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ABSTRACT. In this article we are concerned with the following Choquard

equation
o*
—Au = Au|?T2u + (/ [uly)l dy) lul? 724, u>0, ing,
Q lz—yl»
u=0 on 09,

where Q is an open bounded set with continuous boundary in RN (N > 3),
2}, = (2N —p)/(N —2) and q € [2,2*) where 2* = 2N/(N —2). Using
Lusternik—Schnirelman theory, we associate the number of positive solu-
tions of the above problem with the topology of 2. Indeed, we prove that
if X < A1, then problem has catn () positive solutions whenever g € [2,2*)
and N >3 or4<g<6and N =3.
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1. Introduction

The purpose of this article is to study the existence and multiplicity of solu-
tion of the following Choquard equation

g
—Au:/\uq_zu—i-(/wwd)u
(Px) o oz — g |

u=20 on 092,

* .
272y, uw>0, inQ,

where € is an open bounded set with continuous boundary in RY (N > 3),
2y, = (2N — p)/(N —2) and g € [2,2*) where 2* = 2N /(N — 2).

It is not unfamiliar that nonlinear analysis fascinates many researchers. In
particular, the study of elliptic equations is attractive both for theoretical pde’s
and real-world applications. There is an ample amount of literature regarding
the existence and multiplicity of solutions of the following equation:

(1.1) —Au = Nu|""2u+|u* "2u inQ, u=0 on 0.

In the pioneering work of Brezis and Nirenberg [7], authors studied the problem
(1.1) with ¢ = 2 for the existence of a nontrivial solution. Then many researchers
studied the elliptic equations involving Sobolev critical exponent in bounded
and unbounded domains. In [4], Bahri and Coron studied the problem (1.1)
in case of A = 0 and proved the existence of a positive solution when € is not
a contractible domain using homology theory. Subsequently, Rey [27] studied
critical elliptic problem (1.1) for ¢ = 2 and proved that there exist at least
catq () solutions in H} () whenever \ is sufficiently small. We cite e.g. [5], [6],
[11], [2], [31] for issues on the existence and multiplicity of solutions of elliptic
problems using variational methods, with no attempt to provide the complete
list. In the framework of the fractional Laplacian, the effect of topology on the
number of solutions of problems was discussed in [13], [14] and references therein.

Currently, nonlocal equations appealed a substantial number of researchers,
especially the Choquard equations. The work on Choquard equations was started
with the quantum theory of a polaron model given by S. Pekar [26] in 1954. After
that in 1976, in the modeling of a one component plasma, P. Choquard [22] used
the following equation with u =1, p=2and N = 3:

1
(1.2) —Au+u= <|“ * |u|p> lulP~2u  in RV,
x

For =1, p =2and N = 3, Lieb [22] proved existence, uniqueness of the ground
state solution of (1.2) by using symmetric decreasing rearrangement inequalities.
With the help of variational methods, Moroz and Schaftingen [24] established
the existence of least energy solutions of (1.2) and prove properties about the
symmetry, regularity, and asymptotic behavior at infinity of the least energy
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solutions. For interested readers, we refer [3], [9], [10], [25] and references therein
for the work on Choquard equations.

The Hardy-Littlewood—Sobolev inequality (2.1) plays a significant role in the
variational formulation of Choquard equations. Observe that the integral

//Iu )| u(y) d i
\w*yl“

is well defined if (2N — p)/N < ¢ < (2N — p)/(N —2) = 2. Choquard equa-
tions involving Hardy-Littlewood-Sobolev critical exponent (that is, ¢ = 2j)
provoke the interest of the mathematical community due to the lack of compact-
ness in the embedding

HY(Q) > u s [l ul* e L' (Qx Q).
|z —yl
In [15], authors used variational methods to prove the existence and multiplicity
of positive solutions for the critical Choquard problem involving convex and
convex-concave type nonlinearities.
In this spirit, recently in [21] Goel, Radulescu and Sreenadh, studied the
Coron problem for Choquard equation and proved the existence of a positive

high energy solution of the following problem

—Au = ( [uly)l™ )P dy)|u|2 2y in Q, u=0 on 09,
|z —yl

where Q is a smooth bounded domain in RN (N > 3), 2% = (2N — u)/(N — 2),

0 < pu < N and satisfies the following conditions: There exists constants 0 <

R1 < Ry < oo such that

{zeRV R <|z|<R}cCQ  {zeRV:jz[<Ri} g

In [18] Ghimenti and Pagliardini studied the following slightly subcritical Cho-
quard problem

pE
(1.3) —Au — I = (/ luly)l dy) lu[P=2u in Q, u=0 on 99,
Qlz—yl»

where € > 0, € is a regular bounded domain of RN, A > 0 and p. = 2;,—¢. Here
authors proved that there exists € > 0 such that for every ¢ € (0,Z], Problem
(1.3) has at least catq(2) low energy solutions. Moreover, if € is not contractible,
there exists another solution with higher energy.

