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Truth and the Liar
in De Morgan-Valued Models

HANNES LEITGEB

Abstract The aim of this paper is to give a certain algebraic account of truth:
we want to define what we mean by De Morgan-valued truth models and show
their existence even in the case of semantical closure: that is, languages may
contain their own truth predicate if they are interpreted by De Morgan-valued
models. Before we can prove this result, we have to repeat some basic facts
concerning De Morgan-valued models in general, and we will introduce a no-
tion of truth both on the object- and on the metalanguage level appropriate
for such models. The definitions and the existence theorem are extensions of
Kripke’s, Woodruff’s, and Visser’s concepts and results concerning three- and
four-valued truth models.

1 Preliminaries

1.1 De Morgan lattices De Morgan lattices are lattices with an associated unary
complement function having some intuitively attractive properties; they have been
introduced in the late 1950s by various authors independently (Bialynicki-Birula and
Rasiowa [4], Kalman [9], and Monteiro [15]) and have been used to give a seman-
tics for Relevance Logic (Dunn [5]; in this context they are also called intensional
lattices).

Definition 1.1 We call M = 〈M,�M,∧M,∨M,¬M〉 a De Morgan lattice if

1. 〈M,�M,∧M,∨M〉 is a distributive lattice (�M is the partial order of M, ∧M

and ∨M are the corresponding binary infimum and supremum functions), and

2. ¬M : M −→ M such that

(a) for all u ∈ M: ¬M¬Mu = u,

(b) for all u,

v ∈ M:¬M(u∧Mv) = ¬Mu∨M¬Mv,¬M(u∨Mv) = ¬Mu∧M¬Mv.
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That means, De Morgan lattices are distributive lattices with a complement function
that is a dual automorphism of period two, that is, it satisfies the law of double com-
plement and the De Morgan rules; it is easy to see that in a De Morgan lattice also the
law of contraposition holds: for all u, v ∈ M u �M v ifand only if ¬Mv �M ¬Mu.

At first glance, De Morgan lattices are quite similar to Boolean algebras: indeed,
every Boolean algebra is also a De Morgan lattice, and the variety of Boolean alge-
bras is a subvariety of the variety of De Morgan lattices; but in contrast to Boolean
algebras u ∧M ¬Mu is not necessarily the bottom in a De Morgan lattice—actually a
De Morgan lattice is not necessarily bounded at all—and u ∨M ¬Mu is not necessarily
its top.

The following examples show that De Morgan lattices may indeed differ a lot
from Boolean algebras:

Figure 1: Three Figure 2: Four

As you can read off from the way the complement function is defined in each of the
two examples, it is possible that a De Morgan lattice has members which are identical
to their own De Morgan complement. Let us call the De Morgan lattice in Figure 1
‘Three’ and the one in Figure 2 ‘Four’. According to a theorem in [9] every DeMor-
gan lattice is isomorphic to a sublattice of a product lattice of Four: thus this lattice
plays the same role for the variety of De Morgan lattices as the two-member Boolean
algebra for the variety of Boolean algebras.

Another interesting example of a De Morgan lattice—this time an infinite one—
is the compact interval [0, 1] with real number order and the complement function
¬Mu = 1 − u. If a De Morgan lattice is bounded we speak of a De Morgan algebra:
in this case we call the smallest element 0 and the largest element 1. Note that always
¬M0 = 1 and ¬M1 = 0.

1.2 De Morgan-valued models Next, we suggest to take the members of a De Mor-
gan lattice as candidates for values which are assigned to sentences. Of course, one
immediately thinks of such values as truth values, that is, values representing the truth
status of a formula. In Section 1.3 we will deal with such interpretations. But, at the
moment, let us consider a De Morgan-valued model just as a way to connect the struc-
ture of a first-order language to the structure of a De Morgan lattice: by the structure
of a language we mean its syntax, that is, that formulas are built from atomic formulas
by negation, conjunction, disjunction, universal, and existential quantification; by the
structure of a De Morgan lattice we mean its partial order and its complement func-
tion.

Let L be a first-order language corresponding to an alphabet AS consisting of
variables, the usual logical connectives and quantifiers, parentheses, and a symbol
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set S of n-ary predicates Pn
k (for n = 1, 2, . . .) and individual constants ci. Let

M = 〈M,�M,∧M,∨M,¬M〉 be a De Morgan lattice.

Definition 1.2 An M-valued S-model (a De Morgan-valued model) is a pair M =
〈D,I〉 such that

1. D is a nonempty set (the domain).
2. I is a function (the interpretation function) such that

(a) for every n-ary predicate P ∈ S: I(P) : Dn −→ M,

(b) for every constant c ∈ S: I(c) ∈ D.

Later, we will be interested in extending M-valued S-models M = 〈D,I〉 to other
De Morgan-valued models. In this context we will sometimes use the more compli-
cated but somewhat more “transparent” notation,

M = 〈S,L,M, D,I, 〉

for models.
Variable assignments s are defined the same way as for classical models. If s is

an assignment, s d
x is the assignment identical to s, except that it maps x to d.

The sets of S-terms and S-formulas are defined inductively in the usual way. Ac-
cordingly, evaluations ValM,s are also defined inductively: of course, the values of
negations, conjunctions, and disjunctions are drawn back to complements, infima,
and suprema; the quantification cases are considered as (possibly) infinite conjunc-
tions and disjunctions.

Definition 1.3 If ϕ is an S-formula and x is a variable, then

1. ValM,s(∀xϕ) = infM{Val
M,s d

x
(ϕ)|d ∈ D};

2. ValM,s(∃xϕ) = sup
M

{Val
M,s d

x
(ϕ)|d ∈ D}.

When we say that the values of quantified formulas are given by the infima or suprema
of certain sets of values, we assume that these sets of values actually do have an infi-
mum or supremum in M! Of course, if we assume that M is finite or, more generally,
complete, then we will not get into trouble at this point; but such a restriction is by no
means necessary, since we only need that certain infinite infima and suprema exist:
those, which are given by quantification, that is, definable in L .

