,...,1) = 1.

We say that logics I'y = (V1, CONy, %) and 'y = (V,, CON,,’) are Post-
equivalent just in case |V;| = | V| and FNC(I'1) = FNC(T',); that is, just in case
the two logics have the same number of variables and express the same truth func-
tions. Theterm * Post-equivalent’ ismeant only to honor Post; | do not claim that this
was his standard for the equivalence of sentential logics. (Since the logics of [[12]
all have denumerably many variables, Post would, at the very least, have omitted the
clause about cardinality.) Although Post-equivalence does seem an attractive stan-
dard, | introduce it here mainly because a comparison between Post-equival ence and
homeomorphism helps us to understand homeomorphism.

3 Homeomorphism # Post-equivalence  Given any fixed V, there are 33 Post-
equivalence classes of logics (V, CON, *). The following truth functions will alow
usto characterize them.

‘ T VvV = — << A V =S — | L1
1111 1 1 1 1 1 0 0 O 0 O
/12 12 1. 0 O O 1 1 O O O
0aj1 1 O 1 0 01 0O 1 0 O
001 0 O 1 1 0 0 O 1 1 O

The 33 Post-equivalence classes correspond to the logics whose connectives are as-
signed the following truth functions. (The names listed are borrowed from Post [12].
Post lists 37 “second order” systems. We obtain just 33 equivalence classes because
we only consider logics whose connectives are al binary. As earlier noted, thiswill
allow us to simplify some tedious bookkeeping.)

Ry =1 S Vv P A A T,L,v,A
Ry T S =1,V P =1, A A T,V, A
Ry L S T,V Py L, A Az L,Vv,A
Ry —1 S =1, T, v P =, LA Ag V,A

Re =1, T S 1,v Ps T,A C: |

Rg =1,1 S T,1,v Ps T,L.A Cu A—

Ry T,L Ly <,/ FZOZ Cs Vv,=>

—
Ri: =1,T,L Ly <« Fgo —
Riz T, Ly Vv
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Homeomorphism yields a different classification. For example, each S; logic with,
say, two variablesis homeomorphic to each S, logic with two variables. (These log-
icsfail to be Post-equivalent only because S, logics express the projection function
=1 while S; logics do not.) Logics of types S; and Sy, P, and P, P; and P, have
the same property. So homeomorphism yields only 29 equivalence classes of logics
with exactly two variables. Someone who thinks the expressibility of =; islogically
insignificant would score this as a point in favor of the topological outlook. The two
lemmas given below offer further comfort to fans of homeomorphism. There are,
however, two reasons for concern. Note, first of al, that homeomorphisms are some-
times sensitive to the expressibility of =;. (Cf. R, and Rg, Rz and Rg, Rg and Ry1.%)

Onewonderswhy the expressibility of =3 should count aslogically significantin
some cases, but not in others. Secondly, while homeomorphism yields amore or less
reasonabl e classification of logicswith a certain number of variables, having exactly
n sentential variables is not a topological property. So significantly different logics
with different numbers of variables could turn out to be homeomorphic. (In fact, we
aready saw in 81 that thiswill happen.)

We say that aproperty istopological just in caseit isinvariant under homeomor-
phism. (So, if I'1 and I', are homeomorphic logics, then I', will have every topol og-
ical property that I'; has.) We say that a property P istopological in a class W just
incase VX, y € W((Px A xis homeomorphic toy) — Py) (that is, justin case P is
invariant under homeomorphisms between membersof W). Let A bethe class of two-
valued logics with binary connectives.

Lemma3.l Theexpressibility of A istopological in .

Proof:  Suppose (P& Q) expresses A inthelogic I';. Then (P& Q) is assigned 1
by exactly those interpretations that assign 1 to both P and Q. Indeed, given any I';-
well-formed formulas ¢ and v, (p& ) isassigned 1 by exactly those interpretations
that assign 1 to both ¢ and v It follows that Cly({p& v}) = Cli({e, ¥}). Soif we
let f be a homeomorphism that assigns well-formed formulas of I', to well-formed
formulas of 'y, then

Cla({ (), f(¥} = f[Cli{e, ¥D] = f[Ch{p&yP] = Clo({ f (p&y)}).

