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Bochvar-McCarthy Logic and Process Algebra

JAN A. BERGSTRA and ALBAN PONSE

Abstract We propose a combination of Bochvar’s strict three-valued logic,
McCarthy’s sequential three-valued logic, and process algebra vieotiue

tional guard construct. This combination entails the introduction of a new con-
stantmeaningless in process algebra. We present an operational semantics in
SOS-style, and a completeness result for ACP with conditional guard construct
and the proposed logic.

1 Introduction An (immediate) error in an algorithm or program, such as refer-
ence to a nonexisting instruction, or a type clash, is often easily detectable. In order
to model this feature in a concurrent setting, we consider process algebra with con-
ditional guard construct and a varianttbfee-valued logic as a means to represent
concurrent algorithms and programs. (Some motivation is given in S¢gliom
general, errors can be classified in at least two categories: divergencies which can be
hard to detect and more simple ones, such as described above. In this paper we pro-
pose how to deal with the occurrence of the latter sort, which we furthemeait-
ingless, notationM. In particular, evaluation of a propositi@gnmay now lead tom,
in which case the evaluation efy should of course also result M. Thus the first
logical identity we adopt issM = M.

In process algebra we introdugeas a process representing the effect of the log-
ical (error-)valueM. The new constant is axiomatized by

X+tu = W,
KX = [
Here + is the commutative operation denoting choice, armgpresents sequential
composition. So the procegsruins each (future) alternative.

We recall theconditional guard construct ¢ :— _ from Dijkstra [L3] (roughly:
if  holds, then ), which was introduced in process algebra with two-valued logic in
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Baeten and BergstrE] with the following typical laws wher& denotes the value
true andF stands forfalse:

T: > X = X,
8,
P> X+ > X = V> X

F:—> X

The constani (inaction/deadlock) is well known in ACP-based approaches (see, e.g.,
Bergstra and Klofgl[7] and Baeten and Wijlan@]) and is axiomatized by + § = x

andé - x = §. Another basic construct in the combination of two-valued proposi-
tional logic and process algebraasnditional composition X < ¢ > Y, introduced in

[2]. Herex, y are processes, andis a proposition. This operation satisfies (among
others) the following axioms:

XaTp>y = X,
X<a4F>y =y,
X<dp>y = Yy<—op> X

The notation < _> _ stems from Hoare et. L], and in that paper it is argued that

X< >y expresse#f ¢ then x else y fi. Conditional composition < _> _ can be
regarded as more basic than the conditional guard construct, as it does not presuppose
the existence of the special constanoOf course,

X< yY=¢ .= X+—-¢p . — V.
Finally, a characteristic identity for process algebra wiito-valued logic is

X<d@> X=X
We fix the relation betweeM andu with axiom

M:— X = u.
If it is known that a condition in a process term equslisthere is no point in con-
sidering any (future) alternative. Furthermore, preservation of the three laws on the
conditional guard construct mentioned above and thosedndu implies symmetry

of v. This symmetry together witkhM = M and the derivations

M:— X

"
X+ 1

T: > X+M:.— X
= TVM:.—= X,

and

w4
M:—> X+F.— X
= MVF:— X,
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imply the following truth tables:

x\—|x vVIiM T F
M| M MIM M M
T| F TIM T T
Fl T FIM T F

This three-valued logic, in whicM is totally persistent, was defined earlier by
Bochvar in [L1].

Another basic law irJ] that we want to accommodate relates to repeated appli-
cation of the conditional guard construct and conjunction:

o= (W =>X)=pAY = X
(note the symmetry i A ). However, this law is not preserved in the present
setting?
Fio> M:=>Xx) = 3§,
FAM: =X = pu.
Therefore we replace it by a version in which also the right-hand side reflecisitne

of evaluation, and uskeft-sequential conjunction as introduced by McCartHgd],
with the asymmetric notatiogn taken from Bergstra, Bethke, and Rodenbly [

AlM T F
MM M M
T|M T F
F|F F F

Heregp A ¢ expresses thdirst ¢ is evaluated anthen . For recent work on Mc-
Carthy’s logic see, for example, Konikowsked. A sequential version of the law
mentioned above is

.= (Y= X) =AY = X

We further adopt this identity as the process algebra axiom that reduces repeated ap-
plication of the conditional guard constrécThis design also allows us to extend the
framework defined in this paper in a conservative way to a setting with four-valued
logic as introduced if]. In that paper, complete axiomatizations for both Bochvar’s
and McCarthy's three-valued logic can be found.