Important examples of De Morgan-valued models are, of course, those where M

is the smallest nontrivial Boolean algebra, that is, the algebra of classical truth values.
In this case classical models are back on stage again. If M is any Boolean algebra,
we are dealing with Boolean-valued models, which have, for example, been used to
prove independence results in set theory (see, e.g., Rosser [17]). If M is identical to
Three, the corresponding M-valued models are three-valued models the semantics
of which is given by the Strong Kleene scheme; and if M is identical to Four, we are
considering Belnap’s ‘useful four-valued logic’ [3]. As a final example, the compact
unit interval of the reals together with the complement function from above leads to
the infinitely-valued system S�

ℵ (we use the notation of Rescher [16], p. 344), which
is also known from fuzzy logic. The notion of a De Morgan-valued model is the result
of abstracting from all these examples.
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A further natural constraint on De Morgan algebras which are to be used for
De Morgan-valued models, is to demand some strengthening of finite distributivity
to a version of infinite distributivity. But this may turn out to be a rather strong re-
striction: if, for example, M is Boolean and completely distributive, then M may be
shown to be atomic (see Koppelberg [10], p. 215).

1.3 De Morgan-values considered as intensions In this section we will present
some ideas on how to interpret De Morgan-valued models properly. If we reconsider
our examples from above, we see that—with the exception of general Boolean-valued
models and S�

ℵ —all of them are finitely valued, and each value is usually interpreted
as a truth value: t and f as true and false, n as neither true nor false, b as both true
and false.

Now we are heading for an interpretation of an arbitrary De Morgan-valued
model: consequently, we cannot be sure that its corresponding De Morgan lattice is
finite; therefore it will no longer do to attach finitely many labels to the members of
the lattice, which denote some truth status. It is also very questionable, whether an
infinite De Morgan lattice allows any truth status interpretation at all: the only inter-
pretation of that kind I could think of is a probability or possibility interpretation; but
such an interpretation does not seem to make sense for an arbitrary De Morgan lattice
(though it does make sense for the compact real unit interval). Instead, in the context
of a De Morgan-valued model, I suggest to interpret the members of a De Morgan
lattice as intensional entities of a certain kind: as propositions. Let ϕ be a sentence
in L . Let u ∈ M. We say that ϕ expresses (the proposition) u, if ValM(ϕ) = u.

Propositions are sentence meanings. In the way I present them here, they are not
(necessarily) objects which have a structure in themselves—contrary to, for example,
Barwise [1], where propositions are considered as complex set theoretic objects; they
are just members of a lattice. On the other hand, because they are members of a lattice,
they share the De Morgan lattice structure: let u, v ∈ M; we say that u contains v, if
u �

M
v.

In possible world semantics, propositions are analyzed as sets of possible
worlds, ϕ expresses the very set of worlds where it is true and the relation of con-
tainment is defined by the subset relation. Something similar to a possible world se-
mantics may also be given for De Morgan-valued models. Consider the De Morgan
lattice M = 〈M,�,∧,∨,¬〉 with

1. M := X × X;
2. X is a ring of subsets of a fixed set X;
3. 〈U1, V1〉 � 〈U2, V2〉 if U1 ⊆ U2, V1 ⊇ V2;
4. 〈U1, V1〉 ∧ 〈U2, V2〉 = 〈U1 ∩ U2, V1 ∪ V2〉;
5. 〈U1, V1〉 ∨ 〈U2, V2〉 = 〈U1 ∪ U2, V1 ∩ V2〉;
6. ¬〈U, V〉 = 〈V,U〉.

Dunn [5] calls De Morgan lattices of this kind fields of polarities. He has shown that
every De Morgan lattice is isomorphic to such a field. Dunn’s theorem shows the
“degree of freedom” concerning complement functions one gains in De Morgan lat-
tices compared to Boolean algebras: in the latter for any U we have one and only one
V such that 〈U, V〉 ∈ M = B; in the former there may be many such sets V . More
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important, by Dunn’s theorem we know that there is also a possible worlds semantics
for De Morgan-valued models: it is just that a sentence now expresses a pair of world
sets; the first one is the set of worlds where ϕ is definitely true; the second one is the
set of worlds where ϕ is definitely false. The difference to classical possible worlds is
constituted by the fact that these two sets are neither necessarily disjoint nor do they
necessarily exhaust the set of all possible worlds.

Let us return to the language level. If ϕ expresses u, ψ expresses v, and u con-
tains v, we say that ϕ semantically implies ψ; that is, by the concept of containment on
the propositional level we also get a concept of semantical implication for sentences.
If two sentences express the same proposition, we call them semantically equivalent
or synonymous.

As we can see, De Morgan-valued models define some binary semantical impli-
cation relation on a language and they do this in a neat way. The resulting implication
relation has some of the properties one usually wants to have: for example, ϕ seman-
tically implies ϕ ∨ ψ; if ϕ semantically implies ρ and ψ semantically implies ρ, then
also ϕ ∨ ψ semantically implies ρ; ϕ t

x semantically implies ∃xϕ; and so on. Since
De Morgan lattices are distributive we also have that ϕ ∧ (ψ ∨ ρ) is semantically
equivalent to (ϕ ∧ ψ) ∨ (ϕ ∧ ρ). Moreover, ϕ is semantically equivalent to ¬¬ϕ,
¬(ϕ ∧ ψ) is semantically equivalent to ¬ϕ ∨ ¬ψ, and ¬∀xϕ is semantically equiva-
lent to ∃x¬ϕ. I have said that we usually want to have such properties when we think
of an implication relation. But do we really? This is, of course, a matter of taste; for
relevance logicians the properties above seem to be on entailment’s shopping list; for
the paraconsistent logician the possible absence of (ϕ ∧ ¬ϕ) semantically implying
ψ for arbitrary ψ is what she likes, since she does not want contradiction to spread
over the whole language; on the other hand, it is just this facet that is rather untenable
for the classical mathematician, who definitely wants to use his reductio ad absurdum:
what he could do, at least, is to consider a certain subclass of De Morgan-valued mod-
els, namely, Boolean-valued models. But for intuitionists, the law of double negation
makes De Morgan-valued models completely inadequate! In a nutshell, the class of
De Morgan-valued models is large enough to contain some interesting semantical im-
plication relations on languages. I am sure that there are many other ways of under-
standing De Morgan-valued models (some are discussed in Dunn [6]).

