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Abstract We generalize an observation made by Goldblatt in “Diodorean
modality in Minkowski spacetime” by proving that eactdimensional integral
spacetime frame equipped with Robb’s irreflexive ‘after’ relation determines
aunique temporal logic. Our main result is that, unlikeglimensional space-
time where, as Goldblatt has shown, the Diodorean modal logic is the same for
each framgR", <), in the case ofi-dimensionalntegral spacetime, the frame

(Z", <) determines a unigue Diodorean modal logic.

1 Introduction  N-dimensional spacetime is the frariR", <) whereR"(n > 2)
is the set of alh-tuples of real numbers andis a binary relation. The relatior for
X= (X1, ..., %Xn),andy = (Y1, ..., ¥n) Wherex, y € R" is defined by

n—1
x<y iff Y (%)< (Yo—x)? and x,<yp

i=1
Intuitively, x < y means that a luminal signal can be sent froto y and hence that
yis in the ‘causal future’ ok. The relationx determines théuture light cone of x
which is just{y € R" : x < y}. Note thatR* is Minkowski spacetime, the mathe-
matical model of spacetime which underlies Einstein’s Special Theory of Relativity
(see Taylor and WheeldE] for an accessible explanation of the theory). Evidently,
for anyn > 2, (R", <) is isomorphic to(R", <) where the isomorphism is just the
45-degree rotation and f@Kky, ..., X,) and(ys, ..., yn) in R™

Xty .. s Xn) < (Y1,...,¥n) Iff X <y foreachi.

The main result of Goldblatfl] is that the Diodorean modal logic of the frames
(R", <) for n > 2 is the well-known systen$4.2. Goldblatt also considers frames
that have an irreflexive relatianwhere

xay Iff X<y and X#Yy.
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The relationx is the ‘after’ relation axiomatized by Robb {@][ In [[1], the problem

of axiomatizing temporal logics for the framéR", <) with n > 2 is left open as

are the corresponding problems fedimensionaintegral spacetime, in particular
for the framegZ", <) and(Z", o) with n > 2 (whereZ" is the set of alh-tuples of

integers).

An interesting feature of the framéR", o) pointed out by Goldblatt is that the
temporal logic of(R?, «) differs from that of the framéR3, ). We shall show how
Goldblatt’s observation can be generalized to prove that for each ffZhe) with
n > 2, the frame(Z", o) determines a unique temporal logic. An easy corollary of
this result is that for each fram@®", «) with n > 2, the framgR", ) determines a
unique temporal logic. A more surprising result is that, unlike the case invoiving
dimensional spacetime where the Diodorean modal logic is the same for each frame
(R", <), inthe case ofh-dimensionalntegral spacetime (for everg > 2) the frame
(Z", <) determines a unique Diodorean modal logic.

2 Preliminaries A pair (W, R) is aframe just in caseW is a nonempty set and
Ris a binary relation otW. The languageC consists of a countable set of atomic
sentences atoms p; wherei =0, 1, 2, ... along with the Boolean connectivesand

A and the modal operatg¥. The set ofL-formulas is constructed in the usual way
from the atoms using the Boolean connectiveandA and the modal operater. We
write p, g, r, and so on, for arbitrary formulas. Introduction of the abbreviatibns
(constant true).L (constant false)y, and— is done in the usual way. Additionally,
we introduce the abbreviatidd, where(d p abbreviates-O—p.

The languagel* is just like £ exceptL* contains the temporal operatdfsand
P instead of the modal operator. The set ofL*-formulas is likewise constructed in
the usual way. Note that we follow custom and abbrevigite~p asGp and—P—p
asHp.

A structure omodel (with respect tal or £*) is atriple M = (W, R, V) where
(W, R) is a frame and/ is a function assigning eagh asubset oMW. We generally
refer to such a function aswvaluation. Truth in a model is defined recursively in the
usual way (consult van Bentheff][and Hughes and Cresswdd] [for the details).

A formula p is L-valid (or L*-valid) in a frame ¥ if and only if p is true in
(F,V) atw for all w € F. We shall follow the practice of using the expression
‘valid’, relying on the context to make the meaning of the expression clear. For a
frame (W, R) we write ML(W, R)(TL(W, R)) to denote the modal logic (temporal
logic) of (W, R), that is, the set of formulas in the languagéL*) that are valid on
(W, R). We assume the reader is familiar with the notion gbanorphism (e.g., see
[6] or Goldblatt PJ for discussion).

3 Logics for frames with Robb’s *after’ relation  We begin with a result fon-
dimensional integral spacetime with respect to temporal formulas.