In the next section we present the precise three-valued logic we consider and
extend it with proposition symbols. In Sectaive combine this extension with ACP.
In SectionglandGlwe define an operational semantics and bisimulation equivalence
and we prove a (relative) completeness result. In Selélima extend the setting with
data-parametric actions and consider some examples. Finally, in $elteprovide
some conclusions.
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2 A three-valued propositional logic due to Bochvar with McCarthy's extension
We consider the following set of logical operations on the’Jﬁlétof truth values:

M, T,F: — TH
. M M
- T3 — T3

AV, A,V AV TR TY — T

of which—, A, and A are defined by the following truth tables:

X | —=x AlM T F AlM T OF
M| M MM M M MM M M
T| F TIM T F T|M T F
FI T FIM F F FIF F F
The remaining operations are all definable:
Disjunction: XV Y E =(=XA ),

Left-sequential digunction: ~ x¥y = —(=x A —y),
Right-sequential conjunction: X Ay = y A X,

Right-sequential disiunction:  xVy £ y/x.
We call the resulting logi®M3z(—, A, A), or shortlyBM3z. Notice thatBMS3 is not
functionally complete: for example, one cannot deffneith f(M) = F. We b not
embark on complete equational specification®Bbfs. All we need are the truth ta-
bles and equations above (so all in+3® + 9 = 21 equations, or 25 if we include the
dual and right-sequential operations).

In case we use proposition symbols fromBgtve shall writeBM3(P), andfor
concise notation we shall identi§M; andBM3(2). In order to extend our evalua-
tion system to propositiong, ¥, . . . overP, we use substitution on single proposition
symbols: letp, g € P, then

l[p/pld = aq,
[e/plp = o,
[o/plc £ cforce{M,T,Fl},
[e/pl~y = —lo/plV.
[e/Pl(W10v2) = [o/plvn<le/plvzfor & € {n, v, nL VL AL VY

and as a proof rule thexcluded fourth rule:
o(p)=o(y) forallo e {[M/p].[T/p].[F/pl}
o=y

Together with the equations implied by the truth tablesfon, and A, this yields
acomplete, inequational evaluation systemIidvi3(IP). Notice that the operations
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A, 4\, and their duals are associative and thatndyv are commutative as well. We
write

BM3(P) ¢ =1

if ¢ = i can be proved by the system described above. We use the satisfaction symbol
= to indicate that our system is just a syntactic version of the standard semantics for
three-valued logic. IP is fixed, we often only writé= ¢ = . The identities stated

in the following lemma are used in the sequel.

Lemma?2.1 Thefollowing identities hold in BM3(IP):

L E@AR)VT=09VT,
2. E(eVvTpnep=0.

3 Process algebra with BM3(IP)  In this section we consider the combination of
process algebra aréM3(P). This combination is based on ACP, the Algebra of
Communicating Processed)[Z]B]. The signature of ACP is parameterized with a
set A of constants, b, c, ... denoting atomic actions, that is, processes that are not
subject to further division and that execute in finite time, and with a communication
function y that prescribes which actions can communicate. We consider a distinct
actiont ¢ A, andset A; = AU {t}. We further write ACR A;, y) as to make these
parameters explicit. It is assumed thds commutative, thug(a, b) = y(b, a), and
associativey(a, y(b, c)) = y(y(a, b), ¢). INACP(A, y) there is a constantg Ay,
denoting the inactive process. The six operations of &&Py) are:

Alter native composition: X + y denotes the process that performs
eitherx ory.
Sequential composition: X - y denotes the process that performns

and upon completion of starts withy.

Merge or parallel composition:  x || y denotes the parallel executionof
andy (including the possibility of syn-
chronization).

Left merge, an auxiliary X|| y denotesx || y with the restriction
operator: that the first action stems for the left ar-
gumentx.
Communication merge, X |y denotesx || y with the restriction
an auxiliary operator: that the first action is a synchronization
of bothx andy.
Encapsulation: dy (X) (whereH C A) renames atoms in
H tos.

In Tablewe present a slight modification of ACR;, y). We take y total on

A; x At > Ag, where A = Ac U {8}, and we take the communication merge com-
mutative (CMC) (by which (CM6) and (CM9), the symmetric variants of (CM5)
and (CM8), sedd], become derivable). We note that left merge and communication
merge are auxiliary operations used to axiomatize the merg&3fxf.By (A1) and
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Table 1:The axiom system ACR;, y), wherea,b € A, H C A;.