So f (&) isassigned 1 by exactly those interpretations that assign 1 to f () and
f(y). Let Rand Sbe variables of I',. Then f(f~1(R)& f~1(S)) isassigned 1 by
exactly those interpretations that assign 1 to both Rand S. So A isexpressiblein I'.

O

Hereis a closely related result. Suppose I' = (V, CON, %) € A. Let & be afunc-
tion that assigns I'-well-formed formulas to I'-well-formed formulas. And suppose
Cl({p&y}) = Cl({e, ¥}) for al I'-well-formed formulas ¢ and . Then, given any
[-interpretation ¥ and any I'-well-formed formulas ¢ and v, F(p& ) = 1if and
only if F(p) = F(¥) = 1. So, in a A-logic, a function obeys the truth table for A
if (and, in fact, only if) the function plays a particular role in the closure topology of
that logic. Lessformally, if we aready know that the intended theory of meaning for
alanguageisclassical, then, “The meaning of aconnectivelike'and’ is . . . given by
itsrolein inference” (as Koslow expresses the doctrine of Belnap [[1] on p. 26 of his
[5)). Well, what other logical expressionsarelike‘and’ in thisrespect? For arelevant
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negative result, see Theorem[4.2below. First, though, here is another positive result.

Lemma3.2 Theexpressibility of T istopological in A.

Proof: Supposer(P, Q) expresses T inthelogicT'y. Then t(P, Q) isassigned 1 by
every interpretation and hence, @ = (P, Q) and hence, (P, Q) € Cl1(2). If fisa
homeomorphism, then f[Cly(@)] = Cla(f[@]) = Cl2( ). So f(t(P, Q)) € Cl»(2)
and hence, @ = f(z(P, Q)) and hence, f(z(P, Q)) isassigned 1 by every interpre-
tation. | note without proof that a 1-constant function is expressible in a system of
binary connectives only if the binary 1-constant function is expressible. O

SupposeI” = (V, CON, %) € A. Let r beafunction that assignsI"-well-formed formu-
lasto I'-well-formed formulas. And suppose t(¢, ) € Cl(@) for all T'-well-formed
formulas ¢ and . Then, given any I'-interpretation 7 and any I'-well-formed for-
mulas ¢ and v, F(t(e, ¥)) = 1. So, inai-logic, afunction obeysthe truth table for
T-constant if (and, in fact, only if) the function plays a particular role in the closure
topology of that logic. Lessformally, if we aready know that the intended theory of
meaning for alanguageis classical, then we can tell whether an expression obeysthe
truth table for T-constant by examining itsrole in inference.

4 Logic ¢ topology ~ Within 1, homeomorphisms are sensitive to the expressibility
of A and T. Arethere any other binary, two-valued truth functions whose express-
ibility istopological in A? After some preliminary definitions and alemma, we shall
see that there are not!

Say that ¢ ~ (¢ is closure equivalent to ) if and only if Cl({¢}) = CI({y}).
(Sop~ yif andonly if {p} = and {y} = ¢.) Let u(p) = {y : ¢ =~ ¥}. (So each
u(y) isaclosure equivalence class.) Let U = {u(y) : ¢ isawell-formed formula}.
(So U isthe partition consisting of all closure equivalence classes.) Say that A< B
if and only if CI(A) € CI(B). Then u(¢) Su(y) if and only if Cl({¢}) € Cl({y/}).
Say that a set is closed if and only if it contains its own closure (that is, if and only
if every consequence of the set is a member of the set). Finally, say that alogic is
conjunctive if and only if each of its closed sets is the closure of a singleton. This
would mean that every set of well-formed formulas is equivalent to (has exactly the
same consequences as) some well-formed formula (or, more correctly, a set whose
only member is some well-formed formula). A more familiar phenomenon would be
afinite set’s equiva ence to the conjunction of its members.

Theorem 4.1 If 'y and I', are conjunctive logics with ~-partitions U; and Uy,
and if thereisa < -isomorphismon U; onto U, that preserves cardinality, then 'y is
homeomorphic to I',.