Theorem 3.1 Foranyn> 2 TL(Z", &) # TL(Z™, o) where2 < m< n.

Proof: In order to prove the theorem, it suffices to show that for aymensional
frame withn > 2, there is a formula valid on then-dimensional frame and eveny
dimensional frame where m < nsuch thap is invalid on the(n + 1)-dimensional
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frame. Fix am-dimensional framéZ", «), with n > 2. For ease of exposition, we
adopt the following abbreviations:

Qi = (Ppr1—=> Cp2AG=pIA -+ AP AG=PR) A (= Png1 A G—Pny1))
Q2 = (P2—> =prAG=pIA -+ AEPAAG=PR) A (= Pns1 A G—Pny1))
Q1 = (Pryr—> (EP1AG=p) A (p2AG=p) A= A(=Pa A G=pp))

The formula represented by the following schema must be vali@8nx):
Rob": Fpi A -« AFPn A Fpnpi AGQuA -+ AGQny1 — Vi<i<j<n+1F(Fpi A Fpj)

In order to prove that the formula denoted by the above schema is validon),
we assume the antecedent of Rablds at some poinb € Z". Without loss of gen-
erality, we may suppose that= (0, ..., 0) wherew containsn 0s. We thus have

(1) Thereis a point; such thatw £ ¢; wherewac; andp; and(—po A G—p2) A
A (mPn A G=pn) A (mPnsrr A G—pne1) IS true atcy

(n+1) There is a point,; such thatw # ¢, 1 wherewac,, 1 andpp 1 and(—pg A
G—=p1) A (mP2AG=p2) A+ A (mPn A G—pp) s true atcn, g

where
ci=(@af,....a})
C2 = (a%’ AR ag)

c3=(a,...,a3)

Cni1= (arl1+l’ s a2+1)'
Given (1)—(n+ 1), it is easy to see that these points must be mutually noncom-
parable. We call the pointa},a},...,a% ; the first column of coordinates of
C1. Ca, .. ., Cn, Cny1 @nd extend this notion in the obvious way (i&.,a3, ..., a3, is
the second column of coordinates, etc.). Now suppose there are nogoutsuch
that them™ coordinate (where ¥ m < n+ 1) of bothc;j andcy is greater than the
mi" coordinate of some poir. It follows from our supposition that in each column
of coordinates, either every poigthas the same value, or there &r¢ € Z such that
X < yand one point; has the valug in the column while every other poioj has the
valuex in that column. Note that in order for two poirtg, ¢; to be distinct and non-
comparable they must differ on at least two coordinates; in particular, it must be the
case thaty, has a lower value thagy on one coordinate and a higher value on some
other coordinate. In the situation at hand, we know that at leaéthe coordinates
in each column must be identical. Thus, for any colunthere must bén + 1) — k
points that are identical on all coordinates in the firsblumns. So for then— 1)st
column there are two such poirdg,c;; but thency, ¢; differ only in the last column
(thenth). It follows that eitherc,, seesc; or ¢; seescy, acontradiction. O

We have now established that there are poiitscy such that themth coordi-
nate (where 1< m < n + 1) of bothc; andcy is greater than thenth coordi-
nate of some pointg. Wherecj = ajl, ....al andcx = @, ....aD), letd =
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(min(ajl, a), ..., min(a], ay)). Since themth coordinate ofi must be greater than
0,d # w. But then, sincev « d, it follows thatF (Fp; A Fpy) is true atw and hence
that Roly is valid on(Z", «).
Wenote that, given the fact that there ipanorphism fronZ"t* ontoZ" for n >
2 (by deleting the first coordinate), it follows by theemorphism theorem that R8b
must be valid on each @2, o), ..., (Z", «). Therefore, all that remains is to show
that Rol fails on the(n+ 1) — D frame. Letp; be false everywhere exceptat=
(1,0,...,0) (whereb; hasn + 1 coordinates)p, be false everywhere excelpt =
0,1,...,0),..., and pn.1 be false everywhere except,; = (0,0,...,1). We
leave it to the reader to check that Rabfalse aby = (0, 0, . . ., 0) on this valuation.
The proof of Theore@ Tlalso establishes the following corollary.

Corollary3.2 Foranyn> 2, ML(R" o) # ML(R™, o) where2 <m<n.

4 N-dimensional integral spacetime We now establish a result concerning
Diodorean modal logics far-dimensional integral spacetime.

Theorem4.1 Foranyn> 2, ML(Z", <) # ML(Z™, <) wherem > 2and m# n.