(A1) X+(y+2 = (X+y+z
(A2) X+y = y+X

(A3) X+X = X

(A4) X+y)z = xz+yz

(AS) (xy)z = x(y2)

(A6) X+48 = X

(A7) X = 6§

(CF) alb = y(@b) ifabek
(CF2 ajg = ¢

(CM1) xIy = Ly+ylLx+xly
(CM2) aj x = ax

(CM3) ax| y = ax|y)
(CM4) xX+yllz = X|| z+vy]| z
(CMC) Xly = YylIx

(CM5) ax|b = (alb)x

(CM7) axlby = (alb)(x|y)
(CM8) X+Vylz = X|z+y|z
(D1) on(@ = a ifagH
(D2) @ = & ifaeH
(D3) OHX+Y) = X))+ oY)
(D4) IH(Xy) = IH(X)In(Y)

(CMC), merge is a commutative operation. Although the merge is not axiomatized
as an associative operation, it is associative for all process terms (i.e., closed terms,
which can be proved with structural induction), and we will leave out brackets in re-
peated applications.

We shortly comment on the primitives of AGR;, y). Often,+ is used as an
operation facilitating analysis rather than as a specification primitive: concurrency
is analyzed in terms of sequential composition, choice, and communication. Verifi-
cation of a concurrent systety (C, || ... || C,) generally boils down to represent-
ing the possible executions with and -, having applied left-merge , communica-
tion merge, and encapsulation (by which communication between comp@)eats
be enforced). After renaming internal activity (e.g., using pre-abstraction explained
below), this may yield a simple and informative specification of external behavior.
Furthermore, in case such a componeatts upon external input, choice is a natu-
ral specification primitive for representing value-binding (cf. Milner’s translation of
basic CCS into value-passing CA&I]). For example, assume compon@itcan
receive a value from a finite sBtata = {dg, dy, ..., dn}, and then perform further
activity that depends on the valdeeceived via action(d). By commutativity and



470 JAN A. BERGSTRA and ALBAN PONSE

associativity oft, this situation can be characterized by the identity

Cy1 =r(dp) - Activity(dg) + r(dy) - Activity(dy) + - - - +r(dn) - Activity(dyn),

where - binds stronger thas, or shortly by

Ci= ) r(d)-Activity(d).

deData

In a parallel context in which some valséd;) is offered, the intended communica-
tion y(r(dj), s(dj)) can be enforced by encapsulation, after whizhhas evolved
into Activity(dj). After introducing the remaining axioms gnand the conditional

operations, we continue this explanation.

Table 2:Remaining axioms of ACR A, y, P), whereg, ¢ € BM3(P), a,b e Ay, | € A

(M1)
(M2)
(M3)
(GT)
(GF)
(GM)
(Cond)
(GCY
(GC2
(GC3
(GCL%
(GCH
(GCM6)
(GCM7)
(GCMS8)
(DGC)
(TGC)
(T
(T2)
(T3)
(T4)

X+ u

M- X

X

T:— X

F:— x

M:— x
X<y

@ = X+ =X
Q. —=> X+p.—>Y
(¢ = X)y

¢:— (Y= X)
=Xy
p:—aly:—>Db
.= aX|y:— b
¢ :— aX|y :— by
I (1= X)
ti(p:— X)

ti(a)

t (a)

t(xX+y

t (xy)

> X T T E

"
Q= X+ =Y
VY= X

@ = (X+Yy)

Q= Xy

PNAY = X

g = (XILy)
oAy — alb

e A Y= (alb)x
pAYi— @lb)(x|y)
9 = (%)

= 4H(X)

aifa¢gl

t ifael

6 () + 1 (y)

t OOt (y)

In TableRlwe provide the additional axioms for the extension of ABP y) with
BM3(IP) (whereP is considered a third parameter). Herés taken fromBMsz(P),
so for eachp, _ < ¢ > _is a binary operation angd :— _is a unary operation. The

axiom (GCM®6) suggests a more general version of (CF1) - (CF2), and (GCM7) and
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(GCMS8) can be seen as generalizations of (CM5) and (CM7), respectively. Further-
more, observe that

o X|Yim>y=pAYi—> (X]Y)

would imply inconsistency of ourtheorg&T :— 1 | F:—> X=T AF :— (| X)=9),
which explains the weaker axioms (GCM6) — (GCM8). For elachA; there is a pre-
abstraction operatiofy that renames all actions into t and that is axiomatized by
(T1)—(T4). We use

ACP, (A, y,P)

to refer to both this axiom system and the signature thus defined. We mostly sup-
press the in terms, and brackets according to the following rulebinds strongest,
:— binds stronger thafy, || , |, all of which in turn bind stronger tha#. Closed
terms over ACR (A, v, P) will be further calledprocess terms, as these represent
processes, arn( A, y, P), or shortly P if all parameters are fixed, denotes the set of
all process terms.

