
578

Notre Dame Journal of Formal Logic
Volume 40, Number 4, Fall 1999

Book Review

V. V. Rybakov. Admissibility of Inference Rules. Elsevier Science, Amsterdam, 1997.
617 pages.

A rule is admissible in a logic L if it can be added without increasing the set of tau-
tologies of L. For example, the rule ϕ/∀x.ϕ is admissible in predicate logic, since if
ϕ is a theorem, so is ∀x.ϕ. The notion of an admissible rule is quite central to logic,
but it hardly attracts any attention outside a small group of people. Modern textbooks
do not teach a student about consequence relations let alone admissible rules, and it
is hard to find other books on logic that do. It is one of the aims of this book to fill
this lacuna.

It deals specifically with the question of admissibility of inference rules and here
mainly in the context of intermediate and modal logic.1 Nevertheless, the reader will
also learn a good deal about algebraic logic, deductive systems, and modal and in-
tuitionistic logic in general. The book contains six chapters, of which the first two
present the general theory of algebraic, modal, and intuitionistic logic, while the re-
maining four chapters deal with the problem of admissibility of rules in modal and
intermediate logic. We shall summarize the first two chapters before entering a re-
view of the book in a more chronological fashion.

Even though the results are more general, we shall often take advantage of the
fact that we are dealing with extensions of K4 and superintuitionistic logics. This
will eliminate certain complications, into which we will not go since they are not
relevant for the main results. We assume that the reader is acquainted at least with
modal and intuitionistic logic. For a general introduction we refer to [2]. In what is
to follow, we shall try to use the most standard terminology, which is not necessar-
ily the author’s own. For example, we shall make use of generalized Kripke-frames
rather than models. This will help in the formulation of the results. Recall that a
Kripke-frame is a pair 〈F, R〉 where F is a set and R ⊆ F2. A generalized Kripke-
frame (or frame henceforth) is a triple F = 〈F, R,U〉 where 〈F, R〉 is a Kripke-frame
and U ⊆ ℘(F) is closed under intersection, complement, and the operation τ(A) :=
{y : if y R x then x ∈ A}. A Kripke-frame 〈F, R〉 is often tacitly identified with the
general frame 〈F, R, ℘(F)〉. A modal algebra is a quintuple A := 〈A, 1,−,∩, τ〉
where 〈A, 1,−,∩〉 is a Boolean algebra with unit, complement, and intersection, and
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τ : A → A a function satisfying τ(1) = 1, τ(a ∩ b) = τ(a) ∩ τ(b). A frame F defines
the wrapping algebra F+ by

F+ := 〈U, F,−,∩, τ〉 .

Conversely, given a modal algebra A, let U(A) denote the set of ultrafilters of A. Put
U RV if and only if for all τ(a) ∈ U we have a ∈ V ; finally, put â := {U ∈ U(A) : a ∈
U}. Then

A
+ := 〈U(A), R, {â : a ∈ A}〉

is a generalized frame, called the dual frame of A. Recall that for a modal algebra A,
A++ ∼= A, but for a generalized frame F, F++ ∼= F only holds if F is descriptive. A
(Kripke-)model is a pair 〈F, β〉 where F is a generalized frame (Kripke-frame) and β

a valuation, that is, a partial function from V into U. 〈F, β〉 |=x ϕ for x ∈ F is defined
by induction on ϕ as usual. If β is defined only on finitely many variables, we call the
model weak.

We shall briefly mention a few results on the connection between modal and
intermediate logics. The so-called Gödel-McKinsey-Tarski translation T from intu-
itionistic formulas to modal formulas is defined as follows.