Proof: Let h be the <-isomorphism. Suppose A is a set of well-formed formu-
lasclosed inT';. Let A= Cly({a}). Then ¢ € U%Ah(u(qy)) if and only if €
h(u(g)) for some ¢ € A if and only if ¥ € h(u(¢)) for some u(¢) < u(e) if and
only if ¥ € h(u(p)) for some h(u(p)) <h(u(a)) if and only if ¥ € Clo(h(u(a))).
So U(peAh(U(fﬂ)) is closed. Similarly, UweBhfl(u(w)) is closed whenever B is a
set of well-formed formulas closed in I',. Theorem 5.5 of [8] guarantees the exis-
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tence of a homeomorphism under exactly these conditions. (See LemmalZ.2lbelow.)
O

Theorem 4.2 A and T are the only binary, two-valued truth functions whose ex-
pressibility istopological in A.

Proof: LetI'y bea Ps logic with two variables and let T", be a C; logic with one
variable. The closure equivalence classes of I'y form a Boolean lattice of type 22,
as do those of I',. All the closure equivalence classes of these logics are denumer-
able. Furthermore, both logics are conjunctive. So, by Theorem[4.1]these logics are
homeomorphic. But I'; isfunctionally complete, while T, A, =1, and =, aretheonly
binary truth functionsexpressibleinI';. (=, isthe second binary projection function;
that is, the binary, two-valued truth function that alwaysreturnsits second argument.)
So the expressibility of the 12 remaining binary truth functions is not a topological
property. As aready noted, an S; logic with two variables will be homeomorphic to
any S, logic with two variables. So the expressibility of =1 and =5 isnot topological
either.? a
Should one still insist that homeomorphism is an excellent criterion for the equiva
lence of logical systems? A diehard homeomorphophile might argue that express-
ibility isnot really alogically significant notion and that, hence, Theorem[.Zlis of no
concern. But that hardly seems right. Such a substantial rearrangement of the way
most peopl e think about logic could bejustified only by an even more substantial pay-
off. Sincethere seemsno prospect of one, it isbetter to concede that homeomorphism
is sometimes a poor criterion for the equivalence of logical systems.

With that concession behind us, we can begin to determine which logically sig-
nificant properties are topological (or are topological in some important class).

5 Logics with infinitely many variables Let A*° be the class of two-valued log-
icswith binary connectives and infinitely many variables. It turns out that many im-
portant properties of logical systems are topological in A%°. Note, first, that each of
the following propertiesistopological in . (Indeed, thefirst six are topological sim-
pliciter.)

1. Theset of all well-formed formulasisthe closure of asingleton. (That is, some
well-formed formula implies all well-formed formulas. Every logic with an
unsatisfiable well-formed formula has this property.)

2. No closed set is empty. (So, in particular, the empty set itself has a nonempty
closure. So some well-formed formulas are implied by the empty set of well-
formed formulas. So some well-formed formulas are assigned 1 by every in-
terpretation.)

3. Thelattice of closed sets has no atoms. (An atom is a closed set whose only
closed proper subset is Cl(2).)

4. There are 2K maximal ly consistent sets, where k is the number of well-formed
formulas. (A maximally consistent set isa closed set whose only closed proper
superset is the set of all well-formed formulas.)

5. If Cl({¢}) and CI({y}) are atoms and Cl({p, ¥}) is not the set of all well-
formed formulas, then Cl({¢, ¥}) properly contains no closed sets other than
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Cl(@), Cl({gp}), and CI({¥}). (This obscure property allows us to distinguish
between L, and Ry3 logics. Theideaisthat, in an L1 logic, CI({P, Q}) will
properly contain Cl(@), CI{P}), CI({Q}), and CI({P «— Q}), whereas, in
an Ryz logic, CI({ P, Q}) will properly contain no closed sets other than Cl(2),
CI{P}), and CI({Q}).)

If Aisanatom, then A\ClI(@) = {p € A: ¢ ¢ ClI(@)} isinfinite. (That is, each
atom has infinitely many members that are not tautol ogies.)

A isexpressible.

Lemmab5.1 Each C;logicin A* hasthe seven properties listed above.

Proof: LetT'[Cy] beaC; logicin A%, We confirm that I'[C4] has all seven proper-

ties.

1
2.
3.

5,6.
7.

Just consider CI({L(P, Q)}).

Notethat T (P, Q) € Cl(@).