We continue our explanation, now involving all operations of ACR;, y, IP)
and binary Kleene star: assume compor@ras introduced above models a channel
that repeatedly transfers values from port 1 to port 2 via actigf (receive value
d along channel 1), ansh(d) (send valued along channel 2). We can write

Ci= (ZdeDatarl(d) : SQ(d))* 8.
Here* is the binary Kleene stafif], defined by
X'y = xX(X'y) + .

(See also Bergstra, Bethke, and Pode [In particular,x*s repeatedly performs

X, as follows easily from the axioms A6 and A7 and can be definedby x(x*),

thus without+ ands (see Fokkink[[4]). We further refineC; to a componenCh,
representing a channel that either corrupts a value received or transfers it properly:
this can be written as

Ch = (X gepaal1(d) - (S2(d) <> 5 (L))" 6,

wherep represents the mechanism that determines whdtékbe transferred prop-

erly or will be corrupted (actiosy(_L)). It may well be thaty depends on courses of
evaluation beyond our means of analysis or control or beyond our verification pur-
poses. In this case, our analysis should be performed on a more abstract level and we
can write

(ZdeDatarl(d) - (S2(d) + SQ(J_))* 3,
where+ is used in favor of conditional composition. A better type of modeling is
obtained by specifying

(P gepaal1(@) - (t-sp(d) +t-5p(L))" 8,

thus guaranteeing that corruption of transfer is nondeterministic from the external
point of view. The latter specification is useful for analysis of the operatiddhof
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in the case that no explicit information @nis available. Finally, we give an exam-
ple that illustrates that even in case a condition is explicit, it need not be relevant for
verification purposes. Consider the program fragment

while ¢ do
while ¢ do
P
od
od ;
Q

which of course equalshilegp do P od ; Q, irrespective ofp. This fragment can be
specified as
R*(R*S)

with R= ¢ :— PandS= —¢ :— Q. Using* and+, and their axioms, one easily de-
rives R*(R*S) = R*S(this is an example i), proving our claim. This completes
our explanation of the primitives of ACRA, y, P).

In the remainder of the paper, we further develop the framework for the case in
which conditions play a decisive role and can in particular be evaluated as meaning-
less. Note that in this casex ¢ > X # X, thus the principle of the excluded middle—
tertium non datur—is dropped.

In order to use identities in three-valued logic in process algebra, we introduce
the ‘rule of equivalence’

Fe=1v¢

R
(ROB) Foi—>X=9¢:—> X

This rule reflects the ‘rule of consequence’ in Hoare’s Logic (cf. At [In our set-
ting we shall use the following versioiROEy,):

BM3(P) Fo=1v¢
ACP, (A, v, P)F o= X=¢ 1= X

(ROEy)

We wiite ACP, (A, y,P) + ROBy - x =y, or shortly x =y, if x =y follows
from the axioms of ACR(A;, y, IP), the axioms and rules f@Mjz(PP), and the rule
of equivalence ROf. We end this section with some useful derivabilities.

Lemma3.1 Thefollowing identities can be derived in ACP, (A, y, P) + ROEy:
lLEFpi>d64+4X=¢pVT > X

Fop > X+y=¢: > X+oVT =Y,

Eullx=u,

Fon(n) = u,

Et () = p.

akrowbd

Proof: Asforl:¢:—»8+Xx=¢: > (Fi> X)+T:—> X= (¢ AF)VT):i—> X
By Lemmd2.1l1, = (9 AF) VT = ¢ v T so ROR, can be applied.

As for 2: Usep :— X=¢ :—> (X+68) = ¢ :—> X+ ¢ :— §,and apply 1 on
p:—>5+Y.
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As for 3-5: Just replacg by M :— x and apply (GC5), (DGC), and (TGC),
respectively. O

4 Operational semantics In this section we define an operational semantics for
ACP, (A, y,IP). This semantics defines the contents of a process term in terms of
the atomic actions that can be executed (if any) or its interpretation as meaningless.
For example,

p:— awithpelP, ae A

can either resemble, the actiona, or §, depending on the interpretation pf
Let w range over thealuations (interpretationsy/ of P in 'JI‘g". We extendw
to BM3(P) in the ususal way:

d

wc) £ cforce{M,T,F}

def

wi—e) = —(w(p),
weoy) = wp) Cwi) for & e (A, v, A, Y, A, V)
With the system defined in Sectighit follows that if = w(p) =w(y) forallw e W,
thenl= ¢ = . For eachw € W andg € BM3(P) we define inductively in Tablgl
the unary predicateeaningless, notationu (w, _) on P, the set of process terms over
ACP, (A, y,IP). This predicate defines which process terms represent the meaning-
less procesa under a certain valuatiom.

