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ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS

OF LIMIT PERIODIC DIFFERENCE SYSTEMS

WITH COEFFICIENTS FROM COMMUTATIVE GROUPS

Petr Hasil — Michal Veselý

Abstract. We study the behaviour of solutions of limit periodic difference

systems over (infinite) fields with absolute values. The considered systems
are described by the coefficient matrices that belong to commutative groups

whose boundedness is not required. In particular, we are interested in

special systems with solutions which vanish at infinity or which are not
asymptotically almost periodic. We obtain a transparent condition on the

matrix groups which ensures that the special systems form a dense subset

in the space of all considered systems, i.e. that, in any neighbourhood of
any considered limit periodic system, there exists a system which have

non-asymptotically almost periodic or vanishing solutions. The presented

results improve and extend known ones.

1. Introduction

The subject of the research presented in this paper is given by the theory of

perturbations of difference systems in the form

(1.1) xk+1 = Ak · xk,

where the coefficient matrices Ak are elements of a commutative group X for all

considered k. In the center of our interest is the existence of non-asymptotically
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almost periodic solutions of systems (1.1). The analysis of non-almost perio-

dic and non-asymptotically almost periodic solutions of general systems in the

form (1.1) is usually based on special iterative constructions of sequences with

required properties. In this sense, our approach is not an exception. A core

of the used method is constructive as well as it is common in this research

area. Nevertheless, to obtain our results, we apply an original construction of

limit periodic sequences which differs from the constructions used before in the

papers whose results are, among others, covered by ours. For such constructive

proofs from this area, we can refer to strongly relevant articles [8], [9], [17]–[20],

[37], and [39].

We point out that the motivation of our research is described in Section 3

below. At this place, we just mention that it comes mainly from papers [8], [9],

[18]–[20] and we are interested in non-almost periodic solutions of systems (1.1)

for which the sequence of the coefficient matrices Ak is limit periodic. Such

limit periodic systems form the smallest class of the studied systems generalizing

periodic systems which can possess at least one non-almost periodic solution.

Now, we proceed to a short literature overview, where we give a list of both

books and papers that covers the background theory and the state of the research.

We begin with monographs [5], [12], [24], [31], where the basic properties of

limit periodic, almost periodic, and asymptotically almost periodic sequences

and functions can be found. Next, we mention papers [1], [6], [7], [10], [16], [41]–

[43] concerning the almost periodic solutions of almost periodic linear difference

equations. Into the last list of references, we should add paper [15], which is

the first one, where a construction was used to prove results about non-almost

periodic solutions of homogeneous linear difference equations. Regarding the

complex case of almost periodic systems of the treated form, we refer, e.g. to [3]

and [21].

Our research is closely connected to the theory of the so-called transformable

and weakly transformable groups (see [17], [39]). A special case of this theory can

be found in [35] (see also [32], [33], [36]), where systems (1.1) are considered in

the case, when X is the unitary group (or the orthogonal group). In [35], there is

proved (among others) that, in any neighbourhood of an arbitrarily given almost

periodic unitary system of the form (1.1), there exists an almost periodic unitary

system whose fundamental matrix is not almost periodic. Note that the method

from [35] cannot be used for commutative groups of coefficient matrices which

are considered in this paper.

At the end of this references overview, we mention some papers, where the

continuous case is treated. Of course, the corresponding differential systems are

of the form

(1.2) x′(t) = A(t) · x(t).
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Papers [22], [23], [34], [36] are devoted to the analysis of the almost periodic

solutions of systems (1.2) with skew-Hermitian and skew-symmetric coefficient

matrices A. The non-almost periodic solutions of skew-Hermitian and skew-

symmetric differential systems (1.2) are studied in [38], [40] (see also [33]). These

results about skew-Hermitian and skew-symmetric homogeneous linear differen-

tial systems corresponds to the results about unitary and orthogonal homoge-

neous linear difference systems recalled above. Last but not least, we refer to

[25], [26], [29], [30], where the reader can find constructions of homogeneous

linear differential systems with almost periodic coefficients.

The theory of almost periodic functions and sequences has applications in

a lot of areas. For example, almost periodic patterns describe quasicrystals (see,

e.g. [28]), the process of the transfer of information by neurons can be described

via almost periodicity (see, e.g. [27]), the effect of almost periodicity is used to

study population dynamics (see, e.g. [13], where the authors obtain sufficient

conditions for the existence of almost periodic solutions of systems of difference

equations), etc.

This paper is organized as follows. The upcoming section is devoted to

definitions of limit periodic, almost periodic, and asymptotically almost periodic

sequences. Then, in Section 3, we complete notations and describe the studied

difference systems properly. Further, the basic motivation of our research is

extensively described in Section 3, where the most relevant results from the

above mentioned papers are explicitly formulated. In the final section, the main

result is proved (see Theorem 4.1 below). At the end of Section 4, we also discuss

the main result and formulate a consequence of the used method.

2. Limit periodicity, almost periodicity,

and asymptotic almost periodicity in metric spaces

In this section, we mention the notion of limit periodic, almost periodic, and

asymptotically almost periodic sequences. Let a metric space (M, %) be given

arbitrarily. We put N0 := N ∪ {0}.

Definition 2.1. A sequence {ϕk}k∈Z ⊆ M or {ϕk}k∈N0
⊆ M is called

limit periodic if there exists a sequence of periodic sequences {ϕnk}k∈Z ⊆ M or

{ϕnk}k∈N0
⊆ M, n ∈ N, with the property that lim

n→∞
ϕnk = ϕk uniformly with

respect to k ∈ Z or k ∈ N0.

Remark 2.2. Note that the set of limit periodic sequences can be introduced

in another equivalent way (see [4] and also [2]).