Motivated by all these, in this paper, we study the existence of multiple so-
lutions of the problem (P). Since the geometry of the domain plays an essential
role, here we proved that the topology of the domain yields a lower bound on the
number of positive solutions. More precisely, we show that the problem (P)) has
at least catq(Q2) solutions. Here catq(€2) is the Lusternik—Schnirelman category
defined as follows



754 D. GoEL

DEFINITION 1.1. Let X be a topological space and Y be a closed set in X.
Then

Catx(Y) = min {k € N : there exist closed subsets Y7,...,Y, C X

k
such that Y; is contractible to a point in X for all j and U Y, = X}.

j=1
In order to achieve our aim, we used the fact that Lusternik—Schnirelman
category is invariant under Nehari manifold. Then using the blowup analysis
involving the minimizers and the mountain pass lemma, we show the infimum
of the functional associated with (P) over the the Nehari manifold is achieved.
Moreover, we define the barycenter mapping associated to Choquard nonlin-
ear term and apply the machinery of barycenter mapping to prove our desired

conclusion. With this introduction we will state our main result:

THEOREM 1.2. Let 2 is an open bounded set with continuous boundary in RN
(N > 3) and q € [2,2*) then there exists 0 < A* < Ay such that, for all X €
(0, A*), there exists at least catq(§2) positive solutions of (Py) under the following
conditions

(a) ¢ €[2,2%) and N > 3, or

(b) 4<qg<6 and N =3.

Turning to the layout of the article: In Section 2, we give the variational
framework and preliminary results. In Section 3, we give the Palais—Smale anal-
ysis and existence of a solution of (Py). In Section 4, we prove some technical
lemmas and proof Theorem 1.2. Finally, in the appendix we study the behavior
of optimizing sequence of the best constant Sy 1, defined in (2.2).

2. Variational framework and the preliminary results

To study the problem (Py) by variational approach we will start by stating
the celebrated Hardy—Littlewood—Sobolev inequality.

ProPOSITION 2.1 (Hardy-Littlewood—Sobolev Inequality, [23]). Let t,r > 1
and 0 < p < N with 1/t + p/N +1/r =2, f € LRY) and h € L"(RY). There
exists a sharp constant C(t, r, , N) independent of f, h, such that

2.1) [ [ A2 by < o Wl
RN JRN |x— yl*

Ift=r=2N/(2N — p), then

r = _ w2 TN/2 = p/2) [T(N/2) —L+p/N
C(t,rp, N) = C(N, ) (N — 1/2) {F(M/Q)} .
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Equality holds in (2.1) if and only if f = (constant)h and
h(z) = A(y* + |z — o) CN =W/,
for some A€ C,0#~v€R and a € RV

The Sobolev space D*2(RY) is defined as
DY (RN) = {u e L¥ (RY) : Vu € L*(RN,RM)},

1/2
full = ([ [wuas)
]RN

The best constant for the embedding D*?(RY) into L? (RY) (where 2* =
2N /(N — 2) is defined as

S = inf {/ |Vul|?dz / |u?" dx = 1}.
weD12(®N)\ [0} | Jpw RN

Consequently, we define
(2.2) Sy = inf {/ |Vul? dz :
ueD2(RV)N{0} ( JrN

Ju(z) [ ju(y)*
dedy=1%.
/]RN/]RN Ix*yl“ v }

LEMMA 2.2 ([16]). The constant Sy, defined in (2.2) is achieved if and

only if
b (N-2)/2
=C| 57—
! <b2+|x—a2>

where C > 0 is a fized constant , a € RN and b € (0,00) are parameters.

endowed with the norm

Moreover,
S = SH,L (C(N, :U/)) (N—2)/(2N—M).

LEMMA 2.3 ([16]). For N >3 and 0 < u < N. Then

| |2* 1/(2-2},)
i _(// | —yl» dydm)

defines a norm on L* (), where Q is an open bounded set with continuous

boundary in RN .

The energy functional Jy: Hg(2) — R associated with (PA) is defined by

2d77/ 7 dz //‘“ " dydz.
=5 fIvetr = [ s -5 S 4y

Employing the Hardnylttlewoodfsobolev inequality (2.1), we have

1/2
(s dvae) < o000
r—y
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It implies the functional Jy € C'(H} (), R). We know that there exists a one
to one correspondence between the critical points of Jy and solution of (Py).

Notation. We denote A\; be the first eigenvalue of —A with zero Dirichlet
boundary data, which is given by

A\ = inf {/ |Vul? da : /|u|2dx_1}
ueH(2)\{0}

We also denote (Q) as the following condition:

(Q) Assume 0 < A < A;. Moreover, ¢ € [2,2*) and N >3 or 4 < ¢ < 6 and
N =3.

LEMMA 2.4. Assume N >3 and A € (0, A1). Then Jy satisfies the following
conditions:

(a) There exists o, p > 0 such that Jx(u) > a for ||u|| = p.
(b) There exists e € HE(Q) with ||e|| > p such that Jy(e) < 0.

PROOF. (a) Using Holder’s inequality, Sobolev’s inequality and Hardy—Little-
wood inequality, we have

1 A Sa's .
21— 2 2.2 if g =2
2( Al)Iull 5 221|| ull if ¢ =2,

D) 2 1, ., AS—9/2|Q|2 —0)/2 Syt
2l = [l =

L 22 if g e (2,29).