T(p) := �p
T(ϕ ∧ ψ) := T(ϕ) ∧ T (ψ)

T(ϕ ∨ ψ) := T(ϕ) ∨ T (ψ)

T(ϕ → ψ) := �(T(ϕ) → T (ψ))

T(¬ϕ) := �¬T (ϕ)

Given an intermediate logic L, we define ρ(L) := S4 ⊕ T[L] and ρ(L) := Grz ⊕
T[L]. Here, the notation L ⊕ X is used to denote the (normal) extension of L by X
where X is a set of formulas. Given a modal logic L′ containing S4 we put τ(L′) :=
{ϕ : T (ϕ) ∈ L′}. We call L′ a modal companion of τ(L′). For each intermediate logic
the set of modal companions is exactly the interval [ρ(L), σ(L)]. The mapping σ is an
isomorphism between the lattice of superintuitionistic logics and the lattice of normal
extensions of Grz. The translation is faithful with respect to a number of properties,
such as tabularity, and the finite model property (fmp).

Take a language L . A consequence relation over L is a relation  ⊆ ℘(L ) × L
such that

1. if ϕ ∈ � then �  ϕ,
2. if �  ϕ then � ∪ 	  ϕ,
3. if �  ψ for every ψ ∈ 	 and if 	  ϕ then �  ϕ.

 is structural if from �  ϕ follows �σ  ϕσ where σ is a substitution, and  is
finitary if �  ϕ implies that there exists a finite �0 ⊆ � such that �0  ϕ. We will
consider in sequel only structural and finitary consequence relations.2 Given , we
put Taut() := {ϕ : ∅  ϕ} and call it the set of tautologies of .

A rule is a pair ρ = 〈�,ϕ〉 where � ⊆ L and ϕ ∈ L . For example, MP =
〈{p, p → q}, q〉 is the well-known rule of Modus Ponens. Alternative notations for
rules are δ0, . . . , δn−1/ϕ. So, the rule MP is also written like this: p, p → q/q or
even, more visually, like this

p, p → q
q

.
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ρ is a derived rule of  if ρ ∈ . Given a set R of finitary rules we let R denote the
least finitary structural consequence relation in which all rules from R are derived
rules. This is uniquely defined. We call R an axiomatization of  if  = R.

Definition 1 Let ρ = 〈�,ϕ〉 be a rule and  a consequence relation. ρ is admissible
in (or for)  if for every substitution σ: if �σ ⊆ Taut() then ϕσ ∈ Taut().  is
called structurally complete if every admissible rule of  is also derivable.

Clearly, every derived rule is also admissible. The converse is not true as we shall
see, and this of course makes the notion of admissibility all the more interesting.

The notion of an admissible rule is defined on the basis of the set of tautologies
alone, and this means that there are several consequence relations with the same set
of admissible rules. Some examples may illustrate this. Let L be a modal logic. Then
two special consequence relations are generally associated with L. These are called
the local consequence relation, L, and the global consequence relation, �L. They
are defined as follows. � L ϕ if ϕ is provable from � ∪ L by means of MP alone;
� �L ϕ if ϕ is provable from � ∪ L by means of MP and MN := p/�p. The rules
MN and DN := �p/p are both admissible rules of K, but neither is derivable. MN
is a derived rule of �K, while DN is admissible but not derivable. In the book, the
symbol L is used for what we have called the global consequence relation of L. We
shall not follow this usage, since most people would find that irritating. There is a
particular reason for preferring �L over L. The latter is in general not finitely ax-
iomatizable even when L is. This is so because we cannot ensure the closure of L
under MN other than by assuming infinitely many axioms. For an intermediate logic
L, the consequence relation L is defined as the local consequence relation, but it
matches the global consequence relation of σ(L) under the translation T . The The-
orem 3.2.2 (called the Translation Theorem) says that a rule ρ is admissible in L if
and only if T(ρ) is admissible in σ(L). Given this, it suffices to develop the theory
of admissibility for modal logics. The results for intermediate logics can be derived
from them. This is how we shall present the results here.