Note that, when we say that introducing De Morgan-valued models is a way
to define a semantical implication relation on a language, it is important to keep in
mind that such models do actually much more: they are semantical objects, that is,
they also relate language to a domain of entities! This is the main difference between
De Morgan-valued models and axiom systems for De Morgan-like implication; the
notion of a universe does not play a role for the latter, but it does for models.

1.4 Designation in De Morgan-valued models Nonclassical De Morgan-valued
models give us a much more fine-grained implicational structure than classical mod-
els do; indeed, from the viewpoint of semantical implication, classical models are
quite unacceptable, as one may easily see from the so-called paradoxes of material
implication.

However, contrary to classical models, we can no longer say which sentences are
evaluated as true and which sentences as false in a De Morgan-valued model. Worse,
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we have no semantical analogue to theories: we cannot say that some sentence is a
member of a theory while another is not.

In many-valued logic one usually solves this problem by taking a subset of the
set of truth values as the set of so-called designated truth values: if some sentence has
a designated truth value, we say that it is evaluated as true, else as false. In classical
possible world semantics something similar is done when a world is designated as
“the” real world. The natural way to define a set of designated values in a De Morgan-
valued model is given by the concept of a truth filter: let M = 〈S,L,M, D,I〉 be an
M-valued S-model.

Definition 1.4 Let TF be a proper filter in M (a truth filter). Let ϕ be a sentence
in L . We say that

1. ϕ is evaluated as true, if ValM(ϕ) ∈ TF ,
2. ϕ is evaluated as false, else.

The notion of a truth filter is used by many authors; probably among the earliest by
Belnap [2]: there truth filters had to be ultrafilters in De Morgan lattices. On the side
of languages, truth filters have characteristics quite similar to theories: for example,
if ϕ is evaluated as true, and ϕ semantically implies ψ, then ψ is also evaluated as true.
A word has to be said about our definition of ‘evaluated as false’: another possibility
of defining falsehood would have been to say that a sentence ϕ ∈ L is evaluated as
false if ValM(¬ϕ) ∈ TF . We leave the question to the reader, which definition is the
more appropriate (if any). From now on, if we speak of truth filters, we will restrict
ourselves to the definition given above. Thus no formula is both evaluated as true and
as false.

Since the filter property is still rather weak, we should think about ways to
strengthen it. In the literature we find three conditions that could be added (for
Boolean-valued models these three conditions coincide):

1. a truth filter should be prime, that is, u ∨M v ∈ TF if and only if u ∈ TF or
v ∈ TF ;

2. a truth filter should be maximal, that is, it is not properly contained in any other
proper filter;

3. a truth filter should be an ultrafilter, that is, for all u ∈ M it contains either u or
¬u, but not both.

Generally, it cannot be said which way of strengthening is “the” right one, since it is
not so clear what counts as “right”. Since De Morgan lattices are distributive, every
maximal filter is prime, and since the De Morgan complement obeys the De Morgan
rules, also every ultrafilter is prime. Therefore, we shall at least add the condition
of primeness to the definition of a truth filter. Note that De Morgan lattices do not
necessarily have maximal proper filters, whereas De Morgan algebras do. De Mor-
gan algebras do not necessarily have ultrafilters. But both De Morgan lattices and
De Morgan algebras always have prime filters.

If TF is a prime filter, conjunction and disjunction behave truth functionally as
they should. This is not necessarily so in the case of negation.

Concerning quantification it is natural to consider prime truth filters having the
following properties:
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1. ∀xϕ is evaluated as true if and only if for all assignments s, ValM,s(ϕ) ∈ TF .
2. ∃xϕ is evaluated as true if and only if there is an assignment s such that

ValM,s(ϕ) ∈ TF .

Of course, it would be enough to postulate just one of the two statements. If a truth fil-
ter has this property—which a prime filter does not necessarily have—also quantified
sentences will behave truth functionally as expected.

2 De Morgan-valued truth models and semantical paradoxes Now we want to
give an application of our concept of De Morgan-valued models: we will show that,
if languages are understood as interpreted by such models, they may contain their own
truth predicates.

2.1 De Morgan-valued truth models In his classical papers [18] and [19], Tarski
presents, essentially, the following account of truth. Let L1 be a language (= a set of
sentences) corresponding to a symbol set S1. Let L2 be a language corresponding to a
symbol set S2 such that S2 contains a unary predicate True (the truth predicate), there
is a partial surjection ps from the terms of S2 onto the sentences of L1, and S1 ⊆ S2,
that is, L1 is a sublanguage of L2. L1 is the object language, L2 the metalanguage.

Now we can define what a truth theory is: let T H be a first-order theory.

Definition 2.1 (Convention T) T H is a (classical) truth theory for L1 in L2 if

T H � True(t) ←→ ϕ

for all t, ϕ such that t is a term in S2 such that t is mapped to the sentence ϕ ∈ L1 by
ps (thus, Convention T is actually relativized to the stipulated ps).

Thus, according to Tarski, True(t) should (materially) imply the sentence ϕ, and vice
versa.

Now we want to use Definition 2.1 as a guide which is to lead us to an intu-
itively plausible notion of a De Morgan-valued truth model, that is, a De Morgan-
valued model which interprets the truth predicate in a plausible way. First of all, we
suggest to replace the mapping ps from above by the interpretation mapping I of a
De Morgan-valued model such that ps(t) = ϕ if and only if I(t) = ϕ. Secondly, we
have to “put” the T-biconditionals of Definition 2.1 into the context of De Morgan-
valued models. This can be done in various ways. One obvious way is to demand that
True(t) and ϕ should be semantically equivalent in every De Morgan-valued truth
model. Call this the implication reading of Convention T.

Another possible reading of Convention T in this context is the truth reading:
True(t) and ϕ should either both be evaluated as true or both of them as false in a
De Morgan-valued truth model. In classical models, the implication and the truth
reading coincide; in De Morgan-valued models the latter reading corresponds to say-
ing that the values of True(t) and ϕ should either both be members of the given truth
filter or not (recall Section 1.4): this is something completely different compared to
the first reading! But, of course, if True(t) and ϕ semantically imply each other, they
are also either both members of the truth filter or not: that is, the implication reading
implies the truth reading, but not necessarily vice versa! This is another reason why
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we will basically be interested in the semantical implication reading of Convention
T.