22*

Using the given assumption on A and the fact that 2 < 2. 2%, we can choose

o

a, p > 0 such that Jy(u) > a whenever [Ju|| = p.

(b) Let u € H}(£2) then
2.2%
i [* / / |u ? d dy — —o0
2. 2p ‘JZ - y|

as t— 00. Hence we can choose tg > 0 such that e := tou such that (b) follows.OI

Jy(tu) = |mw ~/WPM—

The Nehari manifold associated to Jy defined as

N§ = {u € HY(@)\ {0} : (T (w),u) = 0}.

LEMMA 2.5. Let u be a critical point on N)S?. Then u is a critical point of Jy
on H}(Q).

PROOF. The proof follows from [12]. O

LEMMA 2.6. Assume XA € (0,A\1). Then N¥ # () and Jy is bounded below
on N§&.
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PROOF. Let u € H}(2) \ {0}. Consider the function

2.2% .
toon 2-27

¢®—HM—%W—W/M%FIM
u(t) = Ja =3 7 Jo 2.2, NL -

Then ¢, (t) =0, ¢y(t) = —o0 as t — co. We now show that there exists unique
to > 0 such that ¢/ (t9) =0 . Since

¢ (t) = tllul]* - /\tq_l/ ful? dz — 227 ul[ 7 = tma(2),
Q

where my, (t) = ||ul|?> — b, (t) and
bu(t) = M7~ / ful? da + %2 u 3
Q

Observe that b, is a continuous function, tlim by (t) = oo and b,(t) > 0 for all
— 00

t > 0. Therefore, there exists unique ¢y > 0 such that b, (to) = |lul>. That is,
¢!, (to) = 0. It implies to¢!, (t) = 0 and tou € N§%. It implies N§} # (. Now, if
u € N§t, then Jy(u) reduced to

1 1 1 1 2.2*
J)\(U,) = (2 — q) /Q |u|qdl‘—|— <2 - 2,2*>||UNL“ > 0.
o

Therefore, inf Jx(u)> 0. That is, Jy is bounded below on N O
u€ENY

Now we set

2.3 0, := inf Jy(u) and 0y := inf sup Jy (tu),
(2.3) ri= ol A(u) VTt o S A(tu)

where 8 denote the Mountain Pass (MP, in short) level.

3. The Palais—Smale condition and estimates of the functional

In this section we will give the Palais-Smale analysis and prove the existence
of a minimizer of the functional Jy over the Nehari manifold.

LEMMA 3.1. Let N >3, A € (0,A1) and q € [2,2*). Then the functional J)
satisfies the (PS). condition for all

N —pu+2 [ oN-p)/(N=p+2)
< —85 ! .
“SSEN —p) T

PROOF. Let {u,} be a sequence in H} () such that
(3.1) Ix(un) = ¢ and <J§\(un),||un|> —0 asn— oo.
un,

CLAIM 1. u, is a bounded sequence in H}(Q).
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On the contrary assume that |lu,| — co. Let u, = u,/||u,|| be a sequence
in H}(Q) then ||u,| = 1 for all n. Therefore we can assume there exists u, up
to subsequences, such that

Up — U weakly in H}(Q), Un, = u  strongly in L"(Q)

for all r € [1,2*). Using (3.1) we have

1, A — 1 . __2.2%
Sllaml? = =lu HH/ un|? dz — |2 =2 [ty = on(1),

—~ _ —~ 0¥ o~y 2:27
1 = Alun |19 z/ﬂlunlquf |22 [t 7 = on (1)

It implies that

11\, (1 1 ) _2/ .
- — unll* =1 - — MMl |14 Up|? dx + 0,(1).
(5 - 5755 107 = (G - g )Ml [ 1 )

Now, if ¢ > 2 and A > 0 then by the assumption |ju, | — oo, we get ||u,|| — oo,
which is not possible. If g = 2 and A € (0, A1), then 0 < (1=X/A1)|u,|? < 0, (1),
which is again not possible, this concludes the proof of Claim.

Hence we can assume, there exists a ug € H{ () such that, up to a subse-
quence, u, — ug weakly in H¢(Q), u, — ug strongly in L™(Q) for all r € [1,2*)
and u,, — ug almost every on 2. Using all this and proceeding with the same as-
sertions as in [16, Lemma 2.4], we get J} (up) = 0. Now the Brezis—Leib Lemma
(see [8], [16]) leads to

1 2.2*
Ia(un) = JIx(uo) + 5 llun — uol|* — l[un — ol + on(1)

2 - 2;
and
(3:2) on(1) = (J3(un) — Jx(u0), un — o)
— lual® = lfuoll? = llunlxg + luoll
= [l — v ]1? = Jun — wol s
It implies
Tn(10) + gt o = o = e 0 (1)

and, if [|u, — uol> — M as n — oo, then by (3.2), |[un — uollas" — M as
n — oo. If M = 0 then we are done otherwise, if M > 0 then using the
definition of Sy 1, we have Ml/QZSH,L < M that is, SS’JZ_”)/(N_“H) < M.
Since (J4 (up), wo) = 0, it gives