The consequence relations over a language form a complete lattice, and for each
set L of formulas, the set of consequence relations whose set of tautologies is L form
an interval whose maximal element is structurally complete. We denote this conse-
quence relation by m

L . We say that in L the admissibility of inference rules is decid-
able if for any finitary ρ it is decidable whether or not ρ is admissible, that is, whether
or not ρ ∈ m

L . Given a modal logic, the following questions naturally arise:

1. Is m
L finitely axiomatizable?

2. Is m
L decidable?

3. How many consequence relations exist in the interval [�L,m
L ]?

4. Is �L structurally complete?

Clearly, the last problem is a special case of the third one, but it is this one which is
treated in this book. To answer these questions, some more machinery needs to be de-
veloped. Recall Birkhoff’s theory of equationally definable classes. From this theory
it follows that there is an anti-isomorphism between the lattice of normal modal logics
and the lattice of varieties of modal algebras where both are ordered by class inclu-
sion. Namely, in the present context, an equation of the form ϕ

.= ψ can be replaced
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by the equation ϕ ←→ ψ
.= �, which in turn is equivalent to the axiom ϕ ←→ ψ.

Conversely, the axiom ϕ is equivalent to the equation ϕ
.= �. This opens the way for

an algebraic model theory of modal logic, aided by Stone’s representation theorems
for Boolean algebras. Now, a similar correspondence holds between quasi identities
and quasi varieties. Quasi identities are equivalent in this context to what is known as
Horn-clauses. A Horn-clause is a sentence of the form (∀�x)(

∧
i<n δi → ϕ) where all

the δi (i < n) and ϕ are atomic formulas. Quasi varieties are those classes that are ax-
iomatizable by means of quasi identities. They are therefore elementary, and closed
under products and subalgebras. We say that a rule ρ = δ0, . . . , δn−1/ϕ is valid in a
modal algebra A if the corresponding Horn-clause (∀�x)(

∧
i<n δi

.= � → ϕ
.= �) is

valid in A. (Here, �x contains all variables occurring free in ρ.)
Now, given a modal logic L and a cardinal κ, denote by FL(κ) the freely κ-

generated L-algebra. Of particular interest in the study of admissible rules is FL(ω).
For the following holds.

Theorem 2 ρ is admissible for L if and only if ρ is valid in FL(ω).

Hence, the quasi variety axiomatized by m
L is exactly FL(ω)Q, where K Q denotes

the smallest quasi variety containing K .
We now enter the book at Chapter 3. This is really the heart of the whole book. It

contains the most difficult and powerful theorems. Throughout we shall assume that
L is a modal logic containing K4. An important notion is that of an n-characterizing
model. It can be described in standard terms as follows. Take the free L-algebra
FL(n) on n generators. Denote the dual frame of FL(n) by CanL(n). This frame is
infinite but it contains as a generated subframe the frame of all points of finite depth
which we denote by ChL(n). Together with the natural valuation this constitutes the
n-characterizing model which we also denote by ChL(n). It is known that each point
of infinite depth sees a point of arbitrary finite depth (see Fine [6]). Theorem 3.3.6
asserts that if L has the finite model property every nontheorem of L is refutable in
one characterizing model.3 The n-characterizing models can be used to determine
the admissibility of a rule as follows. Let L have fmp. Then the wrapping algebra
of ChL(n) is actually isomorphic to FL(n). Since FL(n) is a subalgebra of FL(ω),
one can show that {FL(n) : n ∈ ω}Q = FL(ω)Q. Now, suppose we are given a rule
ρ. Then ρ is admissible in L if and only if it is admissible in every n-characterizing
model. Finally, Lemma 3.4.2 says that if ρ contains k variables, ρ is admissible in
ChL(n) if and only if it is admissible in ChL(k). This gives the first general result.

Theorem 3 Let L be a finitely axiomatizable logic containing K4. If the variety of
L-algebras is locally finite, the admissibility of rules for L is decidable.