A third possible reading of Convention T in the light of general De Morgan-
valued models is the biconditional reading: the sentence True(t) ←→ ϕ should be
evaluated as true, that is, its value should be a member of the truth filter. But what is
True(t) ←→ ϕ? Now and in the following, we will understand ϕ ←→ ψ as short for
(ϕ −→ ψ) ∧ (ψ −→ ϕ) where ϕ −→ ψ is a metalinguistic abbreviation of ¬ϕ ∨ ψ.
The problem with this reading is that, if True(t) ←→ ϕ is evaluated as true, this does
not necessarily entail that True(t) and ϕ semantically imply each other; correspond-
ing counterexamples are easily constructed. Put differently, the connective −→ as
defined above does not in general represent the metalinguistic ‘�’ in the object lan-
guage, as it does in the classical case. Of course, one could introduce such a connec-
tive in the object language, and we could correspondingly extend De Morgan algebras
by a component used for the interpretation of this new connective (e.g., we might con-
sider Heyting algebras with De Morgan complement). But note that this could have a
negative effect on the general existence of truth models (e.g., in the Heyting algebra
approach we might suffer from the Curry-Löb paradox). Therefore, we neglect the
biconditional reading of Convention T in our considerations.

Since Tarski’s efforts we know that if L1 = L2 = LTrue, that is, in the extreme
case where a language contains its own truth predicate, there is generally no clas-
sical truth model for LTrue in LTrue. The reason for this is that LTrue may contain
self-referent sentences. Not all of them are necessarily vicious, but some definitely
are: the classical example is the so-called Liar sentence, which says about itself that
it is not true. Intuitively, the Liar is true if and only if it is not. But, of course, this is
impossible in a classical truth model. Languages that contain their own truth predi-
cate or that are rather supposed to contain it, have been called semantically closed by
Tarski.

Starting with Martin [13] and Kripke [11] in the mid seventies, we perceive an
avalanche of publications which show that semantically closed languages indeed ex-
ist, if only the underlying classical semantics is altered. Among these new approaches
we also find existence results for truth models, the truth values of which are mem-
bers of a lattice, though these models are no longer Boolean-valued: examples are
Kripke’s Strong Kleene-valued truth models and Woodruff’s [22] and Visser’s [20]
Belnap-valued truth models. As we have seen before, both of these models are ac-
tually De Morgan-valued; and indeed, in Kripke’s and Woodruff’s/Visser’s accounts
Convention T is understood in the implication reading. The concepts and results we
present below, and which have been stimulated by these famous predecessors, are ex-
tensions of these accounts. Particularly, Kalman’s theorem cited on p. 497 sheds some
light on Woodruff’s/Visser’s existence result for truth models with a semantics based
on Four: it indicates that an analogous existence result should be derivable for all
De Morgan-valued models; however, we will prove existence later without making
use of Woodruff’s/Visser’s or Kalman’s theorems.

Let us now introduce our notion of a De Morgan-valued truth model: let L1 and
L2 be as above.

Definition 2.2 We call an M
∗-valued S2-model M∗ = 〈S2,L2,M

∗, D∗,I∗〉 a (De Morgan-
valued) truth model for L1 in L2 if
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1. D∗ ⊇ L1;
2. for all ϕ ∈ L1 there is a constant t in S2, such that I∗(t) = ϕ;
3. for all ϕ ∈ L1 and all constants t with I∗(t) = ϕ,

ValM∗ (True(t)) = ValM∗ (ϕ).

The point of this definition is to postulate that True(t) should express the same propo-
sition as ϕ if I∗(t) = ϕ. Note that we use the notation ‘∗’ because we want to extend
models M to truth models M∗ later. The object language is a subset of the domain
of the truth model, since we want to talk about properties of sentences in the truth
model. An alternative would have been to use some objects in the domain, for exam-
ple, natural numbers, as codes of sentences; but we refrain from this strategy here for
the sake of simplicity.

Since L1 = L2 seems to be the problematic case concerning the existence of truth
models, we will concentrate on such truth models. Let LTrue = L1 = L2. The question
is: Are there truth models for LTrue in LTrue? Surely, we do not only want to give
instances of such truth models but we want to show a general existence result; to do
so we have to introduce yet another notion: De Morgan-valued truth extensions.

2.2 De Morgan-valued truth extensions We are going to present a “natural” class
of truth models: the idea is to start with a ground model, that is, a model of a lan-
guage L without truth predicate, and just as we extend L syntactically to a language
LTrue with truth predicate, we extend the ground model semantically to a truth model.
Consequently, this truth model is called an extension of the ground model:

Definition 2.3 By a truth extension of an M-valued S-model M = 〈S,L,M, D,I〉
we mean an M

∗-valued STrue-truth model M∗ = 〈STrue,LTrue,M
∗, D∗,I∗〉 such that

1. S ⊆ STrue, L is a sublanguage of LTrue;
2. M is a sublattice of M

∗;
3. D ⊆ D∗;
4. for all constants c in S, I∗(c) = I(c),

for all n-ary predicates P in S, I∗(P) �Dn≡ I(P);
5. for all ϕ ∈ L : ValM(ϕ) = ValM∗ (ϕ).

We call M a ground model (for the ground language L).

Remark 2.4 The transition from a ground model to a truth model by truth exten-
sion is the generalization of a common procedure in the literature; it should not be
mistaken for some transition from object- to metalanguage: we want to emphasize
again that LTrue functions as object- and metalanguage at the same time. The most im-
portant point regarding this transition is that all semantical implications in the ground
model are preserved in the truth extension and no semantical implications between
sentences in the ground language are “added” in the transition.

Remark 2.5 If a truth filter TF is associated with the ground model M it is plausi-
ble to add a truth filter TF ∗—if possible—to the truth model M∗ which satisfies the
following condition: TF ∗ ∩ M = TF . This means ϕ ∈ L is evaluated as true/false in
the ground model M if and only if it is evaluated as true/false in the truth extension
M∗.
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2.3 The existence of De Morgan-valued truth extensions The basic question is
now: Given some ground model, is there a truth extension? First we will describe
what the ground models we want to extend should look like; afterward we will show
that they can be extended to truth models.