Table 3:Rules foru in panth-format

W u(w, )

— ww, @ :— x) if wip)=M

p(w, X)

Y ifw(e) =T
pn(w, ¢ = X)

m(w, X)

pu(w, X+Y)
pu(w, y+ X)
pu(w, X-y)

p(w, X [|'y)
pu(w, y [l x)
w(w, x| y)
pu(w, X|y)

pu(w, y | Xx)

p(w, a4 (X))
w(w, ty (X))

+,5 0L L on, T
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The axioms and rules fqr (w, _) given in Tabld3lare extended by axioms and rules
given in TabldZlwhich define forw € W anda € A, transitions

B8 CcPxP,
and unary ‘tick-predicates’ or ‘termination transitions’
LYY 2

Transitions characterize under which interpretations a process term defines the possi-
bility to execute an atomic action and what remains to be executed (if anything, oth-
erwise,/ symbolizes successful termination).

The following result clarifies the relation between (termination) transitions and
the meaningless predicate and follows easily by induction on the structure of the pro-
cess term involved.

w,a

Lemma4.l Ifx 2% x or x 22 4/ for some w and a, then —u (w, X).

Note that the converse implication does not hold (take ).

The axioms and rules in TabBanddield a structured operational semantics
(SOS) with negative premises in the style of Grolf][ Moreover, this SOS satisfies
the so-called panth-format, defined by Verhd&&J][ which in this case defines the
following notion ofbisimulation equivalence.*

Definition 4.2 Let? be the set of process terms over AGR:, y, P) andB € P x
. ThenBis abisimulation if for all P, Q with PBQ the following conditions hold
for all w e W anda e Ay:

1. VP (P24 P — 3Q(Q-2% Q A PBQ)),
2.VQ (Q 24 Q = 3IP(P24 P APBQ)),
3.P2% / &= Q2%
4. p(w, P) < u(w, Q).

Two process term® and Q arebisimilar, notation
P< Q,

if there exists a bisimulatioB containing the pait P, Q).

Furthermore, from Fokkink and van GlabbeBK] and 3] it follows that its tran-
sitions and meaningless instances are uniquely determined. This can be established
with help of the following simplestratification S

S(p(w, X)) =0,

S(x 2% x)=S(x 2% /) =1,
As a consequence, we can apply the main resulfgf pisimilarity is acongruence
for all operations involved.

Lemma4.3 Thesystem ACP, (A, v, P) + ROBEy is sound with respect to bisim-
ulation: for all processterms P, Q over ACP, (A, y, P),

ACP,(A.7.P)+ROEyFP=Q = P« Q.
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Table 4:Transition rules irpanth-format

ae A a-2% /
X w,a X w,a X/

x-y =%y

x|y =5y

X-y 22 xy

w,a
X[Ly—=>X1ly

X 2%/ —u(w,y)

X+y w,a

+. |l

y+X w,a
x|y =5y

Yl x—%y

X5 X —p(w,y)

X+y—2% x
y+x 24 x
x|y =5 x|y

w,a
yIix—=ylx

X w,a \/ y w, b y/

w,a w,b
X vy Valb=c

Il — e alb=c
Xy — X|y—Yy
X[y =5 X[y 5y
communication
w,aa_ w,b w,a_ w,b /
X —2 X = X —5 X =
wyc alb=c wcy y alb=c
X|y—>X X|y—Xx1Y
X[y =5 x X[ y—=5x 1]y
0 x = ifagH X == X ifagH
" o (x) 23 01 (%) 23 94 (X)
x 224, x WA
t, 2 N jfagl ifadl
() =5/ t(x) 25 1) (X)
X_)w,a X—)w'a X .
N ifael N p ifael
t(xX) — t(X) — t(X)
x 8y x 28 X .
— if w)=T if w)=T

@i x 28 ¥
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Proof: Because bisimulation equivalence is a congruence, itis left to show that each
axiom in Tablélland the rule ROf yield bisimilar instances. For all axioms except
(A5), (CM1), (CMC), (T4), and (D4), this can be checked by taking

def

B=AU{(in},

whereA is the diagonal infP x P, and the pair(i;, i;) represents the instance to be
checked. As an example, consider an instance of (GCM7), say

p:—aP|y:>b=¢pAy:—> (a|b)P.

Now u (w, _) either holds for bothy :— aP | ¥ :— bandp A ¢ :— (a| b)P or
not. This follows easily from the rules in Talf In the first case we are done; in the
second case, eithefa, b) = §, and both process terms cannot perform any transition,

or both can perform
w,alb
> P

by the rules in Tablg] ThusB is a bisimulation and
(p:—aP|y:—> b, oAy :— (a|b)P) € B.