Note first that an atom is always the closure of a singleton. (For suppose A
isclosed and v € A\CI(2). Then A contains Cl({y/}), while CI({v/}) properly
contains Cl(2). So, if Aisanatom, then A= CI({y}).) Now givenany I'[C4]-
well-formed formula¢ ¢ Cl(@), we can always pick aT'[C;] well-formed for-
mula v such that (¢ v ¢) ¢ CI(2) and ¢ & CI({y}). Then Cl({¢}) properly
contains Cl({¢ Vv ¥}), while Cl({¢ Vv ¥}) properly contains Cl(@). So CI({¢})
cannot be an atom.

. InT[C4], thereisapairing between maximally consistent sets and sets of vari-

ables: givenany A C V, just consider CI(AU {—¢ : ¢ € V\A}).
Since I'[C4] has no atoms, &l of its atoms have the required properties.
Each C; logic isfunctionally complete. O

Aninventory of the 33 Post-equival ence classesrevea sthat the C, logicsaretheonly
members of A°>° with all seven properties. (They are, infact, the only members of 1.°

with the first four properties.)

Ri R R Rt R R R Ru Rz § & § & § & P
1/- - + - - + + + + - - - - 4+ + -
2/ - + - - 4+ + + 4+ - - + 4+ - 4+ -
3| - - - - - - - - - 4 4+ 4+ 4+ + + -
4l - - - + - - - - 4+ - - - - - - -
5|+ + 4+ + + 4+ 4+ + 4+ 4+ 4+ + + + + +
6|+ - - + + + - + 4+ + + + + + + +
7N - - - - - - - - - - - - - - 4
P, P3 P, Ps P Ay A0 Ay Ay Li Ly L3 C C G FP Fp
- + + - + - + - + - + - + - +
- - - 4+ + + 4+ - - + 4+ - 4+ + - + -
- - - - - + 4+ 4+ + - - - 4+ + + + -
- - - - - - - - - 4+ 4+ 4+ 4+ + + + +
+ + + + + + + + 4+ - - + + 4+ + + +
+ + + + + + + + 4+ + 4+ + + + + + +
+ + + + + + + + + - - - + 4+ 4+ - +
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Since all seven properties are topological in A, the property of being a C; logic (and
hence, the property of being functionally complete) istopological in A°°. Say that a
type of logicistopological in A if and only if membership in that typeistopol ogical
in A°>°. Then, more briefly, C, istopological in A°°. Indeed, inspection of our table
allows usto say more.

Lemmab.2 25out of 33typesof logic aretopological in A%°: the only exceptions
are S.Lv %v 83’ Sﬂ-v Pl’ PZ, PS, and P4.

Theorem 5.3 =; and =, arethe only binary, two-val ued truth functions whose ex-
pressibility is not topological in A°°.

Proof: The expressibility of =; and =, cannot be topological in A°°, since, for ex-
ample, S; and S, logicswith the sameinfinite number of variablesare homeomorphic.
Onthepositive side, we already know that the expressibility of A and T istopological
in 1. Furthermore, a 1> logic expresses L if and only if it has property 1; and a A*°
logic expresses v if and only if it has property 3. We can characterize the remaining
truth functions by listing thelogicsin which they are expressible. For example, aA>®
logic expresses |, if and only if itis of type C;. O

An examplemay help to convey why thistheorem is so welcome to proponents of the
closure theoretic approach. Say that asetisdenseif and only if itsclosureisthe set of
all well-formed formulas. And suppose — isafunction that assignsawell-formed for-
mulato every well-formed formula. Then — isaclosure theoretic classical negation
(CTCN for short) if and only if, for each well-formed formula ¢ and each set of well-
formed formulas A, {¢, —¢} is dense and (CI(A U {¢p}) N CI(AU {—¢})) C CI(A).
The existence of aCTCN isatopological property, but the expressibility of —; isnot
eventopological in L. So, since each logic that expresses —; hasa CTCN, there must
be logics that do not express —; but do have a CTCN. (For example, in a Ps logic
with four variables P, Q, R, and S, the conjunction of Q, R, and Sbhehaveslike the
negation of P.) The expressibility of —; istopological in A°°. So one can hope that
the closure theoretic notion of negation will agree with the more usua semantic con-
ception within A°°. In fact, thisturns out to be the case.