2.3.1 Our ground models M One peculiar property of the ground models which
we will use is that they are already “prepared” to be extended to truth models, in the
sense that they already contain LTrue in their domain. But, of course, this is no real
restriction: otherwise we would embed the ground model into one with this property.
To make things more readable, we will furthermore assume that LTrue contains quo-
tation marks, that is, if ϕ is a sentence in LTrue then �ϕ� is a term.

Let S = STrue\{True}. Moreover, let C T = C TSTrue be the set of constant terms,
T = TSTrue the set of terms, F = FSTrue the set of formulas. Finally, let L = {ϕ ∈
LTrue|if True occurs in ϕ, it occurs under quotation marks}.

This is what our ground models look like:

1. Let M = 〈S,L,M, D,I〉 with

(a) D ⊇ LTrue,

(b) for all ϕ ∈ LTrue: I(�ϕ�) = ϕ.

2. Moreover, we assume that for every u ∈ M there is a ϕ ∈ L such that
ValM(ϕ) = u. This property says that M is already “covered” by the values
of sentences. This is fulfilled if, for example, M is the Boolean algebra with
two members; moreover, if each member in the domain has an individual con-
stant as its name, one can simply take {ValM(ϕ)|ϕ ∈ L} as “new” lattice M

which has our desired property.
3. Prime Filter Property For all formulas ∃xϕ in F and all prime filters PF of

M we assume that
ValM(∃xϕ) ∈ PF

if and only if there is an assignment s such that ValM,s(ϕ) ∈ PF . This is kind
of a technical property; the restriction to ground models of this kind is severe,
but it still includes enough interesting cases.

If M has the property that for all X ⊆ M, for all prime filters PF of M we have that
sup(X) ∈ PF if and only if some member of X is contained in PF , then a model
based on M has the prime filter property a fortiori (in such a case, we might say that M

has the full prime filter property; this was suggested to us by an anonymous referee).

Example 2.6 If M satisfies the ascending chain condition (and thus, by De Morgan
properties, the descending chain condition), in particular, if M is finite, then M has
the full prime filter property. For example, the De Morgan algebra with eight mem-
bers, which is referred to as M0 in Dunn ([5], p. 198), plays an important role for the
algebraic semantics of Relevance Logic; since M0 is finite, it satisfies, of course, the
full prime filter property.

Example 2.7 Let M be a subalgebra of the compact unit interval such that M =
{ 1

2n |n ∈ N0} ∪ {1 − 1
2n |n ∈ N0}. M is a complete De Morgan algebra. Now let M
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be a ground model such that for all predicates P, XP = {u ∈ M|∃〈d1, . . . , dn〉 ∈
Dn such that I(P)(d1, . . . , dn) = u} has the property that (i) if there is a sequence
of members of XP which approach 1, then 1 ∈ XP and (ii) if there is a sequence of
members of XP which approach 0, then 0 ∈ XP. It is easy to see that in this case M

has the prime filter property.

Example 2.8 If M is Boolean, it may be embedded into a Boolean algebra which
has the full prime filter property (this may be done by a kind of Henkin extension; see
Lemma 56 in Leitgeb [12]).

On the other hand, for example, the compact unit interval [0, 1] does not have the full
prime filter property.

Remark 2.9 Note that in the ground model we may also have any (interpreted) syn-
tactical theory of any strength and expressiveness you want: there may be predicates
the interpretation of which is ‘ρ is the conjunction of ϕ and ψ’ or ‘ϕ is what you get
when you substitute t for x in ψ’ and so on.

If our ground model satisfies these three conditions, it may be shown to have a truth
extension.

2.3.2 The existence theorem

Theorem 2.10 For any M-valued S-model M = 〈S,L,M, D,I〉 satisfying prop-
erties 2.3.1 (1) – (3) from above there is a truth extension

M
∗ = 〈STrue,LTrue,M

∗, D,I∗〉.

Remark 2.11 Actually, we will show more: there is always a truth extension with
the properties

1. M
∗ is a complete De Morgan algebra,

2. if M is a De Morgan algebra, bottom and top of M and M
∗ coincide.

Proof of Theorem 2.10: The plan of the proof is the following. We extend M to its
diagram expansion. Then we will basically embed the resulting model into one which
is defined over a complete field of polarities, of which M is a sublattice. Note that this
will need some kind of “cosmetic” procedure: if we had defined truth extensions dif-
ferently, it would have been enough, if M were just isomorphic to a sublattice of M

∗.
In this latter model we will study the possible interpretations of the truth predicate; we
choose one which is a fixed interpretation under some appropriately defined “jump”
operation: such an interpretation will be an adequate interpretation of the truth pred-
icate. Its existence is ensured by the Knaster-Tarski Fixed Point Theorem. The theo-
rem may be applied, although, for example, negation does not give rise to monotonic
jump operators per se: but first, odd number occurences of the negation sign may be
eliminated over De Morgan-valued models, and second, an atomic sentence and its
negation are not so “tightly” related as in Boolean-valued models, indeed, they may
be considered independently; this additional degree of freedom is enough to prove
existence of a truth extension. Put in a different way, truth may be defined by a pos-
itive inductive definition in De Morgan-valued models; for more on such inductive
definitions see, for example, McGee [14], Chapter 5.
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1. First, we extend M = 〈S,L,M, D,I〉 to the diagram expansion M1 =
〈S1,L1,M, D,I1〉; that is, add individual constants for each member of D and
interpret them in the obvious way such that each member of the domain is de-
noted by a constant; what we get is S1 ⊇ S, L1 ⊇ L , and I1 is an extension of
I. It follows that quantification may now be understood substitutionally, since
every member of the domain has a name. M1 is still a model since no new de-
finable sets of values in M are introduced by adding the constants. It follows
that for all ϕ ∈ L , ValM(ϕ) = ValM1

(ϕ).
2. Let u ∈ M. Then we define

PF (u) := {X ⊆ M

∣∣∣∣ (i) u ∈ X,
(ii) X is a proper prime filter

}
.