Definition 2.3. We say that a sequence {ϕk}k∈Z ⊆M is almost periodic if,

for any ε > 0, there exists p(ε) ∈ N with the property that any set consisting of

p(ε) consecutive integers contains at least one integer l for which %(ϕk+l, ϕk) < ε,
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k ∈ Z. A sequence {ϕk}k∈N0
⊆ M is called almost periodic if there exists an

almost periodic sequence {ψk}k∈Z ⊆M with the property that ϕk = ψk, k ∈ N0.

Definition 2.4. A sequence {ϕk}k∈Z ⊆ M or {ϕk}k∈N0
⊆ M is called

asymptotically almost periodic if, for any ε > 0, there exist p(ε), P (ε) ∈ N with

the property that any set consisting of p(ε) consecutive positive integers contains

at least one integer l for which %(ϕk+l, ϕk) < ε, k ≥ P (ε), k ∈ N.

The definitions mentioned above (as Definitions 2.3 and 2.4) are based on

the so-called Bohr concept. The (almost periodicity and) asymptotic almost

periodicity can be introduced in another equivalent way (the so-called Bochner

concept) as follows.

Theorem 2.5. Let a sequence {ϕk}k∈N0
⊆M be given. The sequence {ϕk} is

asymptotically almost periodic if and only if any sequence {sn}n∈N ⊆ N0 fulfilling

lim
n→∞

sn =∞ has a subsequence {s1n}n∈N ⊆ {sn} with the property that, for any

ε > 0, there exists N(ε) ∈ N for which

(2.1) %(ϕk+s1i , ϕk+s1j ) < ε, i, j ≥ N(ε), i, j ∈ N, k ∈ N0.

Proof. See [14, Part 2]. �

In addition, we also recall the following known theorem.

Theorem 2.6. The uniform limit of almost periodic sequences is almost

periodic.

Proof. The statement of the theorem can be easily obtained using the proof

of [11, Theorem 6.4]. �

Remark 2.7. From Theorem 2.6, we know that any limit periodic sequence

is almost periodic. We add that any almost periodic sequence is asymptotically

almost periodic (consider directly Definitions 2.3 and 2.4).

Remark 2.8. One can easily show that any asymptotically almost periodic

sequence is bounded if k ∈ N0 (see Definition 2.4).

3. Considered difference systems over fields

Let F be an infinite field with an absolute value | · |. Let m ∈ N be arbitrarily

given. The set of all m ×m matrices with elements from F will be denoted by

Mat(F,m) and the set of all m×1 vectors with elements from F will be denoted

by Fm. As usual, the identity matrix (in Mat(F,m)) will be denoted by I. The

absolute value on F gives the norms ‖ · ‖ on Fm, Mat(F,m) as the sums of

the absolute values of their elements. The absolute value on F and the norms

on Fm, Mat(F,m) imply the metrics denoted by %, where ε-neighbourhoods will

be denoted using the symbol O%ε .
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Now, we are ready to introduce the studied homogeneous linear difference

systems over the field F . Let a matrix group X ⊂ Mat(F,m) be given. We

consider systems in the form

(3.1) xk+1 = Ak · xk,

where k ∈ N0 or k ∈ Z and Ak ∈ X for all k. As LP (X ), we will denote

the set of all systems (3.1) with the property that the sequence {Ak} is limit

periodic. Note that we identify the sequence {Ak} with the system (3.1) which is

determined by {Ak}. Using this convention, for {Ak}k∈N0
, {Bk}k∈N0

∈ LP (X )

or {Ak}k∈Z, {Bk}k∈Z ∈ LP (X ), we define the metric

σ({Ak}, {Bk}) := sup
k
‖Ak −Bk‖

in LP(X ). As Oσε ({Ak}), we will denote the ε-neighbourhood of {Ak} in LP(X ).

In the theorems below, we collect the most relevant results which give the

basic motivation for the current research and which are completed (in a certain

sense) or improved by the presented results in the next section. We repeat that

this motivation comes from papers [8], [9], [18]–[20]. The results deal with two

cases, when the considered group X is commutative or bounded. We begin with

two results about bounded groups.

Theorem 3.1. Let (F, %) be separable. Let X be bounded and have the pro-

perty that there exists ξ > 0 such that, for any δ > 0, there exists l ∈ N with the

property that, for any u ∈ Fm, ‖u‖ ≥ 1, there exist matrices M1, . . . ,Ml ∈ X
satisfying

Mi ∈ O%δ (I), i ∈ {1, . . . , l}, ‖Ml · . . . ·M1 · u− u‖ > ξ.

Then, for any ε > 0 and any {Ak}k∈Z ∈ LP(X ), there exists {Bk}k∈Z ∈
Oσε ({Ak}) with the property that the system xk+1 = Bk · xk, k ∈ Z, does not

possess any non-trivial asymptotically almost periodic solution.

Proof. See [19, Theorem 7]. �

Theorem 3.2. Let X be bounded and have the property that there exists

ξ > 0 such that, for any δ > 0, there exist matrices M1, . . . ,Ml ∈ X satisfying

Mi ∈ O%δ (I), i ∈ {1, . . . , l}, ‖Ml · . . . ·M1 − I‖ > ξ.

Then, for any ε > 0 and any {Ak}k∈N0
∈ LP(X ), there exists {Bk}k∈N0

∈
Oσε ({Ak}) with the property that the fundamental matrix of xk+1 = Bk · xk,

k ∈ N0, is not asymptotically almost periodic.

Proof. See [9, Theorem 4.9]. �
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Now, we mention the strongest known results about commutative groups

which correspond with Theorems 3.1 and 3.2. For the reader’s convenience, we

mention these results in full.