For instances of (A5), (CM1), (CMC), (T4), and (D4) a witnessing bisimulation is
slightly more complex. As for (A5), assume for some process tetimt

p-2& p,

Then (PQ)R 2% (P'Q)R and P(QR) 2% P/(QR). A sufficient witnessing
bisimulation is in this case the diagonal extended &litappropriate associative vari-
ants:
BEAU {((xy)z, x(y2)) | X, Y, Z€ P}.
It is not hard to check tha is a bisimulation that contains each instance of (A5).
As for axiom (CM1) consider an arbitrary instance

PIQRQ=(PILQR+QLP+P|Q.
Let

BEAU{P|Q (PLQ+QIL P +PIQIU{XIIY.YIX|XYe P}
ThenB witnesses the arbitrary instance. In particulaQif2% Q' thenP | Q 22
Pl Qand(P| Q+ Q| P)+P|Q-2% Q| P. Again, itis easily checked that
B is a bisimulation. Furthermore, in this caBavitnesses each instance of (CMC).

As for instances of (T4) with fixed C, let

BE AUt (xy), i (0t (y) | X, y € P}.

It quickly follows thatB is a bisimulation that contains each instance of (T4). For
instances of (D4) a similar argument applies.

Finally, ¢ :— P < ¢ :— Pif &= ¢ = ¢ by definition of the meaningless pred-
icate, which proves the soundness of RPE O
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5 Completeness In this section we prove completeness of AQR, y,P) +
ROEy, that is, if for process termB andQ it holds thatP « Q, thenP = Q can be
derived. We prove this by distinguishing a term representation of bisimilar processes
that implies derivability in a direct way.

Definition 5.1 A process ternP over ACP, (A, y, P) is abasic termiif
P=) ¢~ Q

iel
where= is used for syntactic equivalenckjs a finite, nonempty index sep; €
BM3(P), andQ; € {8,a,aR | a<c A;, Rabasic tern.

Lemma5.2 All processtermsover ACP, (A, y, IP) can be proved equal to abasic
term.

Proof: Standard induction on term complexity. O
Fora e A; andgp € BM3(P), theheight of a basic term is defined by

h() =0,

h(a) =1,

h(g :— x) = h(x),

h(x+y) = max(h(x), h(y)),
h(a-x) =1+ h(x).

Lemmab5.3 If Pisabasicterm, thereisabasicterm P’ with- P= P’, h(P') <
h(P), and P’ has either the form

Y= 6, D

or the form

Y= Q )
iel
with (i) foralli,jel, Q#6 andQ.Qje A= Qi # Qjifi # ],
(i) ifdiel, we Wsuchthat w(yi) =M, thenVjel, w(yj) =M,
(iii) for eachi e | thereisw € W suchthat w(yj) =T.

Proof: Let
P = Zinzl‘/’i — Qi
for somen > 1. By Lemmd3.1]1 and axiom GCL4 we may assume that foii aither
Qi # é or Q; = 6. Inthe latter case this yields with axiom GC1, form 1. In the first

case we may assume that each single action occurs at most once (by (GC1)). This
proves propertyi] of form2] Let

¢ = (VD NlgnVT).
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(Recall that A is associative.) Observe that for eache W, w(p) € {T, M}. Let
furthermore,

Vi = 9N,

P’ = ZP:lwi — Q.
Note that ifw (1) = M for somei andw, thenw(yj) =Mforall j € {1,...,n}. We
show that

FP=P 3)

by induction om.

n=1: This follows immediately from Lemnia.1]2.

n=k+1: Letg=(p2VT)A - A(pnVT)andg =g A g for
i=2,... n._By induction we have that P = ¢, :—
Qi+, i~ Q.
With k applications of Lemm&.1]2 and (GCL4), we obtain

FP=g1i> Qi) viio Q.

i=2

Doing the same once more yields

FP=W2VvT)Agri—> Qi+ Y i, vii— Q.

Now it follows easily that= yr1 = (Y2 v T) A g1 (recall thaty, = g A g2 andw () €
{T, M}). This finishes the proof o) and proves properties)(and (i) of formPlfor
P

Next we consider all summands froR for which no valuation makes the con-
dition true. For each such summangd:— Q; it holds that= v = v AF, and thus

Fvyii—> Qi = YipFi—> Qi
= Yi—> Fi=> Q)
= i — 4.
In case all summands can be proved equalfo— § in this way, we are finished

using B):
FP=vyiVv---Viy:— 4.