3. From Stone’s Representation Theorem for distributive lattices we know that
PF considered as a mapping

PF : M −→ {PF (u)|u ∈ M}
u �−→ PF (u)

is an isomorphism from M onto the lattice 〈{PF (u)|u ∈ M},⊆,∩,∪〉. Note
that if M is a De Morgan algebra, its bottom is mapped to ∅ by PF and its top
to the set of all proper prime filters of M.

4. Since PF is an isomorphism and quantification in M1 is substitutional, we have
(let C T 1 = C T S1 )

PF (ValM1
(∃xϕ)) = PF (sup{ValM1

(ϕ
t
x
)|t ∈ C T 1})

= sup{PF (ValM1
(ϕ

t
x
))|t ∈ C T 1} (because the prime

filters in M have the prime filter property)

=
⋃

t∈C T 1

PF (ValM1
(ϕ

t
x
)).

Similarly, PF (ValM1
(∀xϕ)) = ⋂

t∈C T 1
PF (ValM1

(ϕ t
x )), since for any prime

filter F, for all definable sets X ⊆ F, it holds that inf X ∈ F. This follows from
the prime filter property by applying it to the set-complement (¬F)C of the set
¬F of complemented values of F ((¬F)C is also a prime filter).

5. In the following we will denote the set {X ⊆ M|X is a proper prime filter} by
‘Pr(M)’. Let M2 = 〈M2,�2,∧2,∨2,¬2〉 be the field of polarities where

M2 := ℘(Pr(M)) × ℘(Pr(M)).

Obviously, M2 is complete and for A ⊆ M2,

inf A =
〈 ⋂

〈U,V〉∈A

U,
⋃

〈U,V〉∈A

V

〉
, sup A =

〈 ⋃
〈U,V〉∈A

U,
⋂

〈U,V〉∈A

V

〉
.

6. Let L := 〈℘(Pr(M)),⊆,∩,∪〉. L is a complete lattice. We will need that
⋂

and
⋃

are monotone on L , that is, if {U j| j ∈ J}, {Vj| j ∈ J} are families of
subsets of Pr(M) with U j ⊆ Vj, where J is an arbitrary set of indices, it follows
that

⋂
j∈J U j ⊆ ⋂

j∈J Vj and
⋃

j∈J U j ⊆ ⋃
j∈J Vj.
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7. Let G = {g|g : LTrue −→ ℘(Pr(M))}. Let g1 �G g2 if for all ϕ ∈ LTrue:
g1(ϕ) ⊆ g2(ϕ). G with �G is a complete lattice because L is.

8. Let L ′ = L ′
S ′ , where S ′ := S1 ∪ {True}.

9. Moreover, we fix some member A0 of ℘(Pr(M)).
10. Now we define inductively a family of functions hg : L ′ −→ ℘(Pr(M)), each

relative to some g ∈ G.

(a) For atomic ϕ, with ϕ ∈ L1,

hg(ϕ) := PF (ValM1
(ϕ)).

(b) For atomic ϕ, with ϕ = True(t),

hg(ϕ) :=
{

g(ψ) if I1(t) = ψ for ψ ∈ LTrue,
A0 else.

(c) For ¬ϕ, with ϕ atomic and ϕ ∈ L1,

hg(¬ϕ) := PF (ValM1
(¬ϕ)).

(d) For ¬ϕ, with ϕ atomic and ϕ = True(t),

hg(¬ϕ) :=
{

g(¬ψ) if I1(t) = ψ for ψ ∈ LTrue,
A0 else.

(e) hg(ϕ ∧ ψ) := hg(ϕ) ∩ hg(ψ), hg(ϕ ∨ ψ) := hg(ϕ) ∪ hg(ψ).

(f) hg(¬(ϕ ∧ ψ)) := hg(¬ϕ ∨ ¬ψ), hg(¬(ϕ ∨ ψ)) := hg(¬ϕ ∧ ¬ψ).

(g) hg(∀xϕ) := ⋂
t∈C T 1

hg(ϕ
t
x ), hg(∃xϕ) := ⋃

t∈C T 1
hg(ϕ

t
x ).

(h) hg(¬∀xϕ) := hg(∃x¬ϕ), hg(¬∃xϕ) := hg(∀x¬ϕ).

(i) hg(¬¬ϕ) := hg(ϕ).

Since the value of hg(ϕ) is either directly set or drawn back to some value(s)
hg(ψ) such that ψ has smaller rank than ϕ, the definition of hg is sound.

11. Next we define a family of M2-valued models Mg of L ′. Let Dg := D. Let Ig

be an interpretation function such that

(a) Ig(t) := I1(t);

(b) [Ig(P)](d0, . . . , dn−1) :=
〈PF ([I1(P)](d0, . . . , dn−1)),PF (¬[I1(P)](d0, . . . , dn−1))〉;

(c) [Ig(True)](d) :=
{ 〈g(d), g(¬d)〉 if d = ϕ for ϕ ∈ LTrue,

〈A0, A0〉 else.

Thus, Mg = 〈S ′,L ′,M2, D,Ig〉. Each Mg is defined relative to some g ∈ G.
All infima and suprema arising from ValMg exist in M2 since M2 is complete.

12. It follows from the definition of Mg that for all ϕ ∈ L ′,

ValMg (ϕ) = 〈hg(ϕ), hg(¬ϕ)〉.

The proof is by standard induction. We use the definitions of hg and M2, and
that Ig and I1 do not differ on terms.

13. Furthermore, it follows (again by standard induction) from the definition of Mg

that for all ϕ ∈ L1,

ValMg (ϕ) = 〈PF (ValM1
(ϕ)),PF (ValM1

(¬ϕ))〉.
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14. Thus, for all ϕ, ψ ∈ L1,

ValM1
(ϕ) � ValM1

(ψ) iff ValMg (ϕ) �2 ValMg (ψ).

For the proof, use (13) contraposition, and the fact that PF is an isomorphism.
This means that the sublattice {ValMg (ϕ)|ϕ ∈ L1} of M2 is isomorphic to M

via the isomorphism f (ValMg (ϕ)) = ValM1
(ϕ). Note that f is onto because

M is “covered” by the values ValM1
(ϕ) = ValM(ϕ) of sentences ϕ ∈ L ⊆ L1.