Suppose I' is a A*° logic with a CTCN —. Then {¢} is dense if and only if
—¢ € Cl(@); and ¢ € Cl(@) if and only if {—¢} is dense. (Cf. [IE pp. 119-20.)
So the set of all well-formed formulas is the closure of asingleton if and only if no
closed setisempty. That is, I either has both property 1 and property 2 (from thelist
of seven properties at the beginning of this section) or it has neither. Thisrulesout 18
of 33 1*° logics. Of theremaining 15, six (R, Si, S, P1, Po, and As) havenofinite,
dense set of well-formed formulas, while five (Rg, Ri1, &, Ps, and A;) have only
one maximally consistent set (whereas Theorems 6.32 and 7.33 of [[8] imply that the
maximally consistent setsform aclosed basisin I'). Thisleaves only the four logics
that express —;. So a1* logic hasa CTCN if and only if it expresses —;. Further-
more, if 6 expresses —1, then, by Theorem 9.1 of [8], any CTCN — will agree with
6 up to closure equivalence. That is, 0(g, V) ~ —¢ for al well-formed formulas ¢
and v. But this, in turn, meansthat —¢ isassigned 1 by exactly those interpretations
that assign 0to ¢. So, within 1°°, each CTCN has the semantic properties of classical
negation. In this domain, then, the closure theorist’s use of the term ‘ classical nega-
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tion" seems fully justified. (Here the meaning of ‘not’ realy is‘given by itsrolein
inference’.) Elsewherethe caseisnot so clear. (Seethediscussion of Koslow below.)
Theorem [5.3]assures us that homeomorphism and Post-equivalence impose al-
most the same partition on A°°. They differ only because homeomorphism is some-
times insensible to the expressibility of the binary projection functions. Since these
truth functions are, arguably, of no logical interest, this might count as evidence of
homeomorphism’s superiority. In any case, it is hardly clear that homeomorphism
is inferior to Post-equivalence in this regard. Nor is it too outlandish to claim that
homeomorphism is an “excellent” criterion for the equivalence of A*° logics.

6 Appendix I  We now briefly consider Koslow’s structuralist approach to logic
in order to forestall a seductive, but erroneous, interpretation of some of Koslow's
claims. Consider again a Ps logic with two sentential variables. Call it I'. If = isthe
consequence relation of T, then naturally we say that ¢4, ..., ¢, (jointly) imply o if
and only if {¢1, ..., ¢n} E Y. Sowe obtain the implicational structure

PAQ

/N
N

T(P, Q)

where each well-formed formula ¢ represents the denumerably many well-formed
formulasequivaent to ¢. Recall (from §2) that our logics come supplied with atheory
of meaning encoded in a class of interpretations. The I'interpretations are the four
0, 1- valued homomorphisms (on the algebra of I"-well-formed formulas) that respect
the classical matricesfor conjunction and T - constant. (The consequencerelation =
isdefined in terms of theseinterpretations.) Since one of the I'-interpretationsassigns
1to every I'-well-formed formula, there are no well-formed formulas ¢ and v such
that ¢ isassigned 1 by exactly those I'-interpretationsthat assign 0to . That is, from
the point of view of I"'sunderlying theory of meaning, there are no I'-well-formed for-
mul as that stand to one another in the semantic relationship of awell-formed formula
to its classical negation. Nonetheless, Koslow proceeds, “ . . . to sort out, for any
[well-formed formulal, those elements in the structure that are the negations of [that
well-formed formula]” (Koslow [[B], p. 91). Say that aI"'-well-formed formula¢ isa
Koslowian negation of a I'-well-formed formula v if and only if ¢ and ¢ satisfy the
following two conditions:

P Q

N1 @, ¥ (jointly) imply every I"-well-formed formula;
N2 if 6, ¥ imply every I"'-well-formed formula, then 6 implies ¢.

Now suppose N isan operator that assigns I'-well-formed formulasto I'-well-formed
formulas. Then we say that N isaKoslowian classical negation operator on T if and
only if for each I'-well-formed formula ¢,

CN1 N(g¢)isaKoslowian negation of ¢;
CN2  N(N(¢)) implies ¢.
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It is easy to confirm that there are Koslowian classical negation operatorson I'. Con-
sider: N(P) = Q; N(Q) = P; N(PA Q) =T(P, Q); N(T(P, Q)) = (PA Q). But
we already know that however we define N and whatever I'-well-formed formula
¢ we might consider, ¢ and N(¢) will both be assigned 1 by a I'-interpretation and
hence, from the per spective of I''sintended theory of meaning, N(¢) will not behave
semantically like the classical negation of ¢.