Proof: We note that the formula Zfpis valid on the 2- D frame but fails on every
n— D frame forn > 2.

Zip? i =pA QA -TA
SEOpA—=gA—)A
SEOgA—=pPA-T)A
SUrA=pA—-Q) —
S[CM@pA—=gA =) ASEOGA—=PA =) A= A=pA -]V
S[o@pA—-qA—=) A A=pA—Q) A=TOgA—=pA-T)].
In order to prove the theorem, it suffices to show that formpyD frame withn > 2

there is a formula valid on the— D frame that is invalid on evergn + m) — D frame
suchtham> 1. Fixann— D frame(Z", <), withn > 2. For sake of clarity, we adopt

the following abbreviations (with respect to the atopis py, - . -, Pn, Pns1)-
ALL = (P1AP2A---APnA Pntt)-
NONE = (—pPrA—P2A---A=PnA~"Pns1).

*Pi = (PiA Az —P))-
The formula represented by the following schema must be vali@8n=<).

Zip" : NONE A J[NONE — [I(ALL V NONEV %P1V --- V *Pry1)]A
OINONE = O(kpPp) A -+ A (xPra)] A
Ol pr — O@xp1 Vv ALL)] A

O[Pnt1 = OGPrsrs VALL)] = Vig O[O P A O % PjA = A Ot ket j * Pi)]

In order to prove that the formula denoted by the above schema is validor:),
we may assume without loss of generality that the antecedent bhdigs and the
consequent fails ab = (0, ..., 0) wherew containsn 0s. We thus have
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(1) There is a poin¢; such thatw # c; wherew < c¢; and

OprA—pP2A---A=Pp A~ Pny iS true atcy

(n+1) There is a point,, 1 such thatw # c,,1 wherew < c,; and
Opni1i A= PLA—P2 A+ A—pPyistrue atcn, g

where
c =(@,....a)
c; =(@,....,a)
cg =(a,....a}
_ 1 n
Cpr= @4, ... a0 ).

Now consider the points

(min(al, a}), ..., min(}, a3))
(min(aﬁﬂ., ap),...,min@f, ah, ;)
(min(a3, e%), ..., min(aj, a3))
(min(ad, a:lﬁﬂ), ...,min@j,al, ;)

(minag, at ), ..., min(@p, al_ ;)
The number of these points is determined by the equation:

k= Y"1

1<i<n
Let dq, ..., d¢ denote these points. Suppose eachdgf..., dy is equal tow.
As before, we call the pointa}, a3, ..., a% ,; the first column of coordinates of
C1, Cp, ..., Cn, Cny1 and extend this notion in the obvious way. We observe that there

aren + 1 coordinates in each column of coordinates.

We know that at leash of the coordinates in each column must be equal to
0; for suppose there are two coordinate$ that do not equal 0. By assumption,
min(«, B) = 0 which is impossible, given that neither @f 8 equals 0.

From the fact that at leastof the coordinates in each column must be equal to
0, it follows thatn % n of the (n + 1) * n total coordinates foc;, ..., ¢, 1 Must be
equal to 0. But since none of, .. ., ¢ .1 equalsw there must be& + 1 coordinates
which are not equal to 0. This is impossible, however, given that (the number of total
coordinates} (n+ 1) x n = (n*n) 4+ nand this is less than the sum of the number
of 0 coordinates and the number of non-0 coordinates.
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We have now shown that at least onedif . . ., di is not equal taw. Let d; be
such a point, wherd; = (min(ajl, ab), ..., min(@’, ay)), that is,d; = min(c;, c).
Sod; seescj andcy, wherecj andcy are noncomparable. Thuss pj A & % py with
j # kis true atd;. Since, by hypothesis, the consequent of'Zgfalse atw, weknow
Ok PrA - A% Ppyt IS true atd;

We know c; and ¢, must differ on two coordinates where one coordinate is
greater inc; and the other is greater @. Without loss of generality, we may assume
they differ on the first two coordinates and supposis higher on the first coordinate
andcy is higher on the second. We now prove there must be a gsieen byd; such
thatx sees pointy andz wherex andy differ by exactly one on theth coordinate
and are identical on all others, aré@ndz differ by one on precisely one coordinate
but are identical on thenth and all others. In addition, we waRDNE to be true at
X, andfor each ofy andz eitherxp; or ALL is true. We call a poink of the sort we
have describeduitable. Assumed; sees no suitable point. Let

Cj = (ag,a, a3, ...,an),
ck = (by, by, bs, ... by,
d = (by,as¢Cs, ...,Cn)
and
C = maxcj,¢c) = (a, by, ds, ..., dy).