In the other casey(v) = T for certainw, i. If - ¥ :— Q; = ¥ :— & for some
j, then by Lemm&.112, - Vi = 8+vi = Q=W vT) AYii— Q. Now
E= vi = (Yj vT) Ay as was already used in the proof B}.(Hence we obtain

HP= Z:(:ﬂﬁi = Qi

with k < n (and possibly some rearrangement of indices), and forieadh, . . ., k}
there is a valuatiom with w () = T. This proves propertyiii) of form[Zland pre-
serves properties)(and {i). O
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Lemmab5.4 Let P, P, bebasicterms. Then

PPeP, = FP =P,

Proof: By the previous Lemma.3 we may assume that both, and P, satisfy ei-
ther forn{Tlor formZiven there. We proceed by inductionlea max(h(Py), h(P,)).

Leth=0. ThenP,=¢,:— éforn=1,2. SoF ¢; :— § © ¢y :— §andw(¢;) =
M <= w(¢p2) = M. This implies thaBMj3(P) = ¢1 AF = @2 AF. NOW ¢ :— 6 =
¢n:— (F:— 8) = gn AF :— 8. Consequently;- Pp = Ps.

Leth > 0andP, =Y., ¥ni :— Qniforn=1,2. By the previous Lemnia3]we
may assume tha®, satisfies forn2lgiven there. Furthermore, we may assume that
foralli € Iy, Qn,i <7£> Qn,jfor j e In\ {i}. Forthe cas®, i = aRyj andQn j = aRy j
this follows by induction:R,; « R, j impliesk Rnj = Ry j, so aRni = aRyj,
and thus (GC1) could have been applied.

Now each summand &%, can be proved equal to onefg_, and ty Lemmd5.3)]
each summand yields a transition for a certaia W/ .

1. Assume thaP, 22 ./ for somew, a. Thusw(yn;) = T for some
uniquei € I,. By Py « P», there is a uniqug € lz_p for which
Py, 23 J and= Y = ¥3_n j (the latter derivability follows from
the representation as defined in Lenimaland the nonbisimilarity of
different summands). Thus

FYnii—>a=vy3nj—a

2. Assume thatP, 22 Rni for somew, a and uniquei € I,. Thus
w(Yn,i) =T. By PL & P,, there must be some unigyi& I3, for which
Ps_n —% Rs_nj andRyi € Rs_n j, and for whichl= yni = ¥3_n |
follows from Lemmds.3 By induction we find- Ryj = Rs_ j, and
therefore- aR, i = aRs_n j and hence

FYmi = aRni = ¥3_nj = aRs_pj.

By symmetry, it follows that each summandmyfis provably equal to ong,_3. Con-
sequentlyt P, = P,. O

With Lemmadt 2J[E3[54] and soundness (Lemrda3) we obtain the following the-
orem.

Theorem 5.5 The system ACP, (A;, ¥, P) + ROEy is complete with respect to
bisimulation equivalence: for all processterms P, Q over ACP, (A, v, P),

ACP, (A, v,P)+ ROy FP=Q <+ P< Q.



480 JAN A. BERGSTRA and ALBAN PONSE

6 Parameterized actionsand nonclassical values When dealing with actiona(x)
parameterized by over some data type, it makes sense to consider the case in which
data can also take vali If so, one faces the question how to interar@t). Given

the preceding interpretation of conditions, a natural choice is to take

aM) = u.

(Soa(x) is an atomic action in case# M.) We end this section with two examples
on the use ofl and .

Example6.1 As an example of the use of process algebra with the proposed three-
valued propositional logiBM3(IP), we consider a process that manipulates bounded
stacks over data sort

def

Data={d, ¢, f, g, h}.

Let Data®5 £ {p € Data* | length(p) < 5}, where we assume thatis the empty

string in Data*, andlength is a given function that yields the length of a string in
Data*. Let furthermore

def

Datayy, = DatauU {M},
Data®® U {M},

def

Data),®
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and let the following functions be defined:

app : Datax Data,®> — Datal°,
app(d, p) = M if length(p) =5 orif p = M,

head : Datal,®> — Data,
M if p € {e, M}

head(p) = _ 05
d if p=app(d, o), p’ € Data”™,

tail : Data),® — Data>,

i M if p e {e, M}
tail (p) =
o if p=app(d, p), p’ € Data®>,

empty : Data;®> — TY,
T ifp=e¢
empty(p) =1 M if p=M
F otherwise,

ful : Datad®> — TY,
T if length(p) =5
ful(p)=3 M if p=M

F otherwise.
We think these functions characterize straightforwardly the roleesiningless:
head(¢) = tail(¢) = M,

and all are monotonic im.
The following process term(x) describes manipulation with stack object
Data’*® including all “special cases” that evolve frobatad,”.