15. Let M
′
2 be the lattice you get when you replace {ValMg (ϕ)|ϕ ∈ L1} in M2 by

M via an isomorphism f ′ : M2 −→ M
′
2 with f ′ �{ValMg (ϕ)|ϕ∈L1}≡ f . M is a

sublattice of M
′
2; by (13) the bottom and the top of M and M

′
2 coincide.

16. Now, we “redefine” our model Mg in a way that its associated lattice is
M

′
2 ⊇ M: let D′

g := D; let I′
g(t) := I1(t), [I′

g(P)](d0, . . . , dn−1) :=
f ′([Ig(P)](d0, . . . , dn−1)), [I′

g(True)](d) := f ′([Ig(True)](d)).
M′

g = 〈S ′,L ′,M
′
2, D,I′

g〉 is a model. Each M′
g is defined relative to some

g ∈ G.
17. It follows immediately that for all ϕ ∈ L ′,

ValM′
g
(ϕ) = f ′(ValMg (ϕ)).

18. This implies for all ϕ ∈ L , ValM′
g
(ϕ) = ValM(ϕ), since for all such ϕ we have

ValM′
g
(ϕ) = f ′(ValMg (ϕ)) = f (ValMg (ϕ)) = ValM1

(ϕ) = ValM(ϕ).

We have used (17), (15), and (1).
19. Let g1, g2 ∈ G with g1 �G g2. This implies that for all ϕ ∈ L ′, hg1 (ϕ) ⊆ hg2 (ϕ).

Proof: This is easily shown by induction.

(a) For atomic ϕ, with ϕ ∈ L1, hg1 (ϕ) = PF (ValM1
(ϕ)) = hg2 (ϕ).

(b) For atomic ϕ, with ϕ = True(t),

hg(ϕ) =
{

g(ψ) if I1(t) = ψ for ψ ∈ LTrue,
A0 else,

but since g1(ψ) ⊆ g2(ψ) by assumption and A0 ⊆ A0, hg1 (ϕ) ⊆ hg2 (ϕ).

(c) For ¬ϕ, with ϕ atomic and ϕ ∈ L1,

hg1 (¬ϕ) = PF (ValM1
(¬ϕ)) = hg2 (¬ϕ).

(d) For ¬ϕ, with ϕ atomic and ϕ = True(t),

hg(¬ϕ) =
{

g(¬ψ) if I1(t) = ψ for ψ ∈ LTrue,
A0 else,

but since g1(¬ψ) ⊆ g2(¬ψ) by assumption and A0 ⊆ A0,

hg1 (¬ϕ) ⊆ hg2 (¬ϕ).

(e) For all further cases use what we said in (6). �
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20. Now let J : G −→ G

[J(g)](ϕ) := hg(ϕ)

for all ϕ ∈ LTrue. In the literature such a function J is often called a “Jump”.
21. J is monotone on G since, if g1, g2 ∈ G with g1 �G g2, according to (19)

it holds that for all ϕ ∈ L ′, hg1 (ϕ) ⊆ hg2 (ϕ). Therefore, also for all ϕ ∈
LTrue, [J(g1)](ϕ) = hg1 (ϕ) ⊆ hg2 (ϕ) = [J(g2)](ϕ). That is, J(g1) �G J(g2).

22. Since G is complete and J is monotone on G, it follows from the Knaster-Tarski
Fixed Point Theorem (see, e.g., Hermes [8]) that there is a function g∗ such that
J(g∗) = g∗.

23. This implies

(a) For all ϕ ∈ LTrue, [J(g∗)](ϕ) := hg∗ (ϕ), according to the definition of J.
(b) For all ϕ ∈ LTrue, [J(g∗)](ϕ) := g∗(ϕ), since g∗ is a fixed function under

J.
(c) Therefore, for all ϕ ∈ LTrue, hg∗ (ϕ) := g∗(ϕ).
(d) Put together, we have for Ig∗ (t) = I1(t) = ψ with ψ ∈ LTrue,

ValM′
g∗ (True(t)) = [I′

g∗ (True)](I′
g∗ (t)), according to definition,

= f ′([Ig∗ (True)](Ig∗ (t)))

= f ′(〈g∗(I1(t)), g∗(¬I1(t))〉),
according to what we have just seen,

= f ′(〈hg∗ (ψ), hg∗ (¬ψ)〉), since (12) holds,

= f ′(ValMg∗ (ψ)), because of (17),

= ValM′
g∗ (ψ).

24. If we now only look at STrue instead of S ′ and, respectively, at LTrue instead
of L ′, we have that there is a truth extension M∗ = 〈STrue,LTrue,M

∗, D,I∗〉,
where

(a) M
∗ := M

′
2,

(b) I∗ := I′
g∗ �STrue .

Proof: First we have two remarks.

Remark 2.12 For all ϕ ∈ LTrue, ValM′
g∗ (ϕ) = ValM∗ (ϕ). This is true, be-

cause ValM′
g∗ ,s(ϕ) = ValM∗,s(ϕ) for all atomic formulas ϕ ∈ FTrue and all as-

signments s in M′
g∗ and M∗ (M′

g∗ and M∗ have the same domain), and by in-
duction, for all formulas ϕ ∈ FTrue and all assignments. For example, in the
case of ϕ = ∀xψ ∈ FTrue,

ValM′
g∗ ,s(∀xψ) = infM′

2
{Val

M′
g∗ ,s d

x
(ψ)|d ∈ D}, by inductive hypothesis,

= infM′
2
{Val

M∗,s d
x
(ψ)|d ∈}

= infM∗{Val
M∗,s d

x
(ψ)|d ∈ D∗}

= ValM∗,s(∀xψ).
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Remark 2.13 For all ϕ ∈ L , ValM(ϕ) = ValM∗ (ϕ). The reason for this is
that for all ϕ ∈ L , ValM(ϕ) = ValM′

g∗ (ϕ) because of (18), and ValM∗ (ϕ) =
ValM′

g∗ (ϕ), as we have seen in Remark 2.12.