Consider the array of points determined by the following method. The base of the
last column in the array is the poiat. Let by, be the highest coordinate of where
bn # d;, (soby < dy). Whereg = d;, — by, the nextg points in the column are

(blv b27 5bh+gv LR bn)

(bl’ bZa’bh+l’,bn)
(blva,---,bh»--',bn)

We follow this procedure for the next highest coordinatg f < h) of ¢, where

b¢ # d; and continue until every such coordinate has been handled. Where

b, — ay, the nexty columns (proceeding to the left) are just like the last column except
for their second coordinates.

(ag, ap, d3 ..... dn) Ce (aq, bzfl, d3 ..... dn) (ag, bz, d3 ..... dn)

(b]_, as, ..., bh+1 ..... bn) Ce (b]_, bo_q1,..., bh+1 ..... bn) (bl, by, ..., bh+1 ..... bn)
(bl,az,...,bh,...,bn) (bl,bZ,]_ ..... bh,...,bn) (bl,bz,...,bh,...,bn)

Now consider the highest coordindgin ¢, where thehth coordinatesy, in d; is such

thatcy, # by. The next column in the array is just like the last except each point in
the column containby;,_4 in thehth coordinate. We continue as before until we have
a column withcy, as thehth coordinate in every point. We repeat this procedure for
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each pair of nonidentical coordinatesdn ¢, in descending order until we have the
first column withd; at the base and; at the top.

As an illustration of the method, we consider a simple example. Suppesg
cj =(3,0,5,5), andcy = (0,3,3,7). Thend; = (0,0, 3,5) andc = (3,3,5,7).
The array in this case is depicted below.

3,0,5,5 (3,0,5,6) (3,0,5,7) (3,1,5,7) (3,2,5,7) (3,3,57)
(2,0,5,5) (2,0,5,6) (2,0,5,7) (2,1,5,7) (2,2,5,7) (2,3,5,7)
(1,0,5,5 (1,0,5,6) (1,0,5,70 (1,1,57) (1,2,5,7) (1,3,57)
(0,0,5,5 (0,0,5,6) (0,0,5,7) (0,1,5,7) (0,2,5,7) (0,3,57)
(0,0,4,5) (0,0,4,6) (0,0,4,7) (0,1,4,7) (0,2,4,7) (0,3,4,7)
0,0,3,5 (0,0,3,6y (0,0,3,7) (0,1,3,7) (0,2,3,7) (0,3,3,7)

Observe that the array of points determined by this method is such that for any point
x that is not in the top row or in the last column whereNE is true atx, x is suitable
if for both the pointy immediately abovex and the poinz immediately to the right
of x eitherxp; or ALL is true.

Returning now to the general case, assume that no points in the array are suitable.
The basic situation is depicted below.

¢ . . .t ¢
S Uu
d . . . . Ck

Given thafcj seed andc, seesu it follows that either: pj or ALL is true att and either
x Pk OF ALL is true atu. But then, sinces sees both andu, ands is not suitable, we
know that either p; or ALL or x py is true ats. Itis not hard to see that continuing to
argue in this fashion forces eithep; or ALL orx py to be true atl;. Thisisimpossible
since theridp; or L py is true atd;, butd; seesc; andcy. Thus, we have established
that one of the points in the array must be suitable.

Let the point, y, zbe as described earlier, whetés suitable. Sinc&ONE is
true atx, O % pp A -+ - A O % pprg Must true ak. Thus,x must see at leagh+ 1) — 2
pointsq, . .., gn—1 Noncomparable witly, z. For example, if p1 is true at botty and
zthen there must be+ 1 points noncomparable withandz; if = p4 is true aty and
%P3 is true atz, then there arén + 1) — 2, that is,n — 1, points noncomparable with
y andz, andso on.

Given that eitherxp; or ALL is true at each ofy, z it follows that each of
di, ..., gn—1 Must have identicaf th andgth coordinates wheneandy differ by one
on the fth coordinate ana andz differ by one on thejth coordinate. This is because
if, say, q; differs fromgq;_; on the fth coordinate, then one df, g;1 must be higher
on the fth coordinate (note that both must hakth coordinates greater than or equal
to the fth coordinate ok). Without loss of generality we may suppagds higher
on the fth coordinate. But then either () = y or (2) y seeqj;, sincey differs from
x only by being one higher on théth coordinate. Both (1) and (2) are impossible
given thatg; andy are noncomparable.
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We know that there are either— 1, n, or n+ 1 points noncomparable witi
andz. Now assume that for any> mwhere 3< m < n there is a suitable point
(and the pointg, zin virtue of whichx is suitable) where, y, zare seen by and