Theorem 3.3. Let X be commutative and have the property that there exists

ξ > 0 such that, for any δ > 0, there exists l ∈ N with the property that, for any

u ∈ Fm, ‖u‖ ≥ 1, there exist matrices M1, . . . ,Ml ∈ X satisfying

Mi ∈ O%δ (I), i ∈ {1, . . . , l}, ‖Ml · . . . ·M1 · u− u‖ > ξ.

Then, for any ε > 0, {Ak}k∈Z ∈ LP(X ), and for any sequence {un}n∈N of non-

zero vectors un ∈ Fm, there exists {Bk}k∈Z ∈ Oσε ({Ak}) with the property that

the solution of xk+1 = Bk · xk, k ∈ Z, x0 = un is not almost periodic for all

n ∈ N.

Proof. See [8, Theorem 5.1]. �

Remark 3.4. Note that Theorem 3.3 improves the main result of [18].

Theorem 3.5. Let the unit ball {u ∈ Fm; ‖u‖ ≤ 1} be compact. Let X be

commutative and have the property that there exists ξ > 0 such that, for any

δ > 0, there exist matrices M1, . . . ,Ml ∈ X satisfying

Mi ∈ O%δ (I), i ∈ {1, . . . , l}, ‖Ml · . . . ·M1 − I‖ > ξ.

Then, for any ε > 0 and any {Ak}k∈N0
∈ LP(X ), there exists {Bk}k∈N0

∈
Oσε ({Ak}) with the property that the fundamental matrix {Xk}k∈N0

of system

xk+1 = Bk · xk, k ∈ N0, is not asymptotically almost periodic or this system has

at least one non-trivial solution {xk}k∈N0
for which lim inf

k→∞
‖xk‖ = 0.

Proof. See [20, Theorem 10]. �

The aim of this paper is to improve Theorems 3.3 and 3.5 concerning non-

asymptotically almost periodic solutions and solutions vanishing at infinity. More

precisely, we generalize Theorem 3.3 with regard to the statement of Theo-

rem 3.5. To obtain such a generalization, we use an iterative construction of limit

periodic sequences which is different from the constructions applied in [8], [20].

Note that the construction from [8] is not applicable for solutions vanishing at

infinity and that the construction from [20] does not cover any case of at least

two initial conditions.

4. Results

Now, we prove the main result. We point out that X does not need to be

bounded (cf. Theorems 3.1 and 3.2).
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Theorem 4.1. Let X be commutative and have the property that there exists

ξ > 0 such that, for any δ > 0, there exists l ∈ N with the property that, for any

u ∈ Fm, ‖u‖ ≥ 1, there exist matrices M1, . . . ,Ml ∈ X satisfying

(4.1) Mi ∈ O%δ (I), i ∈ {1, . . . , l}, ‖Ml · . . . ·M1 · u− u‖ > ξ.

Then, for any ε > 0, {Ak}k∈N0
∈ LP(X ), and for any sequence {vn}n∈N of non-

zero vectors vn ∈ Fm, there exists {Bk}k∈N0
∈ Oσε ({Ak}) with the property that

the solution {xnk}k∈N0
of xk+1 = Bk · xk, k ∈ N0, x0 = vn is not asymptotically

almost periodic or lim inf
k→∞

‖xnk‖ = 0 for all n ∈ N.

Proof. For the reader’s convenience, the presented proof is divided into

5 parts denoted as Parts I–V. In Part I, we show that it suffices to consider

only 1 < ‖vn‖ < 2, n ∈ N, without loss of generality. In Part II, we introduce

auxiliary values δi > 0 and li ∈ N for i ∈ N. Then, in Part III, we present

a construction which gives the resulting sequence {Bk}k∈N0
. The construction is

an iterative process. For simplicity, the steps of this process are denoted as Steps

i.j for the j part of the i step. In Part IV, we show that {Bk} ∈ Oσε ({Ak}) for

the obtained sequence {Bk}k∈N0 . In the final Part V, we prove that {Bk}k∈N0

has the required properties from the statement of the theorem.

Part I. From the statement of the theorem (see (4.1)), one can easily see

that, for any ϑ > 0, there exist elements f1, f2 ∈ F with the property that

|f1| ∈ (1− ϑ, 1), |f2| ∈ (1, 1 + ϑ) (consider properties of the absolute value of an

inverse element). Hence, for any non-zero vector u ∈ Fm, there exists 〈u〉 ∈ F
for which

(4.2) 1 <

∥∥∥∥ u

〈u〉

∥∥∥∥ =
∥∥〈u〉−1 · u∥∥ < 2.

Consequently, to prove Theorem 4.1, it suffices to consider only solutions given

by the Cauchy problems xk+1 = Bk · xk, k ∈ N0, x0 = u, where 1 < ‖u‖ < 2.

Therefore, we can assume that {vn; n ∈ N} ⊆ {u ∈ Fm; 1 < ‖u‖ < 2}.

Part II. Let ε > 0 and {Ak}k∈N0
∈ LP(X ) be arbitrarily given. We know

(see, e.g. Remarks 2.7 and 2.8) that there exists K > 0 for which

(4.3) sup
k∈N0

‖Ak‖ < K.

We put

(4.4) δi :=
ε

2iK
, i ∈ N,

and the corresponding l ∈ N will be denoted by li. Without loss of generality,

we can assume that ξ ∈ (0, 1) and that li+1 ≥ li ≥ 2, i ∈ N.

Part III. We find the resulting sequence {Bk}k∈N0 by the following con-

struction using the below described sequences of Cik for k ∈ N0.
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Step 1.1. At first, we consider the solution
{
x
(1,1,1)
k

}
k∈N0

of the Cauchy

problem

xk+1 = Ak · xk, k ∈ N0, x0 = v1.