1 1 1 1 2.2*
Ia(ug) = (2 - q) ||u0||2 + <2 T 9. 9% > HUOHN; 2 0.
n



POSITIVE SOLUTIONS OF ELLIPTIC EQUATION 759

Resuming the information collected so far, what we have gained is that,
N—p+2 > N—p+2 SN =)/ (N=p+2)

22N —p) " T 202N —p) ’
which yields a contradiction to the range of ¢. Hence compactness of the sequence
follows. O

On(].) +c= J)\(Uo) +

LEMMA 3.2. Let N > 3 and A € (0,\1) then Jy constraint to N} satisfies
the (PS). condition for all

e Nont2 g@n-p/(N-p+2)
202N —p) ~F '

PROOF. Let u,, € N’ be such that J)(u,) — ¢ and there exists a sequence
{an} in R with

(3.3)  sup{|[(J5(un) — anTi(un), d)| : ¢ € H3(Q), ||¢]| =1} =0 asn — oo,
where the functional T is defined as

2.2*
nuo=HMP—AAJMHM—Hmm;.

First of all, we will show that u,, is a bounded sequence in H} (). From the fact
that Jy(un) — ¢, it is easy to see that there exists a positive constant Cy such
that |Jy(u,)| < Cy. If ¢ € (2,2*) then, using the fact that u, € N, we deduce
that

1
Cy > J)\(un) - 5<J§\(un)vun>
1 1 1 1 2.2* 1 1
~ (53 )1l (5 = g Il = (55 ) el
If g =2, for X € (0, A1), we obtain, for any n € N,

Cl > J)\(un) —

1 !
ﬁ (3 (un), un)

11 ) , 11 ,
=|z—— e |l —A(— *)/un| dx
(2 2.2: 2 2-27) Jq
1 1 A
> (555 ) (1= 2 )l
)05

This proves that u, is a bounded sequence in H}(2). So {(T%(un),un)} is

a bounded sequence in R and there exists k € (—o0, 0] such that, up to a subse-
quence, (T} (un),un) — & as n — oco. Let if possible, k < 0 then using the fact
that u, € N5 and (A.5), we have (a,, T} (un), u,) — 0 as n — oo. This implies
a, — 0 as n — oco. That is,

sup {|(J}(un), #)| : ¢ € Hy(Q), |6l =1} =0 asn — oo,

which, by employing Lemma 3.1, gives that u,, has a convergent subsequence.
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At last suppose k = 0. Since
* 2'2*;
(Tx(un), un) = M2 = q) /Q lun|?dz + (2 =2 2))unlNg — &,
then
2.2*
/ lun|?de — 0 and ||lu,| N/ — 0.
Q

Taking into account the fact u, € N§! we have ||u,| — 0. That is, u, — 0
strongly in Hg (). O

To proceed further we will use the minimizer of Sg ;. From Lemma 2.2 we
know that

(N-2)/2
Ud(z) = SIN-1)@=N)/AN=p+2)) ((N 1)) 2~ N/ @N—p+2)) [ __E
E('T) ( ( ?:u)) 52 + ‘mlg ’

for 0 < ¢ < 1, are the minimizers of Sg . Without loss of generality, let us
assume that 0 € . This implies there exists a 6 > 0 such that Bys(0) C Q. Now
define n € C°(RY) such that 0 <7 < 1in RY, =1 in Bs(0) and n = 0 in
RN\ Bys(0) and |Vn| < C. Let u. € H}(2) be defined as u.(z) = n(z)Us(x).

PROPOSITION 3.3. Let N > 3,0 < u < N and q € (2,2*) then the following
holds:

() [luc])? < S/ NTHD L OeN-2),
(b) fuclar < SEY=/N=12) L 0N and

2-27, 2N —p) /(N —p+2
el > Sy — 0N,

24+ 0(eN72) if N >4,

(©) / P dz > C{ e2llog |+ O(2)  if N = 4,
Q

eN=2 4+ 0(£?) if N < 4.

(d) / lue|?, do > O(ENﬁ(N*Z)q/z) whenever ¢ € (2,2*) and N > 3 or 4 <
Q
q <6 and N = 3.

ProoF. For (a) and (c) see [30, Lemma 1.46]. For (b) See [20, Proposi-
tion 2.8]. For (d), first let N > 3 and 2 < ¢ < 2* then 0 < (N —2)g — N < N.
Now let N =3 and 4 < ¢ < 6 then 1 < ¢ — 3 < 3. Hence we have the following
estimate

é/e
/ |ue|? dx > C/ |U|?dx > CEN_(N_Z)Q/Z/ pN=1=(N=2)a gy
Q |z|<d 1

_ CENf(N72)Q/2 |: (E
)

(N-2)qg—N
- == - (5) | =oEv-omam. o
5
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LEMMA 3.4. Let N >3 and A > 0 and condition (Q) holds. Then