This includes all tabular logics, since they generate a locally finite variety and are
finitely axiomatizable. There is a criterion on local finiteness, which runs as follows.
Call a logic L of depth d if no refined L-frame contains a sequence of points xi, i <

d + 1, such that xi R xi+1 but not xi+1 R xi. L generates a locally finite variety if and
only if it is of depth d for some d ∈ ω.

Theorems 3.5.1 and 3.5.2 are still more general. We will state them as one:

Theorem 4 Suppose that L is a logic containing K4. Suppose further that

1. L has fmp,
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2. L has branching below m for some m ∈ ω,

3. L has the effective m-drop point property for some m ∈ ω.

Let ρ be a rule with k variables. Then ρ is admissible in L if and only if it is valid in the
wrapping algebra of the Kripke-frame underlying the k-characterizing frame. Fur-
thermore, suppose that there is an algorithm which decides for a finite frame whether
it is an L-frame. Then there exists an algorithm deciding whether a given inference
rule is admissible for L.

Here, a logic has branching below m if whenever in some frame for L there is a clus-
ter with d immediate successor clusters, then whenever we find d incomparable clus-
ters in ChL(n), there is a cluster C having these clusters as its immediate successor
clusters. The effective m-drop point property is still more cumbersome to define. To
understand it, recall the selection procedure of Fine and Zakharyaschev (see [6] and
[9]). This procedure extracts a finite model out of a given model M on the basis of
a set Y of formulas closed under subformulas. Denote this frame by X(M, Y ) and
by Xm(M, Y ) the model containing both X(M, Y ) and the points of depth at most
m. (We are assuming that the model is weak.) Crucially, this procedure does not pre-
serve the truth of all formulas (since we are taking subframes which are in general not
generated) but it does preserve the truth of all formulas from Y . For cofinal subframe
logics this shows that they have the finite model property. The m-drop point property
says the following. Suppose that we have a finite n-generated L-model M and that it
is large. Then it contains a submodel W ⊇ Xm(M, Y ), which is contractible onto an
L-frame of no more than g(x, y) elements where g is a recursive function and x = |Y |
and y the number of points of depth at most m in M.

The proof of this theorem uses the selection procedure. It shows that if ρ is
refutable in the n-characterizing model then we can construct a model whose size we
can estimate a priori and in which ρ is refuted as well. This model also has the so-
called view-realizing property. Conversely, if such a model exists, ρ is refutable in
the n-characterizing model. The proof of the latter statement is the most involved,
but it seems that it can be simplified using the technique of homogenization proposed
in [7].

As it turns out, the standard modal systems, K4, S4, GL, Grz, S5, with or without
an axiom of finite width, all satisfy the conditions of this theorem, and the problem
of admissibility is therefore decidable in them. By the Translation Theorem, admis-
sibility of inference rules is decidable for the logics Int and LC and many more. The
remainder of Chapter 3 is devoted to some questions related to the decidability of
admissibility. For example, if a logic L has the disjunction property and the admis-
sibility problem is decidable, then the universal theory of FL(ω) is decidable. How-
ever, as is also shown, mostly the elementary theory of this algebra is undecidable for
the standard systems (K, K4, GL). This gets even worse when we consider the logic of
schemes. Schemes are introduced to study the admissibility problem for rules in first-
order theories. A scheme is a formula S formed from variables zi, i ∈ ω, for first-order
formulas using the Boolean connectives and the quantifiers (∀xi), (∃xi) where the xi

(i ∈ ω) are first-order variables. A scheme S(z0, . . . , zn−1) is valid in a first-order
theory T if S(α0, . . . , αn−1) is derivable in T for all first-order formulas αi, i < n. A
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valid scheme (for all first-order theories) is, for example,

(∀x0)(z0 ∧ z1) ←→ (∀x0)z0 ∧ (∀x1)z1 .