For δ1 and for v1, there exist matrices M1
1 , . . . ,M

1
l1
∈ X satisfying

(4.5) M1
j ∈ O

%
δ1

(I), j ∈ {1, . . . , l1}, ‖M1
1 · . . . ·M1

l1 · v1 − v1‖ > ξ.

We put r1 := 2l1. We define the periodic sequence {C1
k}k∈N0

with the period

p(1, 1, 1) := 2l1 by the choice

C1
2j−1 = M1

j for all j ∈ {1, . . . , l1},

C1
j = I for the other j ∈ {0, . . . , 2l1 − 1}

if
∥∥x(1,1,1)2l1

− v1
∥∥ < ξ/4; and by {C1

k}k∈N0
≡ {I}k∈N0

otherwise. We put B1
k =

Ak · C1
k for k ∈ N0.

Step 2.1. Next, we consider the solution
{
x
(2,1,1)
k

}
k∈N0

of the Cauchy problem

xk+1 = B1
k · xk, k ∈ N0, x0 = v1.

We put r2 := 64 · l1 · l2 and P (2, 1, 1) := 4p(1, 1, 1). For δ2 and for x
(2,1,1)
P (2,1,1)+r2

,

there exist matrices

(4.6) M
(2,1,1)
1 , . . . ,M

(2,1,1)
l2

∈ O%δ2(I)

satisfying (see (4.2))∥∥∥∥∥∥M (2,1,1)
1 · . . . ·M (2,1,1)

l2
·
x
(2,1,1)
P (2,1,1)+r2〈
x
(2,1,1)
P (2,1,1)+r2

〉 − x
(2,1,1)
P (2,1,1)+r2〈
x
(2,1,1)
P (2,1,1)+r2

〉
∥∥∥∥∥∥ > ξ

2
.

We define periodic sequence
{
C

(2,1,1)
k

}
k∈N0

with period p(2, 1, 1) := P (2, 1, 1) ·r2
in the following way. If∥∥∥x(2,1,1)P (2,1,1)

∥∥∥ > 1

2
,
∥∥∥x(2,1,1)P (2,1,1)+r2

− x(2,1,1)P (2,1,1)

∥∥∥ ≤ ξ

8
·
∥∥∥x(2,1,1)P (2,1,1)

∥∥∥,
then

C
(2,1,1)
P (2,1,1)+4(j−1)+2 = M

(2,1,1)
j for all j ∈ {1, . . . , l2},

C
(2,1,1)
j = I for the other j ∈ {0, . . . , p(2, 1, 1)− 1}.

In the other cases, we put

C
(2,1,1)
0 = . . . = C

(2,1,1)
p(2,1,1)−1 = I.

We put B
(2,1,1)
k = B1

k · C
(2,1,1)
k , k ∈ N0.

Step 2.2. We consider the solution
{
x
(2,1,2)
k

}
k∈N0

of the Cauchy problem

xk+1 = B
(2,1,1)
k · xk, k ∈ N0, x0 = v1.
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We put P (2, 1, 2) := 8 p(2, 1, 1). For δ2 and for vector x
(2,1,2)
P (2,1,2)+r2−r1 , there exist

matrices

(4.7) M
(2,1,2)
1 , . . . ,M

(2,1,2)
l2

∈ O%δ2(I)

such that∥∥∥∥∥∥M (2,1,2)
1 · . . . ·M (2,1,2)

l2
·
x
(2,1,2)
P (2,1,2)+r2−r1〈
x
(2,1,2)
P (2,1,2)+r2−r1

〉 − x
(2,1,2)
P (2,1,2)+r2−r1〈
x
(2,1,2)
P (2,1,2)+r2−r1

〉
∥∥∥∥∥∥ > ξ

2
.

We define the periodic sequence
{
C

(2,1,2)
k

}
k∈N0

with the period p(2, 1, 2) :=

P (2, 1, 2) · (r2 − r1) as

C
(2,1,2)
P (2,1,2)+8(j−1)+4 = M

(2,1,2)
j for all j ∈ {1, . . . , l2},

C
(2,1,2)
j = I for the other j ∈ {0, . . . , p(2, 1, 2)− 1}

if ∥∥∥x(2,1,2)P (2,1,2)

∥∥∥ > 1

2
,
∥∥∥x(2,1,2)P (2,1,2)+r2−r1 − x

(2,1,2)
P (2,1,2)

∥∥∥ ≤ ξ

8
·
∥∥∥x(2,1,2)P (2,1,2)

∥∥∥;

and as

C
(2,1,2)
0 = . . . = C

(2,1,2)
p(2,1,2)−1 = I

in the other cases. We put B
(2,1,2)
k = B

(2,1,1)
k · C(2,1,2)

k , k ∈ N0.

Step 2.3. We consider the solution
{
x
(2,2,1)
k

}
k∈N0

of the Cauchy problem

xk+1 = B
(2,1,2)
k · xk, k ∈ N0, x0 = v2.

We put P (2, 2, 1) := 16 p(2, 1, 2). For δ2 and vector x
(2,2,1)
P (2,2,1)+r2

, there exist

matrices

(4.8) M
(2,2,1)
1 , . . . ,M

(2,2,1)
l2

∈ O%δ2(I)

with the property that∥∥∥∥∥∥M (2,2,1)
1 · . . . ·M (2,2,1)

l2
·
x
(2,2,1)
P (2,2,1)+r2〈
x
(2,2,1)
P (2,2,1)+r2

〉 − x
(2,2,1)
P (2,2,1)+r2〈
x
(2,2,1)
P (2,2,1)+r2

〉
∥∥∥∥∥∥ > ξ

2
.