5> N—p+2 oN—p/(N-p+2)
< 7S a Hre
3N —p) VL

PRrROOF. By the definition of §>\, it is enough to show that, for u. € H(Q),

N = p+2 geN-p)/(N-p+2)

t
Tup ) < g i
Let
2 2.2%
G = (tu0) = 5 el = 22 [ o — > i,

then using the same assertions as in Lemma 2.6 for the function G, we deduce

that there exists unique ¢. > 0 such that supG(t) = G(t.) = Ja(t-u.) and
>0

G'(te) =0, provided A € (0, A1). As a result, we obtain

(3.4) 2{|ue|? - )\tg/ fue|? dz — £
Q

EHNLL =0.
It implies
_ 2.2% 2 2.2*
e | = Ao~ /Q el dee + 227 g 22

Therefore, using Proposition 3.3, Sobolev embedding, definition of S 1, and the
fact that A € (0, A1), we deduce

~ B 2.2* 2 2 _
1 < ACTE 7 ||ue]| 972 + Cote ™ luel* 2472,

for some suitable constants Cf, C’g > 0. It glves that there exists a T} > 0 such
that ¢t. > Ty. Also, from (3.4), £ “||u5||NL < t2|luc|*. That is,

/(2:2% —2)
e >\
te < (22 :

el
Hence
t2
. t) = e 2_7 qd
supG(6) = el = 5F [ fuelt do— 5o el
<supV(t) ——/ lue|? de,
>0
where
22 22

_ 2_ 2

Now, using Proposition 3.3 and the fact that V(t) has maximum at

. fuc] Y2
t" = < 2,2;) )
el 7
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we get

N—p+2 q@oN—p/(N-pt2) N-2 _ ATY
3.5 supG(t) < ———— 8§ K HT2) 4 Cle - u:|? dx.
35) gl < g s 1 [ 1

Case 1. N >3 and g € (2,2*) otr N =3 and 4 < ¢ < 6.
As a consequence of Proposition 3.3 and (3.5), we have

N —p+2 (@N-p)/(N-p+2) Noo_ AT
1) < S L Sy TN TR o N2 Ly |4
ggg() SN — ) DAL 1€ . QIul x

N—p+2 (oN-p/(N-p+2) Noo _ ATY ~(N-
R o Ny o 1 I C 2_710 N—(N 2)q/2.
= 902N — p) "L e 2
Now, using the condition of N and ¢, we have N — (N — 2)/2q < N — 2 then,
for ¢ sufficiently small,
q
Cl€N_2 - & CQEN_(N_Z)q/Q < 0.
q
Therefore,
N—pu+2 oN—p)/(N-p+2)
sup J)(tus) =supG(t) < ———— S K Hrs),
tzg A(bue) f,zg ®) 202N — pu) ~HL
Case 2. If g=2 and N > 3.
When N > 4 then by Proposition 3.3 and (3.5),
N = p+2 (@N-p)/(N-p+2) Noa _ AT
t) < et Sy TR C1eN 72 — 2L Oye?
WIS 5N — ) S e g %

Therefore, for € sufficiently small,
AT}
CeN72 = Tl Che? <0,

we obtain N )
— B2 G@N-p)/(N—pt2)
In(tue) < :
i;lg A(tue) 202N — p) H,L
When N = 4 then, again by Proposition 3.3 and (3.5), for an appropriate con-
stant C3 > 0, we have

N —p+2 (@oN-w/(N-ut2) AT?
L H<< ———2 "~ g 1% 1% C 2 _ il e/ 2 1 2
iggg( ) < SN — ) DAL +Cie” = == Ca(e[loge| +€7)
N —p+2 (oN-p)/(N-pt2) AT?
SRS G@Nom/(Nmu2) | o2 2T )22 fog ],
S 30N —p) CHE + C3¢e 5 2 |logel

Since |loge| — 0o as € — 0, for € sufficiently small,

T2
Cse? — Tl Cae?|loge| < 0.

Thus N )
— K2 (@N-p)/(N—p+2)
t A . . O
supIatus) < SHN ) S
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LEMMA 3.5. If condition (Q) holds then the following holds:
(a) O = 0y.

N =42 goN-p/(N=pt2)
202N — p) ~F '

(c) There exists u§t € N§? such that Jy(us}) = inf Jx(u) = 0x and uSt > 0.
u€eNy

(b) 0< 6y <

ProOF. (a) By Lemmas 3.1, 3.4, 2.4 and the Mountain Pass Lemma, there
exists a u! € H(Q) such that Jy(uf}) = 0, and J5 (u$}) = 0. It implies u§} € N{%.
Hence, 0y < Jy(uf}) = 0,. Also from Lemma 2.6, for each v € N§, there exists

a unique tg > 0 such that sup Jy(tv) = Jx(tov). Since u§ € N, it implies
>0

0\ < sup Ix(tu) = Jy(u). The;efore, 0y < 0.
>0

(b) By Lemma 2.6, 8 > 0 and, by Lemma 3.4,

~ N—p+2 eN—u/(N-pt+2)
0y=20 _ " wre)
YTONS 50N — ) T

(c) By part (a), there exists a u! € N§! such that Jy(u}) = Oy = 0, =

inf Jx(u). Since Jy(u}) = Jx(|us}]), we can assume u$} > 0. O
uENY

4. Proof of Theorem 1.2

In this section, first we gather some information which is needed to estimate
the cato(Q2). Before that, we prove some lemmas necessary for the proof of
Theorem 1.2.