A rule is a pair 〈�, S〉 where � is a set of schemes and S a single scheme. It is ad-
missible in a first-order theory T if for all substitutions s of formulas for scheme vari-
ables, if every member from �s is valid in T , then so is Ss. An example of a rule is
the rule 〈{z0}, (∀xi)z0〉; it is admissible in all first-order theories. It turns out that if
a first-order theory T has infinite models, then the set of T-valid schemes is not de-
cidable; if T is in addition decidable, its set of valid schemes is not even recursively
enumerable. This means that in such cases the admissibility of a first-order rule is
undecidable. It is decidable if and only if T has only finitely many finite models. The
chapter closes with examples of logics (due to Alexander Chagrov) which are decid-
able but for which the problem of admissibility of rules is undecidable. Furthermore,
it is shown how to prove admissibility using the so-called reduced form of a rule.

The fourth chapter deals with the problem of finding axiomatic bases for the set
of admissible inference rules. It defines an infinite series of frames, whose precise
definition we will not give here, and shows that if these frames are L-frames and L
has the finite model property, the property of branching below m for some m and the
effective m-drop point property, then L has no basis of admissible rules in finitely
many variables.4 This covers K4, S4, GL, Grz, and their extensions of finite depth,
and consequently also the logic Int (and its extensions of finite depth). This answers
negatively the question of Harvey Friedman whether or not Int has a finite basis of
admissible rules. Crucially, the logics for which this technique works must be of in-
finite width, so there is hope that logics of finite width behave differently. Indeed, it
is shown in Section 4.3 that S4.3 is much different in this respect. The main result is
here that if L ⊇ S4.3 then m

L is axiomatizable over �L by the single rule �p,�¬p/q.
The quasi variety generated by a finite number of finite, subdirectly irreducible alge-
bras has a finite basis for its set of quasi identities, provided these are algebras for K.T.
This means that the consequence determined by these algebras is finitely axiomatiz-
able. This is false if the algebras are not K.T algebras. If we return to the question of
admissibility of inference rules, the picture changes again. There is a finite Grz-frame
of depth 3, whose logic has no basis for admissible rules in finitely many variables.
This is the best possible result, since Remazky has shown that all tabular logics of
depth 2 have a finite basis for admissible rules.

Chapter 5 deals with questions of structural completeness. It introduces a tech-
nique originally due to Citkin, which is an analogue of Jankov’s technique of split-
tings (see [3] and [4]). Before we can introduce this technique, it is worthwhile to re-
call a few facts. If L is a logic that has the finite model property then the free algebra
FL(ω) is a subalgebra of the product of the finite subdirectly irreducible L-algebras.
Under this condition, a logic L is structurally complete if and only if every finite sub-
directly irreducible L-algebra is embeddable into the algebra FL(ω) (or some FL(n),
n a finite number). Now let A be a finite, subdirectly irreducible K4-algebra. Then
there exists a largest element ω �= 1 such that ω ∧ τω = ω. Call this element the opre-
mum. Now, take for each element a of A a propositional variable pa and let r(A) be
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the following rule.

r(A) := {pa∗b ←→ pa ∗ pb : a, b ∈ A} ∪ {p◦a ←→ ◦pa : a ∈ A} ∪ {p1}
pω

where ∗ runs through all the basic binary connectives and ◦ through all the basic
unary connectives. This is the quasi-characteristic inference rule of A. Now the fol-
lowing holds.

Theorem 5 Let A be a finite, subdirectly irreducible K4-algebra. Then for any K4-
algebra B, r(A) is invalid in B if and only if A is isomorphically embeddable into
B.

It is not hard to show that no K4-algebra with at least two elements is embeddable into
FK4(ω). Armed with this result one can show that there are infinitely many admis-
sible rules which are independent from each other. One has to show only that there
are infinitely many simple, finite K4-algebras. On the other hand, the set of admissi-
ble quasi-characteristic rules of S4 and Grz have a finite basis. In the latter case the
generalized Mints’ rule alone forms a basis.