We define the periodic auxiliary matrix sequence
{
C

(2,2,1)
k

}
k∈N0

with the period

p(2, 2, 1) := P (2, 2, 1) · r2 as

C
(2,2,1)
P (2,2,1)+16(j−1)+8 = M

(2,2,1)
j for all j ∈ {1, . . . , l2},

C
(2,2,1)
j = I for the other j ∈ {0, . . . , p(2, 2, 1)− 1}

if ∥∥∥x(2,2,1)P (2,2,1)

∥∥∥ > 1

2
,
∥∥∥x(2,2,1)P (2,2,1)+r2

− x(2,2,1)P (2,2,1)

∥∥∥ ≤ ξ

8
·
∥∥∥x(2,2,1)P (2,2,1)

∥∥∥;

and as

C
(2,2,1)
0 = . . . = C

(2,2,1)
p(2,2,1)−1 = I
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otherwise. We put B
(2,2,1)
k = B

(2,1,2)
k · C(2,2,1)

k , k ∈ N0.

Step 2.4. We consider the solution
{
x
(2,2,2)
k

}
k∈N0

of the Cauchy problem

xk+1 = B
(2,2,1)
k · xk, k ∈ N0, x0 = v2.

We put P (2, 2, 2) := 32 p(2, 2, 1). For δ2 and for vector x
(2,2,2)
P (2,2,2)+r2−r1 , we con-

sider arbitrary matrices

(4.9) M
(2,2,2)
1 , . . . ,M

(2,2,2)
l2

∈ O%δ2(I)

satisfying∥∥∥∥∥∥M (2,2,2)
1 · . . . ·M (2,2,2)

l2
·
x
(2,2,2)
P (2,2,2)+r2−r1〈
x
(2,2,2)
P (2,2,2)+r2−r1

〉 − x
(2,2,2)
P (2,2,2)+r2−r1〈
x
(2,2,2)
P (2,2,2)+r2−r1

〉
∥∥∥∥∥∥ > ξ

2
.

Now we define the periodic sequence
{
C

(2,2,2)
k

}
k∈N0

with the period p(2, 2, 2) :=

P (2, 2, 2) · (r2 − r1) by

C
(2,2,2)
P (2,2,2)+32(j−1)+16 = M

(2,2,2)
j for all j ∈ {1, . . . , l2},

C
(2,2,2)
j = I for the other j ∈ {0, . . . , p(2, 2, 2)− 1}

if ∥∥∥x(2,2,2)P (2,2,2)

∥∥∥ > 1

2
,
∥∥∥x(2,2,2)P (2,2,2)+r2−r1 − x

(2,2,2)
P (2,2,2)

∥∥∥ ≤ ξ

8
·
∥∥∥x(2,2,2)P (2,2,2)

∥∥∥.
In the other cases, we define

C
(2,2,2)
0 = . . . = C

(2,2,2)
p(2,2,2)−1 = I.

We denote B2
k = B

(2,2,1)
k · C(2,2,2)

k and C2
k = C

(2,1,1)
k · C(2,1,2)

k · C(2,2,1)
k · C(2,2,2)

k

for k ∈ N0.

We continue the construction in the same manner. Before the i step for

arbitrary integer i ≥ 3, we construct the sequence{
Bi−1k

}
k∈N0

≡ {Ak · C1
k · . . . · Ci−1k }k∈N0 ,

where the sequence {C1
k · . . . · C

i−1
k }k∈N0 has period p(i− 1, i− 1, i− 1).

Step i.1. We consider the solution
{
x
(i,1,1)
k

}
k∈N0

of the Cauchy problem

xk+1 = Bi−1k · xk, k ∈ N0, x0 = v1.

We put

ri := l1 · . . . · li · 2
1+

i∑
n=1

n2

,(4.10)

P (i, 1, 1) := p(i− 1, i− 1, i− 1) · 2
1+

i−1∑
n=1

n2

.(4.11)

For δi and vector x
(i,1,1)
P (i,1,1)+ri

, there exist matrices

(4.12) M
(i,1,1)
1 , . . . ,M

(i,1,1)
li

∈ O%δi(I)
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with the property that∥∥∥∥∥∥M (i,1,1)
1 · . . . ·M (i,1,1)

li
·
x
(i,1,1)
P (i,1,1)+ri〈
x
(i,1,1)
P (i,1,1)+ri

〉 − x
(i,1,1)
P (i,1,1)+ri〈
x
(i,1,1)
P (i,1,1)+ri

〉
∥∥∥∥∥∥ > ξ

2
.

We define the periodic sequence
{
C

(i,1,1)
k

}
k∈N0

with the period p(i, 1, 1) :=

P (i, 1, 1) · ri (see (4.10) and (4.11)) by the values

C(i,1,1) = M
(i,1,1)
j for all j ∈ {1, . . . , li},

P (i,1,1)+(j−1)2
1+

i−1∑
n=1

n2

+2

i−1∑
n=1

n2

C
(i,1,1)
j = I for the other j ∈ {0, . . . , p(i, 1, 1)− 1}

if ∥∥∥x(i,1,1)P (i,1,1)

∥∥∥ > 1

2i−1
,

∥∥∥x(i,1,1)P (i,1,1)+ri
− x(i,1,1)P (i,1,1)

∥∥∥ ≤ ξ

8
·
∥∥∥x(i,1,1)P (i,1,1)

∥∥∥;

and by the values

C
(i,1,1)
0 = . . . = C

(i,1,1)
p(i,1,1)−1 = I

in the other cases. We introduce B
(i,1,1)
k = Bi−1k · C(i,1,1)

k , k ∈ N0.