(i) there ares,s— 1, ors+ 1 pointsqg, ..., (j seen byx whereqy, ..., q; are
noncomparable witly andz and one another and
(i) where one of«py, ..., *pps1 is true at each of, ..., gj and
(i) 01, ...,qj andx, y, zare identical onn — s) + 1 coordinates.
So, for example, in case of (as we have shown) we have a suitablMhere there

are eithen, n— 1, orn+ 1 points seen byx and noncomparable withandzand one
another where one of

(PLA=P2A -~ A=Pn A= Pnt1), oo (Pnet ATPLA P2 A= A= Pn)

is true at each of these noncomparable points and where these pointsyana@re
identical on((n— n) + 1) x 2 = 2 coordinates. We now prove that for— 1 there is
asuitablex with x, y, zseen byw and

(i*) there arem— 2, m— 1, or m points seen bk and noncomparable witf, z,
and one another and

(i) one of xpy,...,*pny1 OrALL is true at each ofjy, ..., g; and
(ii*) qu,...,qjandx,y, zare identical on(n — (m— 1)) + 1 coordinates.

By hypothesis, we hav@n, Ym, Zm With X, suitable where

(1) wseesm, Ym, Zn and

(2) xm sees eithem— 1, m, orm+- 1 pointsqj, ..., gj seen byx, and
(3) g1, ..., q; are noncomparable wit,, zn, and one another and
(4) one ofxpy, ..., *pnp1istrue ateach offy, ..., gj and

(5) g1, ..., dj andxm, Ym, Zm are identical on(n — m) + 1 coordinates.

Sincem > 3, we know we can choose two of these points that are honcomparable
with ym, andzy and one another. We may designate these pojrasidc, and argue

as before that there must be some suitaivgh x, y, zseen byw withm—2, m—1,

or mpointsqg, ..., g; seen byx and noncomparable with andz and one another
where one ofpy, ..., *Pny1 istrue ateach ofyy, ..., qj, andqy, ..., gj andx, y, z

are identical onln — (m— 1)) + 1 coordinates.

From the above, it follows that there must be a suitable posuch that, y, z
are seen by where there are two, three, or four points seex bpd noncomparable
with y andz and one another. Moreover, onexqy, . . ., * Pns.1 Must be true at each
of these noncomparable points, and these pointsxagidz must be identical on all
but two coordinates. Note that by the definition of suitabiliyandy andx and z
differ only by one on one coordinate. Leandt be two of the points (or the only two
points) nhoncomparable withandz and one another.

Weknow thatx, y, z, s, andt agree on all but two coordinates. Assume that (list-
ing only the two relevant coordinateg)= (a,b),y=(a+ 1,b),z=(a,b+ 1),
s= (g, h), andt = (i, j). Sincesandt cannot be seen by eithgior z it follows that
s= (a, b) andt = (a, b). This is impossible, sinceandt are noncomparable.
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All that remains is to show that Zifails on every(n + m) — D framem > 1.
For anym — D frame m > (n + 1) let p; be true everywhere except at
bp = (0,0,...,0) (whereby hasm coordinates) ant,=(0,1,...,0),...,by 1=
0,0,...,1,0,...,0) (whereb,, 1 containsm— (n+ 1) Os after the 1)p, be true
everywhere excefiiy, b1, andbs, ..., b 1, ..., andpn,,1 be true everywhere except
bo, b1, ..., bn. Weleave it to the reader to check that Zfjails on this valuation. O

5 Remarks The contrast between the case of the fraif®5 <) which are indis-
cernible from one another with respect to the validity of formulag iand the case

of the framegZ", <), which are all distinguishable from one another in this sense,
is quite striking. Since the logics of the frame&", «) with n > 2 (and the frames
(R", o) wheren > 2) are all distinct, it is natural to consider the case involving the
other ‘standard’ irreflexive relatioR which is defined by

n—-1
xRy iff D (i = %)% < (Yo — Xn)* and Xn < Yn.

i=1
Given our inability to discover dimension-dependent formulas for frames equipped
with the relationR, we ae tempted to conjecture that the framB&$ (R) with n > 2
(and the frames$Z", R) wheren > 2) are indiscernible with respect to formulas in
both £ and L*. In any event, it seems worthwhile to point out that the question re-
mains open. (Byrd has discovered that the fraf@s R) wheren > 2 are discernible
in the above sense.)

Acknowledgments | am grateful to Mike Byrd for a number of helpful comments on this
paper.
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