[(p → q) → (q ∨ r)] ∨ u
[((p → q) → p) ∨ ((p → q) → r)] ∨ u

For S4 we need in addition to the modal translation of this rule two more, one of which
is the quasi-characteristic rule of the two element cluster, which is equivalent to the
rule �p,�¬p/q, which we have already met above.

Indeed, the results on extensions of S4.3 can be understood quite easily now. All
we need are the following two facts which are not hard to establish:

Lemma 6 Let L be a modal logic containing S4.3 and A a finite, subdirectly irre-
ducible L-algebra. Then A × 2 is a subalgebra of FL(ω) where 2 is the two-element
S4-algebra.

Lemma 7 The rule �p,�¬p/q is valid in A if and only if the wrapping algebra
of the two element cluster is not embeddable into A.

Now, any extension L of S4.3 is finitely axiomatizable and has the finite model prop-
erty, by results of Fine and Bull ([1] and [5]). L has the property of branching below
1 and the effective m-drop point property for some m. It follows that the admissibility
of inference rules is decidable for L. Second, if we add the rule �p,�¬p/q then the
resulting consequence relation axiomatizes the quasi variety containing all finite L-
algebras of the form A × 2. Since L is determined by such algebras, we see that this
quasi variety contains FL(ω). Moreover, since the smallest quasi variety containing
FL(ω) must contain these algebras, the two are equal. Hence we have axiomatized
m

L .
The chapter continues with the investigation of intrinsically complete modal log-

ics. Call a logic L hereditarily structurally complete if all its extensions are struc-
turally complete. L is structurally precomplete if it is not structurally complete but
all its proper extensions are. It is shown that there are exactly 20 structurally pre-
complete logics containing K4 and they are all tabular. (The Kripke-frames for these
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logics are explicitly given.) A logic is hereditarily structurally complete if and only if
neither of these frames is a frame for the logic. Consequently, there is a least heredi-
tarily structurally complete logic, and this logic is the join of twenty splitting logics.
From this, results on S4 and Int are immediately derived (since the frames are explic-
itly known). All these logics must be of width 2.

Chapter 6 rounds off the book. It covers a number of related issues. The first
section deals with rules that have parameters and extends the results obtained so far
to such rules. The second and third section characterizes those logics containing S4
or Int in which all rules admissible for S4 (Int) are also admissible. It turns out that
these logics closely resemble the hereditarily structurally complete logics (indeed,
they form a subset of these logics). The condition is that they are of width 2 and tight-
ness 1 (in the terminology of [7]). The latter means that the following frame is not a
subframe of an L-Kripke frame:

�
�

���

�
�

���
�

�

�

��

The remaining two sections are devoted to the study of noncompact logics where a
logic L is called compact if the following is the case. Let ϕ be given. If for each finite
subset of L, �, there is a Kripke-frame F such that F |= � but F � ϕ then there is an
L-Kripke frame F such that F � ϕ.

This book gives an exhaustive overview over the problem of admissibility of
rules in modal and intuitionistic logics. Most of these results are due to the author
himself. Many constructions are delicate and use sophisticated methods of modal
logic. Certainly, without the modern inventory of techniques for transitive logics
(which have been provided among others by Fine and Zakharyaschev) these results
would certainly have been impossible. Nevertheless, the author uses them with ease
and imagination.5