LEMMA 4.1. Let N > 3 and {u,} be a sequence in H}(Q) such that
lunll N = lunl® < S5Y /N7 40,1 as 0 o
Then, there exist sequences z, € RY and a,, € R* such that the sequence
v (@) = AN/, (o + 2)

have a convergent subsequence, still denoted by v,. Moreover, v, — v % 0 in
DY2(RN), 2, - 2€Q and o, = 0 as n — oco.

PRrROOF. Let {w,} be a sequence such that w,, = u, /||u,||nr then |w,||nvr =
L flwall® = llunl?/wnlFrp = llun PN =#F2/CN=0) < Sp 1+ 0,(1). By defini-
tion of Sy 1, |wn|* > Su.1, it implies ||w,||> — Su. as n — oco. Now, using
Proposition A.1 for the sequence {w, }, we have the desired result. O

Since Q is a smooth bounded domain of R, we can pick § > 0 small enough
so that Qf = {z € RV : dist(z,Q) < §} and Q5 = {z € RV : dist(z,Q) > §} are
homotopically equivalent to Q.
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Without loss of generality, we can assume that Bs = Bs(0) C €. Conse-
quently, we consider the functional .J; % : H& rad(B5) — RY defined as

1 A 2
JP (u) = 7/ |Vul|? dx — f/ / / @) july) [P dy dz,
2 /g, q /s 2.2 2% JBs JB; |x— |"

where H&rad(Bg) = {u € H}(Bs) : uis radial}. And let Nf‘s be the Nehari
manifold associated to functional J f °. Then all the results obtained in Section 3
are valid for the functional Jy Bs n particular, by Lemma 3.5, we know that
there exists uf*‘ S N)]\35 such that u>\5 > 0 in Bs. Moreover,

) N—pu+2 2N-p)/(N=-p+2)
4.1 TP By = inf JP(u) < — T2 gt " wre)
( ) A ( A ) uEN55 A ( ) 2(2N_M) H,L
Now, with the help of u ¢ we will define the set A, = {u € N & Jy(u)
Jf“( Uy )}, and the function ¢y: Q5 — A, given by

IN

(4.2) uf‘s (x —2) if x € Bs(2),
0 elsewhere.

Next we define the barycenter mapping 3: Ny e by setting

(4.3) Blu) = —5z //x‘“ — |H)| dy da

||UHNL

Using the fact that u}? is radial, 8(¢x(z)) = z for all z € Q5.

LEMMA 4.2. Let N > 3 and q € [2,2*). Then there exists T* > 0 such that
if u€ Ax and X € (0,T*) then B(u) € Q.

PROOF. Assume to the contrary, that there exist sequences {\,} € RT and
un € Ay, such that A, — 0 and S(uy) ¢ Q; Using the definition of Ay, we
have u,, € Nf\2 and Jy, (up) < ij (uf‘s). Define

t2-2

2 Ant?
|7dr — ﬁ”“n”m )

M(t) = Ju, (tun) = *Ilunllz

using the same assertions and arguments as in Lemma 2.6, there exists a unique
to > 0 such that M'(ty) = 0 and tou, € N . Since u, € NA , it implies that
M'(1) = 0 and M is increasing for ¢ < 1 and decreasmg t > 1. Therefore,

(4.4) Iy, (un) = sup Jy,, (tuy).
>0

As
2 q 22,
unll® = An | un|?dz — |lun|ly/ =0,
Q

employing this with definition of Sy and Sobolev embedding, we have

— -27 2%
/|Un|qdl‘+ ||||n|1|\/2L <)\ncl‘|un||q 2+SH7£||Un||2 2, 2’

IIUnH2



POSITIVE SOLUTIONS OF ELLIPTIC EQUATION 765

where ¢; > 0 is a appropriate constant. It implies that for large n, there exists
a constant C' > 0 such that

(4.5) lun| > C.

CrAIM 1. There exists an [ > 0 such that up to a subsequence HunH?VZL“ =1
as n — o0o.
Since
N—p+2 _ _
Bs(, B H (2N—p)/(N—p+2)
In, (un) < J300(uy?) < 2N — 1) Sir " ;
Jx,, (uy) is bounded in R, subsequently ||u, || nz is a bounded sequence. Moreover,
from the fact that u, € N yn, it follows that

1 1 1 1 2.2*
n:)\n P nqd a A ox n -
I, (1) (2 q)/g|u| x+(2 2_22>||u Iz

It implies that A, [, [un|? dz is a bounded sequence. As a consequence, |ju,|| is
bounded in R. Therefore, there exists a [ > 0 such that ||u,|| vz — [ as n — oo.
To prove the Claim 1, it is enough to show that { # 0. Using (4.5), we deduce

2.2%
||un||NL“ = ||un||2 - An/ |un|? dz > ||un||2 = Ancfunl|? > C? - AnC2,
Q

where co > 0 is a suitable constant. Since A\,, — 0, so we have [ > 0. This proves
Claim 1.