QX)) = —=full(X) i— > 4cpata1(d) - Q(app(d, X))
+ —empty(X) :— (sz(head(x)) + sz(head(x))) - Q(tail (x))
+ —empty(X) A empty(tail (X)) :— sq(head(x)) - Q(e)
+ empty(X) :— ss(is.empty) - Q(e).
Here actions j(-) andsj(-) model receive and send actions, respectively, of data
along channej. So,Q(x) can be ‘pushed’ in case itis not full and be ‘popped’ in case

it is not empty in three ways: either it can send its head value along channel 2 or 3,
and evolve intaQ(tail (x)), or in case of the one-element stack, it can send this value
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along channel 4. The empty stack vakean be observed via actiag(is_.empty).
We considerQ(x) in parallel with areset processR defined by

R = re(setempty) - (Ygcpatara(@)*rs(is empty)).

Herey(rj(x), cj(x)) = c;j(x) for all values ofx € Datay U {is.empty}. The idea is
that R can be triggered to res€(x) to Q(¢) via actionrg(set_empty). Let H =
{ri(x),sj(x) | j =3,4, x e Datay U {set_empty, is_empty}}. Then

IH(QMX) I R)
models this reset. We still havg (Q(M) || R) = .

Example6.2 Consider the data type = {0, S(0), S(S(0)), ...}, with equality=:
w x o — TH (binary infix) defined by

0=0 =
0=Sx) =
S(x) =0 =
S0 =S(y) =

x m m -

V.

Letthe predecessor functi®t w — » U {M} be defined by?(0) = M, andP(S(x)) =
X. We extend the domains &, =, andP with valueM by defining

SM)=x=M=M=Xx=P(M) =M.
Now consider the following counterlike process:

C(X) = r(up)-C(S(x))+ r(down) - C(P(x)) +r(set_zero) - C(0)
+ X=0:— r(is.zero) - C(X).
With the actionr (up), acommand to increase can be received, and a command to
decrease is modeled by the actigqdown). The actiorr (set_zero) models a reset of

the counter t&C(0), and actiorr (is_zero) indicates that the counter value equals 0. It
follows that

CM) = wu,
CO) = r(up)-C(S(0)) + r(down) - C(M) + r(set_zero) - C(0)
+ r(is_zero) - C(0),
C(S*(0)) = r(up)- C(S2(0)) + r(down) - C(S¢(0)) + r(set_zero) - C(0).

So, if in case ofC(0) the actiorr (down) is performed, the counter evolves inio
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7 Conclusion The extension of process algebra to a three-valued setting with
meaningless entails the introduction of a new process constaand the defining ax-
iomM :— x = u. As aguard,M is totally persistent: whenever a condition to be
evaluated in a process term equdighe process term equals In aparallel setting,

this is much stronger than occurrence~dh a condition, for example,

(F:— a) || bc = bcs, whereagM :— a) || bc = u.

In our set-upF :— wu = § holds. This clearly illustrates that the conditional guard
construct reflects a certain order: first the condition is evaluated, then its right argu-
mentis considered. So, in this respect the conditional guard construct really guards its
process term. This agrees with the intuition as exemplified by the following program
fragment:

if T then P else (type-clash) fi,

where we certainly have a clue of its operational behavior when we have dhe of

Note7.1 Recently we published some more papers on process algebra with non-
classical logicdfJ[I0)B]. The most intricate of these starts from a five-valued logic
that comprises in addition t© andF not only the valuem, but also value® for di-
vergence, andC for choice or undetermined. Typically,D :(— x =38 andx<Cr>y=

X+ Y. (So, with conditional compositiolg, gives a counterpart of the operation in
process algebra.)

We think that the present paper describes an approach that in its own right deserves
publication, and we hope that it provides an elegant introduction to the general subject
of process algebra with nonclassical logics, or perhaps—quoting a referee—"error

handling in parallel and distributed software systems.”

Acknowledgments Wethank a referee for suggesting some improvements.

NOTES

1. Thechaos processy, which stems from CSHL[], seems to be characterized by exactly
the same laws as given far. But y characterizes the effect of infinite internal activity
and its laws capture an intuition that is not useful in our set-up. Modeling internal activity
explicitly would distinguish and x. Therefore we introduce this new constant.

2. Of course§ = u implies inconsistency of our theorx= x+6 = X+ u = u.
3. Note that in a two-valued settingy andA coincide.
4. A general reference to bisimulation equivalence is HaZk |Its role in process algebra

is overviewed in[g].
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