We continue in the same manner in the i step of the construction.

Step i.i. We consider the solution
{
x
(i,1,i)
k

}
k∈N0

of the Cauchy problem

xk+1 = B
(i,1,i−1)
k · xk, k ∈ N0, x0 = v1.

We put

P (i, 1, i) := p(i, 1, i− 1) · 2
i+

i−1∑
n=1

n2

.

For δi and for x
(i,1,i)
P (i,1,i)+ri−ri−1

, there exist matrices

(4.13) M
(i,1,i)
1 , . . . ,M

(i,1,i)
li

∈ O%δi(I)

satisfying∥∥∥∥∥∥M (i,1,i)
1 · . . . ·M (i,1,i)

li
·
x
(i,1,i)
P (i,1,i)+ri−ri−1〈
x
(i,1,i)
P (i,1,i)+ri−ri−1

〉 − x
(i,1,i)
P (i,1,i)+ri−ri−1〈
x
(i,1,i)
P (i,1,i)+ri−ri−1

〉
∥∥∥∥∥∥ > ξ

2
.

We define the periodic sequence
{
C

(i,1,i)
k

}
k∈N0

with the period

p(i, 1, i) := P (i, 1, i) · (ri − ri−1)

by the values

C(i,1,i) = M
(i,1,i)
j for all j ∈ {1, . . . , li},

P (i,1,i)+(j−1)2
i+

i−1∑
n=1

n2

+2
i−1+

i−1∑
n=1

n2

C
(i,1,i)
j = I for the other j ∈ {0, . . . , p(i, 1, i)− 1}

if ∥∥∥x(i,1,i)P (i,1,i)

∥∥∥ > 1

2i−1
,

∥∥∥x(i,1,i)P (i,1,i)+ri−ri−1
− x(i,1,i)P (i,1,i)

∥∥∥ ≤ ξ

8
·
∥∥∥x(i,1,i)P (i,1,i)

∥∥∥;
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and we put

C
(i,1,i)
0 = . . . = C

(i,1,i)
p(i,1,i)−1 = I

in the other cases. We define B
(i,1,i)
k = B

(i,1,i−1)
k · C(i,1,i)

k , k ∈ N0.

We continue our construction.

Step i.i(i − 1) + 1. We consider the solution
{
x
(i,i,1)
k

}
k∈N0

of the Cauchy

problem

xk+1 = B
(i,i−1,i)
k · xk, k ∈ N0, x0 = vi.

We put

P (i, i, 1) := p(i, i− 1, i) · 2
i(i−1)+1+

i−1∑
n=1

n2

.

For δi and x
(i,i,1)
P (i,i,1)+ri

, there exist matrices

(4.14) M
(i,i,1)
1 , . . . ,M

(i,i,1)
li

∈ O%δi(I)

with the property that∥∥∥∥∥∥M (i,i,1)
1 · . . . ·M (i,i,1)

li
·
x
(i,i,1)
P (i,i,1)+ri〈
x
(i,i,1)
P (i,i,1)+ri

〉 − x
(i,i,1)
P (i,i,1)+ri〈
x
(i,i,1)
P (i,i,1)+ri

〉
∥∥∥∥∥∥ > ξ

2
.

We define the periodic sequence
{
C

(i,i,1)
k

}
k∈N0

with the period

p(i, i, 1) := P (i, i, 1) · ri

by the values

C(i,i,1) = M
(i,i,1)
j for all j ∈ {1, . . . , li},

P (i,i,1)+(j−1)2
i(i−1)+1+

i−1∑
n=1

n2

+2
i(i−1)+

i−1∑
n=1

n2

C
(i,i,1)
j = I for the other j ∈ {0, . . . , p(i, i, 1)− 1}

if ∥∥∥x(i,i,1)P (i,i,1)

∥∥∥ > 1

2i−1
,
∥∥∥x(i,i,1)P (i,i,1)+ri

− x(i,i,1)P (i,i,1)

∥∥∥ ≤ ξ

8
·
∥∥∥x(i,i,1)P (i,i,1)

∥∥∥;

and by the constant values

C
(i,i,1)
0 = . . . = C

(i,i,1)
p(i,i,1)−1 = I

in other cases. We define B
(i,i,1)
k = B

(i,i−1,i)
k · C(i,i,1)

k , k ∈ N0.

We continue the construction in the same way.

Step i.i2. We consider the solution
{
x
(i,i,i)
k

}
k∈N0

of the Cauchy problem

xk+1 = B
(i,i,i−1)
k · xk, k ∈ N0, x0 = vi

and we put

P (i, i, i) := p(i, i, i− 1) · 2
i∑

n=1
n2

.

For δi and for vector x
(i,i,i)
P (i,i,i)+ri−ri−1

, there exist matrices

(4.15) M
(i,i,i)
1 , . . . ,M

(i,i,i)
li

∈ O%δi(I)
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such that∥∥∥∥∥∥M (i,i,i)
1 · . . . ·M (i,i,i)

li
·
x
(i,i,i)
P (i,i,i)+ri−ri−1〈
x
(i,i,i)
P (i,i,i)+ri−ri−1

〉 − x
(i,i,i)
P (i,i,i)+ri−ri−1〈
x
(i,i,i)
P (i,i,i)+ri−ri−1

〉
∥∥∥∥∥∥ > ξ

2
.