CLAIM 2. For all n € N, there exists ¢,, > 0 such that ||t,u,|* = ||tnun||f\,2L’
Furthermore, t¢,, is a bounded sequence in R. .
Assume ¢, = [Jun|2/llwn 3 7] %7 then [[tyun[* = [t 57 for al
n € N. Using the fact that ||u,|| is bounded and by Claim 1, we deduce that ¢,
is a bounded sequence in R, concludes the proof of Claim 2.

By the definition of Jy, and taking into account (4.1), (4.4), Claim 2, u,, €

Ax,, An = 0, and [, |un|? dz is bounded, we obtain
N—-—p+2 2
S Il = T (t) + At [ el d < T, (1) + 0,01

N—-—p+2 _ _
Bs(, B K 2N N—p+2
< J)\j(u)\:j) + On(l) < m S;{,L m/( H+2) +0n(1)

From Claim 2 and Lemma 4.1, there exists a sequences z, € RY and a,, €

R+ such that the sequence v, (z) = a2/t

nUn(anx + 2,) have a convergent
subsequence, still denoted by v,,. Moreover, v,, — v Z 0 in DV2(RN), z,, — z €

Q and o, — 0 as n — oo. Let ¢ € C°(RY) such that ¢(x) = z for all z € Q.
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Consider

o

[ [ e,
R

Iw - yl“

N JrN
RN JRN |33—Z/|“
2;,

/ Y(an® + 2n)|vn(z )|2 o (y) |
R

Ix—yl“

2 Un(y )2

RN
/ / [vn (@ ! dy dx
RN JRN |90 —yln

where the last one follows from regularity of ¢ and Lebesgue dominated theorem.
This contradicts the assumption S(u,) & Q;. It concludes the proof. O

6(un) = /B(tnun) =

dy dx
—2€Q,

LEMMA 4.3. Assume N > 3, q € [2,2*) and X € (0,Y*) (defined in Lem-
ma 4.2). Then cat 4, (Ax) > catq(€2).

PROOF. The proof can be done by using the same assertions as in [2, Lem-
ma 4.3]. O

Next we need following lemma in order to proof Theorem 1.2.

LEMMA 4.4. [1] Suppose that X is a Hilbert manifold and F € C'(X,R).
Assume that there are ¢y € R and k € N, such that

(a) F satisfies the Palais—Smale condition for energy level ¢ < cq;
(b) Cat({z € X : F(z) <c1}) > k.
Then F has at least k critical points in {x € X : F(z) < ¢1}.

PROOF OF THEOREM 1.2. By Lemma 3.2, Jy satisfies (PS). condition on
N){Z for any

N—p+2 oN_p/n- +2)
S H e
©S 2N —p) L

provided A € (0, A\1). If condition (Q) holds then from Lemma 3.5,

N —p+2 oN—p)/(N-p+2)
0<¥6 e — " wre),
SIS geN — ) Tt

Hence if condition (Q) holds then Lemmas 4.3 and 4.4, we have at least catq ()
critical points of J) restricted to Ny for any A € (0, A*), where A* = min{A;, T*}.
Thus using Lemma 2.5, we obtain Jy has at least catq(Q2) critical points on
H (). From [15, Lemma 4.4] and [19, Theorem 2.2] , we have at least catqg(Q)
positive solutions of problem (P)). O
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Appendix A

Here we will discuss the behavior of the optimizing sequence of Sg 1. For
the local case, Proposition A.1 has been proved in [29] and [30]. Combining
the ideas of [17] and [30], one expects the Proposition A.1 to hold for critical
Choquard case, but as best of our knowledge this type of result has not been
proved exclusively anywhere. For N = 3, Proposition A.1 has been proved
in [28].

PROPOSITION A.1. Let {u,} be a sequence in Hg () such that

2% 2;,
/ / [n @) fun @™ 0 — 1 and Junl> = Saz asn — .
QJo |z —y|*

Then, there exists a sequences z, € RN and o, € R* such that the sequence
v (z) = aN D20, (anz + 2,)
have a convergent subsequence, still denoted by v,, such that v, — v £ 0 in

DY2(RN), 2, = 2 € Q, and o, — 0 as n — co. In particular, v is a minimizer
Of SH,L-

PROOF. Define the Lévy concentration function
Qn()) == sup / (l2] 7" * [un %) [tn |2+ da.
z€RN JB(z,\)
It is easy to see that, for each n, lim @Q,(A) = 0 and lim @Q,(A) = 1, there
A—0t A— o0
exists a,, > 0 such that Q,(a,) = 1/2. Also, there exist z, € RY such that

_ x . 1
/( )(|l’| H*|un 214,) Up 2/L dx:Qn(an)zi
B(zn,0n
Now define the function v, (z) = Q%N_2)/2un (anz + 2,) then

2

RN JRN |z — gy~

||an|\%2 — Su asn— oo,

T R e
B(z,1)

2€RN

[ ol o) do.
B(0,1)

It implies {v,,} is a bounded sequence in D»2(R™). Therefore, there exist a sub-
sequence, still denoted by {v,} such that v,, — v weakly in D2(R"), for some
v € DV2(RY). Then we can assume that there exist w, 7, v such that

vp — v ae. on RY, [Vun|? = w, onl*” = 7,

(|| =" % [v %) |vn|? — v in the sense of measure.
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Now, using the Brezis—Leib lemma in sense of measure, we have
V(v =) = @ :=w— |Vv|? lvp — 0] = xi=7—v]¥,

2 om — 0P = k= v — (|27 |v)?e) o).