We could, of course, concoct adifferent sesmantic schemeunder which N isbetter
behaved. Let the I'-N-INTERPRETATIONS be the two TI'-interpretations that as-
signdistinct valuesto thevariables P and Q. Then, given any I'-well-formed formula
®,  Will be assigned 1 by exactly those '-N-INTERPRETATIONS that assign 0 to
N(¢p). Sothereisa(nonstandard) schemefor distributing truth values that suppliesN
with the semantic properties of classical negation. (Theorem 8.24 of [[8] gives a suffi-
cient condition for the existence of such schemes. Seealsoch. 19 of [[5].) Of course, if
alogic with aKoslowian classical negation operator is characterized semantically (as
are our logics), thereis no guarantee that the intended semantics will treat the opera-
tor classically. Evidently, when Koslow “ sorts out the classical negations,” he means
only to identify operators whose implicational properties sometimesimply that some
distributions of truth valuestreat the operators like classical negation. Thisisawor-
thy task. (Cf. the discussion of Tarski-style conditionsin ch. 2 of Wojcicki [[L5].) We
should be aware, though, that these distributions of truth values need not conform
to any intended semantics; they might exclude some standard assignments of truth
values to variables; and they might even fail to be homomorphisms on the algebraic
structure of well-formed formulas.

Our motto might be: the semantic properties of alogic do not always supervene
on its implicational structure.® And this is so even if we already know that the in-
tended theory of meaning is classical. It is some consolation, though, that many sig-
nificant semantic properties of A°° logics are discernible from the closure theoretic
structure of those logics. For example, if we already know that a structure is a A*°-
logic, we cantell fromits closure topology whether the underlying theory of meaning
treats any operator as classical negation. (Alas, the property of being a A°°-logic is
not itself topological.)

7 Appendix Il This section features (1) avariation on Theorem[4Tlthat should be
somewhat more widely applicable and (2) a theorem that helps us determine when
the conditions of Theorem 4. 1]are satisfied. The proofs of some helpful lemmas are
sufficiently routine to be omitted.

We assume that (S, Cl ) isaclosure space; that is, Cl is a closure operator that
assigns a subset of Sto each subset of S. A closure space is finitely conjunctive if
and only if each of itsfinite sets has the same closure as asingleton. A closure space
isfinitary if and only if a point x belongs to the closure of a finite subset of a set A
whenever x belongstotheclosureof A. W C U isanideal (inthestructure (U, <)) if
andonly if (1) Ae W whenever Ac U, Be W, and A< B; and (2) each finite subset
of W has an upper boundin W. (U and < aredefinedin §4.)

Lemma7.1 The following are equivalent: (i) (S, Cl) is finitary and finitely con-
junctive; (ii) UW isclosed if and only if W isan ideal.
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Lemma7.2 If h is a bijection on U; onto U, that preserves cardinality,
if Uxeah(u(x)) isclosed whenever Aisaclosed subsetof S, andif |, g h=1(u(x))
is closed whenever B is a closed subset of S, then (S, Cly) is homeomorphic to
(S, Clp).

LemmalZ.2lisjust Theorem 5.5 of [[g].

Theorem 7.3  If the closure spaces (S, Cli) and (S, Clo) are both finitary and
finitely conjunctive and if there is a < -isomorphism on U; onto U, that preserves
cardinality, then (S;, Cly) ishomeomorphic to (S, Cly).

Proof: Let h bethe < -isomorphism. Suppose Aisaclosed subset of S;. Then, by
LemmalZL] {u(x) : x e A}isanidea. So{h(u(x)) : x € A} isalsoanideal and hence,
by LemmalZ.Z] U{h(u(x)) : x € A} isclosed. By similar reasoning, U{h~(u(x)) : x
B} is closed whenever B isaclosed subset of S,. Now apply LemmalZ.2] O

It iscommon for logics to be both finitary and finitely conjunctive. (Every logic that
expresses conjunction and at least one logical truth isfinitely conjunctive. The usua
deductive systems, with proofs al of finite length, induce finitary closure spaces.)
Since conjunctiveness (as required by Theorem isamore unusua property, one
would expect[Z.3ko be the more useful theorem.