Despite all this, the book also has its shortcomings. I feel that the author has not
tried to make things really simple. His terminology (model, compact logic) is often
not standard, and the notation not really suggestive or clumsy. It leads to such con-
structs as a≤≤, which denotes the cone generated by a (under the relation denoted by
≤). To give another example, F ◦ 1 denotes the disjoint union of the frame F with
the one element reflexive frame. But why not write F � 1 where � denotes the dis-
joint union? And why not use • instead of 1—as is used in pictures? Second, the
results on extensions of S4.3 are readily understood if the techniques of Chapter 4
are used, as we have shown above. But this is nowhere mentioned or explained. This
means more effort than necessary. There are so many mistakes and typographical er-
rors that an unexperienced reader is easily put off. Even though I have not found any
deeply worrying mistakes, I would bet that there is no single flawless page in the book.
This concerns both the mathematical formulas as well as the English prose. The au-
thor must be held responsible for the errors in the formulas, and for tacitly changing
the notation, which occurs not so infrequently. However, the English language is not
something that an author is supposed to know well enough to write a book. For that,
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he should be able to rely on the publishers. Yet, the publisher didn’t bother to have
this book proofread beforehand. So, even though the author has had other people read
the manuscript, the quality of the prose varies considerably. If this (widespread) pol-
icy of editing books continues, the literary style of scientific books will deteriorate
in the long run. Moreover, writers with a native command of English will have an
advantage in publishing books, since they do not need to worry that much about the
language. All others run the risk of making stupid mistakes that will appear in print
(and upset the critic). Another concern is the layout. Also the layout and typesetting
is now entirely a responsibility of the author, which those experienced with it will
enjoy. For all others it is a pain in the neck. The present book illustrates what can
happen if someone not so experienced with typesetting is left alone with the job.

With all this being said, the book is enjoyable for the experienced reader. It is
full of innovative methods and strong results not only about the admissibility of rules.
It deepens our understanding of modal logic, and of logic in general. And it may—
hopefully—show that modal logic is full of deep and also difficult theorems, and help
to advance a topic that is nowadays a rather neglected area of logic, namely, the study
of rules and logical consequence. I should mention perhaps that the notion of a rule
as considered in the book is—at least in one instance—not general enough. For there
are often cases when we want to have several conclusions. Let us therefore write
ρ = 〈�,	〉 for sets � and 	 to denote such a rule and call it a multiple conclusion
rule. ρ is called admissible in L if for every substitution σ: if �σ ⊆ L then for some
γ ∈ 	 γσ ∈ L. In the literature there are several examples of multiple conclusion rules,
for example, the rule of margins: 〈{p → �p}, {p,¬p}〉. Another example is related
to the disjunction property. Recall that an intermediate logic has the disjunction prop-
erty if whenever ϕ ∨ ψ ∈ L then either ϕ ∈ L or ψ ∈ L. L has the disjunction property
if and only if the multiple conclusion rule δ := 〈{p ∨ q}, {p, q}〉 is admissible in L.6

It would be interesting to develop a theory of such rules. It is clear that multiple con-
clusion rules are connected with properties of the quasi varieties. For example, the
admissibility of multiple conclusion rules is decidable if and only if the universal the-
ory of the algebra FL(ω) is decidable. Thus, by the results of the book, the problem of
admissibility of multiple conclusion rules is decidable for all extensions of S4.3. It is,
of course, beyond the scope of this review to present a theory of multiple conclusion
rules, but we have at least indicated how such a theory might go and that it is worth
its while. Now it is time for others to pick up the book and continue the research.

Acknowledgments I wish to thank Vladimir Rybakov for useful discussions while writing
this review.

NOTES

1. Although the book also treats tense logic in the introductory chapters, there are no results
of substance proved about them later. I will therefore ignore tense logic in sequel.

2. In the book, there is an occasional reference to infinitary rules, and some results are
proved about them. However, the majority of results concern finitary rules and finitary
consequence relations.

3. Actually, the condition of finite model property is lacking from the formulation, which
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is clearly false. Otherwise, any logic containing K4 has the fmp, since every generated
subframe of ChL(n) is finite.

4. This implies that there is no finite basis, since this basis has finitely many variables. But
it also implies that there is no infinite basis using only finitely many variables.

5. Vladimir Rybakov has emphasized in personal communication that he has developed
these techniques independently of Fine and Zakharyaschev.

6. There exist analogous notions for modal logics, but we shall not go into that.
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