We define the periodic sequence {C(i,i,i)
k }k∈N0

with the period

p(i, i, i) := P (i, i, i) · (ri − ri−1)

by the values

C(i,i,i) = M
(i,i,i)
j for all j ∈ {1, . . . , li},P (i,i,i)+(j−1)2

i∑
n=1

n2

+2
−1+

i∑
n=1

n2

C
(i,i,i)
j = I for the other j ∈ {0, . . . , p(i, i, i)− 1}

if ∥∥∥x(i,i,i)P (i,i,i)

∥∥∥ > 1

2i−1
,

∥∥∥x(i,i,i)P (i,i,i)+ri−ri−1
− x(i,i,i)P (i,i,i)

∥∥∥ ≤ ξ

8
·
∥∥∥x(i,i,i)P (i,i,i)

∥∥∥;

and by the constant values

C
(i,i,i)
0 = . . . = C

(i,i,i)
p(i,i,i)−1 = I

in the other cases. We introduce Bik = B
(i,i,i)
k = B

(i,i,i−1)
k · C(i,i,i)

k and

Cik = C
(i,1,1)
k · . . . · C(i,1,i)

k · C(i,2,1)
k · . . . · C(i,2,i)

k · . . . · C(i,i,1)
k · . . . · C(i,i,i)

k

for all k ∈ N0.

Analogously, we continue this construction for all i+ i, i ∈ N. We define the

resulting sequence of Bk by the formula

(4.16) Bk = Ak · C1
k · . . . · Cik · . . . , k ∈ N0.

This definition is correct. Indeed, based on the construction, for any k ∈ N0,

there exists t(k) ∈ N such that

(4.17) Bk = Ak · Ct(k)k .

Part IV. Now, we show that the resulting sequence {Bk} is limit peri-

odic. The limit periodicity of {Ak} implies the existence of periodic sequences

{Dn
k}k∈N0 ⊆ X for n ∈ N with the property that

(4.18) ‖Ak −Dn
k‖ <

1

2n
, k ∈ N0, n ∈ N.
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We have (see (4.3), (4.16), and (4.18))∥∥Bk −Dn
k · C1

k · . . . · Cik
∥∥ =

∥∥Ak · C1
k · . . . · Cik · . . .−Dn

k · C1
k · . . . · Cik

∥∥(4.19)

≤
∥∥Ak · C1

k · . . . · Cik · . . .−Ak · C1
k · . . . · Cik

∥∥
+
∥∥Ak · C1

k · . . . · Cik −Dn
k · C1

k · . . . · Cik
∥∥

≤‖Ak‖ ·
∥∥C1

k · . . . · Cik
(
Ci+1
k · Ci+2

k · . . .− I
)∥∥

+
∥∥Ak −Dn

k

∥∥ · ∥∥C1
k · . . . · Cik

∥∥
≤K ·

∥∥C1
k · . . . · Cik

∥∥ · ∥∥Ci+1
k · Ci+2

k · . . .− I
∥∥+

1

2n
·
∥∥C1

k · . . . · Cik
∥∥

for all k ∈ N0 and n, i ∈ N. Considering (4.5)–(4.9), . . . , (4.12), . . . , (4.13), . . . ,

(4.14), . . . , (4.15), we see that

(4.20) Cik ∈ O
%
δi

(I), k ∈ N0, i ∈ N.

Since (see (4.16) and (4.17))

(4.21) C1
k · . . . · Cik · . . . = C

t(k)
k , k ∈ N0,

there exists L > 0 with the property that (see (4.20))∥∥C1
k · . . . · Cik

∥∥ ≤ L, k ∈ N0, i ∈ N,

which implies (see (4.19))

(4.22)
∥∥Bk −Dn

k · C1
k · . . . · Cik

∥∥ ≤ KL · ∥∥Ci+1
k · Ci+2

k · . . .− I
∥∥+

L

2n

for k ∈ N0, n, i ∈ N. Applying (4.20) and (4.21), where t(k) ≤ k for all k ∈ N0

(consider the construction), and putting i = n, from (4.22), we obtain (see (4.4))∥∥Bk −Dn
k · C1

k · . . . · Cnk
∥∥ ≤ KL · δn+1 +

L

2n
=

εL

2n+1
+
L

2n
, k ∈ N0, n ∈ N.

Therefore, for n → ∞, the sequence {Bk} is the uniform limit of periodic se-

quences {Dn
k · C1

k · . . . · Cnk }k∈N0
. In particular, {Bk} is limit periodic. We also

have (see (4.4), (4.17), and (4.20))

(4.23)
∥∥Bk−Ak∥∥ =

∥∥Ak·Ct(k)k −Ak
∥∥ ≤ ‖Ak‖·∥∥Ct(k)k −I

∥∥ ≤ K·δ1 =
ε

2
, k ∈ N0.

Together with the limit periodicity of {Bk}, (4.23) gives {Bk} ∈ Oσε ({Ak}).
Part V. Let z ∈ N be given arbitrarily. Now, we consider the solution

{xzk}k∈N0 of the Cauchy problem

(4.24) xk+1 = Bk · xk, k ∈ N0, x0 = vz.

To prove the statement of the theorem, we assume that there exists b ≥ z, b ∈ N,

with the property that

(4.25)
∥∥xzk∥∥ ≥ 1

2b−1
, k ∈ N0.

We have to show that
{
xzk
}

is not asymptotically almost periodic.
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Let i > b, i ∈ N, be arbitrary. Since (see (4.25))∥∥xzP (i,z,1)

∥∥ =
∥∥x(i,z,1)P (i,z,1)

∥∥ > 1

2b
≥ 1

2i−1
,(4.26)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∥∥xzP (i,z,i)

∥∥ =
∥∥x(i,z,i)P (i,z,i)

∥∥ > 1

2b
≥ 1

2i−1
,(4.27)

we have the following possibilities. If∥∥∥x(i,z,1)P (i,z,1)+ri
− x(i,z,1)P (i,z,1)

∥∥∥ > ξ

8
·
∥∥∥x(i,z,1)P (i,z,1)

∥∥∥,
then (see (4.26))

(4.28)
∥∥∥xzP (i,z,1)+ri

− xzP (i,z,1)

∥∥∥ =
∥∥∥x(i,z,1)P (i,z,1)+ri

− x(i,z,1)P (i,z,1)

∥∥∥ > ξ

8
· 1

2b
.