A chain of closed sets K ismaximal in aset B if and only if (1) B is an upper
bound of K; but (2) B is not an upper bound of any chain that properly contains K.
A set isfinitely axiomatizable if and only if it has the same closure as afinite set.

Lemma7.4 If somefinite chainismaximal in CI(B), then B isfinitely axiomatiz-
able.

The converse of Lemmal7.4lis false. Let our closed sets be w + 1 together with all
thefinite ordinals. Then w + 1 = Cl({w}), but nofinite chainismaximal inw + 1. A
closure space has the finite rank property if and only if some finite chain is maximal
in B whenever Bis closed.

Corollary 7.5 In a closure space with the finite rank property, each set is finitely
axiomatizable.

Thefinite rank property does not imply finitariness. Let our closed setsbe @, {2}, w,
and all finite sets of odd numbers. Then 2 isin the closure of the set of al odd num-
bers, but it is not in the closure of any finite set of odd numbers.

Theorem 7.6  Each finitely conjunctive closure space with the finite rank property
is conjunctive.

Proof:  Just apply Corollary[7.5] O

Conjunctiveness may be an unusual property, but Theorem [Z.6]at least helps us to
detect it (and hence, helps us to determine when TheoremE_Lkan be applied).

Acknowledgments Norman Martin’s insight into this topic was indispensable. Since this
essay represents a partial retreat from an earlier position, | should note that the dogmatic tone
of Pollard and Martin [[LT] was mainly my doing. Martin himself expressed a more moderate
and, asit turns out, more defensible view in the Preface of Martin and Pollard [[8]. The com-
ments of two scrupulous referees helped me to eliminate a host of unnecessary obscurities.
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NOTES

1. | mean homeomorphisms between said logics. The closure space of, say, agroup of in-
tegers need not have the semantic properties of alogic to which it is homeomorphic.

2. For apioneering study of closure operators see Moore [[9], pp. 59-60. Closure operators
have received attention in both lattice theory and universal algebra. See, for example,
Birkhoff [2] and Cohn [[4]. Logicians may be more familiar with the closure theoretic
investigations of Tarski and its progeny. Note though, that Tarski actually studies
the narrower notion of finitary closure operators on a countable domain. [(], [[E], and
are booklength applications of closure theoretic notionsto logic.

3. Theselogicsare, however, syntactically equivalent in the sense of Segerberg [[L3], p. 43.
(Seealso Pelletier [[10], p. 424.) Perhapsthiscountsasapointinfavor of syntactic equiv-
aence. Note though that homeomorphic logics are always syntactically equivalent. So
syntactic equivalence is at least as insensitive to logically important distinctions as is
homeomorphism. While syntactic equivalence is a relatively loose standard, Martin's
notion of R-equivalence is arelatively tight one. R-equivalence relations are homeo-
morphismsthat preserve certain aspectsof logical form: for example, they pair sentential
variables with sentential variables. Although Ps logics with two variables are homeo-
morphic (and hence, syntactically equivalent) to C; logics with one variable, they are
not R-equivalent. Cf. [Z], pp. 25-26. For further references and a discussion of some
other notions of equivalence, see [15], pp. 66-71.

4. Theorem[42lmay seem crazy in light of facts such as the following. Suppose I' =
(V, CON, %) € L and g € CON. Then g* = v if and only if Cl({g(¢p, ¥)}) = (Cl({e}H) N
Cl({y})) for al I'-well-formed formulas ¢ and y. So a connective will express digunc-
tioninaA-logicif and only if the connective plays aparticular role in the closure topol-
ogy of that logic. But if the topological structure of a A-logic determines whether a con-
nective expresses digunction, how isit possible that the expressibility of disunction is
not topological in A? Thetrick isthat topological structure determines whether a mem-
ber of CON expresses disjunction only because each member of CON is guaranteed to
express some classical truth function. (The result does not hold for arbitrary functions.)
Sincethe property of expressing aclassical truth functionisnot topological, itisno great
paradox that the expressibility of v failsto betopological in o. Still, if we have somehow
determined that aword expresses a classical truth function, we may be ableto determine
fromits “role in inference” whether it expresses two-valued disjunction.

5. For an example of homeomorphic modal logicsthat differ substantially in their semantic
properties, see Pelletier [[10]. For an example of homeomorphic modal logics that differ
substantially in their lattice theoretic properties, see Makinson [6].
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