([ % fon —v

Moreover, if we define

Weo := lim limsup/ |V, |? d,
|z|>R

R—o0 nooo

Too := lim limsup/ va|* da,
R—00 nooo Jiz|>R

2 o |25 da
then, by using concentration-compactness principle [17, Lemma 2.5], we deduce
that

Voo := lim limsup/ (|x| = * |op,
R—o00 n—oo ‘ZL‘|>R

limsup ||V, |2, :/ dw + weo,
RN

n—oo

limsup||vn||i*2* :/ AT 4 Toos
n—00 RN

lim sup ||vn||?VQL‘ = / dv + v
RN

n—oo

and

CN, ) ~2N/@N=w) 2N/@N-1) < 1 < /R ir+ TOO),

N

2/2%
S%7LV0£ a Swoo< dw—l—woo>.
RN

1/2;
/ dw = SH,L(/ dV)
RN RN

then v is concentrated at a single point. By using [17, (2.11)], we have

1/2;
(AQ) SH,L(/ dl€> S/ dw.
RN RN

Also, if v =0 and

It implies
Syr.r, = limsup ||V, |22 = / dw + ||V 72 + weo,
n— oo RN
(A.3) 1 = limsup ||vnH?VQL‘ = / dr + ”U”?\TQLI t Voo
n—o00 RN

*

SH, LV " < Weo.

Using the definition of Sy 1, (A.2) and (A.3), we obtain

oy 172" 1/2, .
Sur > SH,L((UHfVQLM) "4 (/ dn) + yi{%),
]RN
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that is

2.27 222\ /2 /2 2/2%,
dr+ ol +vee > (ol ) ([ dn) Al
RN RN

Thanks to the fact that |[v|]|nz, [pn dk, Vs are non-negative, we get ||v||nz,
f]RN dk, Vs are equal to either 1 or 0. Using (A.1), we have vy, < 1/2. Tt implies
Voo = 0. Now, if [pn dx =1 then |[v||xz = 0 that is, v = 0 almost everywhere

on RY. Therefore
SH_L:/ dw + Weo 2/ dw.
i RN RN
Hence

1/2;
(A4) SH,L(/ dl€> Z/ dw.
RN RN

Coupling (A.2), (A.4) with the fact that v = 0 almost everywhere on RY, we
have v is concentrated at a single point zy. From (A.1), we get

1

== sup/ (|7 o [vp ) [0n ] dee
2 B(2,1)

2€RN

z/ (27 % o %) onl2 do — [ di =1,
B(z0,1) RN

. . . 2:2% .
which is not possible. Hence, ||[v||y/* = 1. Also, Sgr = lim |[Vu,[7. =
n—roo
||VU||2L2. In particular, v is a minimizer of Sy, . From [16, Lemma 1.2], we
know Sp 1, is achieved if and only if

5 (N—2)/2
‘e C(b2 + —a?)

where C' > 0 is a fixed constant, a € RY and b € (0,00) are parameters. It

b (N-2)/2
—u=C0l —— .
e (b2+|w—a|2)

In particular, v # 0. Now, we will prove that o, — 0 and 2z, — 25 € Q.

implies

Let if possible a,, — oco. Since {u,} is a bounded sequence in H}(Q), {u,} is
a bounded sequence in L?(Q2). Thus, if we define Q,, = (Q — 2,,)/,, then

1 C
/ |vn\2dz:—2/ |un|2dx§—2—>0.
Qn ayn Ja ag,

Contrary to this, by Fatou’s Lemma we have

O:liminf/ || de/ lv|? da.
n—oo Jo Q

This means v = 0, which is not true. Hence {a,,} is bounded in R that is, there
exists ag € R such that a, — ag as n — oo. If z, — oo then for any =z € Q)
and large n, a,x + z, ¢ Q. Since u,, € H}(Q) then u,(a,z + 2,) = 0 for all
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o - . 2.2%
x € Q, it yields a contradiction to the assumption |ju, ||\ = 1. Therefore,
zn is bounded, it implies that z, — z9. Now suppose a, — ap > 0 then
Q= (2= 20)/ag = Qo # RYN. Hence

2, 2,
Q0 J9 |z — gy~

/\Un|2dx—>/ lv|*de = Sgr.;, as n — oo,
Qo Q0

which is not true. Hence o, — 0 as n — oo. Finally, arguing by contradiction,
we assume that

In view of the fact that o,z + 2, — 2z for all z € Q as n — oo. Now, using
(A.5), we have a,x + z, € Q for all x € Q and n large enough. It implies that
Un(apx + z,) = 0 for n large enough. This yields a contradiction, therefore,
20 € Q. [l
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