Now we know that M∗ is a truth model, since for all ϕ ∈ LTrue and all constants
t with I∗(t) = ϕ

ValM∗ (True(t)) = ValM′
g∗ (True(t)) = ValM′

g∗ (ϕ) = ValM∗ (ϕ). �

We have used Remark 2.12 again and proof item 23. Finally, this implies that
M∗ is a truth extension of M. This completes the proof of Theorem 2.10. �

Corollary 2.14 For any Boolean-valued model there is a truth extension.

For the proof of Corollary 2.14, extend the given Boolean-valued model to one with
the prime filter property (recall Example 2.8) and use Theorem 2.10. Corollary 2.14 is
thus an instance of a possible application of Theorem 2.10 and it also eases the burden
a little bit constituted by the fact that we have to assume ground models which satisfy
the prime filter property.

Remark 2.15 If M is a ground model satisfying (1) – (2) from Section 2.3.1, such
that M is complete and atomic, then we can prove the existence of a truth extension
of M without making use of the Stone mapping PF , but rather by using the mapping
AT such that AT (u) := {v ∈ M|v �M u, v is an atom} (see Koppelberg [10], pp. 29–
30); in this case we take ℘(At(M)) × ℘(At(M)) to be our field of polarities, where
At(M) is the set of atoms in M.

2.3.3 Designation in De Morgan-valued truth extensions As explained at the end
of Section 1.4, a truth filter TF ∗ may be added to the truth extension in order to get
some notions of evaluated as true and evaluated as false. We will show that, if M

is a De Morgan algebra, any maximal truth filter TF (given with the ground model
M) may be extended to a maximal truth filter TF ∗ such that TF ∗ ∩ M = TF . As-
sume that M is a De Morgan algebra and that TF is maximal in M. Take the filter
in M

∗ which is generated by TF ; obviously this filter is proper, because otherwise
TF would not have been proper in M. Furthermore, the intersection of the generated
filter with M is a filter of M, which cannot be larger than TF ; that is, it is identical
with TF .

Since M
∗ has a bottom, we can even extend the generated filter to a maximal

truth filter, which is prime, because M
∗ is distributive. The intersection of this maxi-

mal filter with M is a proper filter of M, because otherwise it would include the bottom
of M, which is by Theorem 2.10 also the bottom of M

∗, and then the maximal filter
would not be proper in M

∗. It cannot be larger than TF since the latter is maximal by
assumption. Thus, we know that TF ∗ is some maximal prime truth filter extending
TF .

Do we also know whether TF ∗ will preserve all infima and suprema given by
quantification in LTrue? Generally: no. However, since TF is prime it preserves all
infima and suprema arising from quantification in L because of the Prime Filter Prop-
erty; the same must hold for TF ∗ regarding quantification in L . If we additionally
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assume that M is itself a field of polarities of the kind used in our proof we see from
the proof of Theorem 2.10 that we also can assume M

∗ = M and then TF ∗ = TF
preserves all infima and suprema given by quantification in LTrue.

Since ValM∗ (True(�ϕ�)) = ValM∗ (ϕ) for all ϕ ∈ LTrue it follows that

1. For all ϕ ∈ LTrue, ϕ is evaluated as true if and only if True(�ϕ�) is evaluated
as true.

2. For all ϕ ∈ LTrue, ϕ is evaluated as false if and only if True(�ϕ�) is evaluated
as false.

That means that if we look at the interpretation of the truth predicate we may deduce
whether some formula ϕ is evaluated as true: this is the case if and only if True(�ϕ�)

is evaluated as true. Therefore we can conclude that our De Morgan-valued truth ex-
tension M∗ satisfies Tarski’s Convention T both in the implication and in the truth
reading.

2.3.4 Example Now, what does this mean for the Liar sentence? Let M =
〈S,L,M, D,I〉 such that I(c1) = ¬True(c1). Then we know a truth model M∗ =
〈STrue,LTrue,M

∗, D,I∗〉 exists such that for all ϕ ∈ LTrue and all constants t with
I(t) = ϕ

ValM∗ (True(t)) = ValM∗ (ϕ).

In the case of the Liar this implies

ValM∗ (True(c1)) = ValM∗ (¬True(c1)) ( = ¬M∗ ValM∗ (True(c1))).

Thus, the Liar and its negation are semantically equivalent in De Morgan-valued truth
extensions since they express the same proposition. Note that whether the Liar is
evaluated as true or false depends on which truth filter TF ∗ is chosen. But, in any
case, the Liar is evaluated as true/false if and only if its negation is evaluated as
true/false. This corresponds to the intuition that the Liar should be true if and only
if the same holds for its negation.

3 Summary We have shown that a language, if understood as given by a De Morgan-
valued model, may indeed contain its own truth predicate. On the technical side, the
most relevant open question is whether the Prime Filter Property from Section 2.3.1
can be weakened, and thus whether a more general result could be obtained.

A different question is how to interpret our result: it is clear that our proof only
works because negation is a much weaker notion in De Morgan-valued models than
in classical models, or, more generally, in Boolean-valued models. As a consequence,
the metalinguistic semantical implication relation between sentences of the object
language is no longer represented in the latter by some composition of logical con-
nectives, contrary to classical and, in some sense, also Boolean-valued models. From
this point of view, we have only shifted the problems connected to semantically closed
languages: from the unrepresentability of truth to the unrepresentability of semanti-
cal implication (a similar point has already been made by Gupta [7], pp. 91–104). It
needs a separate paper to investigate this in more detail.

As you may have noted, all our efforts have a certain algebraic flavor: indeed,
you may see this paper as a kind of advertisment to deal with problems of truth and
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self-reference in an algebraic mood. Of course, this conception is not new at all, since,
for example, Visser’s contributions to this area are basically algebraic in style (see
Visser [21]). The nomenclature and concepts developed in this paper up to Section 2.3
are general enough to be applicable to many kinds of lattice-valued models, where a
complement function is associated with the lattice, and not just to De Morgan-valued
models. In particular, our notions of a truth model and a truth extension do not contain
any trace of De Morgan structure at all. By the means of our background theory it is
therefore also possible to ask for which other algebraic structures existence or non-
existence of truth extensions may be proved, and which (necessary and/or sufficient)
criteria can be found for such results.
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