If ∥∥∥x(i,z,1)P (i,z,1)+ri
− x(i,z,1)P (i,z,1)

∥∥∥ ≤ ξ

8
·
∥∥∥x(i,z,1)P (i,z,1)

∥∥∥,
then (see (4.2) and (4.26))∥∥xzP (i,z,1)+ri

− xzP (i,z,1)

∥∥
=
∥∥∥M (i,z,1)

1 · . . . ·M (i,z,1)
li

· x(i,z,1)P (i,z,1)+ri
− x(i,z,1)P (i,z,1)

∥∥∥
≥
∥∥∥M (i,z,1)

1 · . . . ·M (i,z,1)
li

· x(i,z,1)P (i,z,1)+ri
− x(i,z,1)P (i,z,1)+ri

∥∥∥
−
∥∥∥x(i,z,1)P (i,z,1)+ri

− x(i,z,1)P (i,z,1)

∥∥∥
=
∣∣∣〈x(i,z,1)P (i,z,1)+ri

〉∣∣∣
×

∥∥∥∥∥∥M (i,z,1)
1 · . . . ·M (i,z,1)

li
·
x
(i,z,1)
P (i,z,1)+ri〈
x
(i,z,1)
P (i,z,1)+ri

〉 − x
(i,z,1)
P (i,z,1)+ri〈
x
(i,z,1)
P (i,z,1)+ri

〉
∥∥∥∥∥∥

−
∥∥∥x(i,z,1)P (i,z,1)+ri

− x(i,z,1)P (i,z,1)

∥∥∥
≥

∥∥x(i,z,1)P (i,z,1)+ri

∥∥
2

· ξ
2
− ξ

8
·
∥∥x(i,z,1)P (i,z,1)

∥∥ > ξ

16
·
∥∥x(i,z,1)P (i,z,1)

∥∥ > ξ

16
· 1

2b
,

i.e.

(4.29)
∥∥xzP (i,z,1)+ri

− xzP (i,z,1)

∥∥ > ξ

16
· 1

2b
.

Note that, in the estimations above, we also use the fact that∣∣∣〈x(i,z,1)P (i,z,1)+ri

〉∣∣∣ ≤ ∥∥∥x(i,z,1)P (i,z,1)+ri

∥∥∥ ≤ 2
∣∣∣〈x(i,z,1)P (i,z,1)+ri

〉∣∣∣.
We continue these estimations. Finally, we get the following observation. If∥∥∥x(i,z,i)P (i,z,i)+ri−ri−1

− x(i,z,i)P (i,z,i)

∥∥∥ > ξ

8
·
∥∥∥x(i,z,i)P (i,z,i)

∥∥∥,
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then (see (4.27))

(4.30)
∥∥xzP (i,z,i)+ri−ri−1

− xzP (i,z,i)

∥∥ =
∥∥∥x(i,z,i)P (i,z,i)+ri−ri−1

− x(i,z,i)P (i,z,i)

∥∥∥ > ξ

8
· 1

2b
.

If ∥∥∥x(i,z,i)P (i,z,i)+ri−ri−1
− x(i,z,i)P (i,z,i)

∥∥∥ ≤ ξ

8
·
∥∥∥x(i,z,i)P (i,z,i)

∥∥∥,
then (see (4.27))∥∥xzP (i,z,i)+ri−ri−1

− xzP (i,z,i)

∥∥
=
∥∥∥M (i,z,i)

1 · . . . ·M (i,z,i)
li

· x(i,z,i)P (i,z,i)+ri−ri−1
− x(i,z,i)P (i,z,i)

∥∥∥
≥
∥∥∥M (i,z,i)

1 · . . . ·M (i,z,i)
li

· x(i,z,i)P (i,z,i)+ri−ri−1
− x(i,z,i)P (i,z,i)+ri−ri−1

∥∥∥
−
∥∥∥x(i,z,i)P (i,z,i)+ri−ri−1

− x(i,z,i)P (i,z,i)

∥∥∥
=
∣∣∣〈x(i,z,i)P (i,z,i)+ri−ri−1

〉∣∣∣
×

∥∥∥∥∥∥M (i,z,i)
1 · . . . ·M (i,z,i)

li
·
x
(i,z,i)
P (i,z,i)+ri−ri−1〈
x
(i,z,i)
P (i,z,i)+ri−ri−1

〉 − x
(i,z,i)
P (i,z,i)+ri−ri−1〈
x
(i,z,i)
P (i,z,i)+ri−ri−1

〉
∥∥∥∥∥∥

−
∥∥∥x(i,z,i)P (i,z,i)+ri−ri−1

− x(i,z,i)P (i,z,i)

∥∥∥
≥

∥∥x(i,z,i)P (i,z,i)+ri−ri−1

∥∥
2

· ξ
2
− ξ

8
·
∥∥∥x(i,z,i)P (i,z,i)

∥∥∥ > ξ

16
·
∥∥∥x(i,z,i)P (i,z,i)

∥∥∥ > ξ

16
· 1

2b
,

i.e.

(4.31)
∥∥xzP (i,z,i)+ri−ri−1

− xzP (i,z,i)

∥∥ > ξ

16
· 1

2b
.

In all these cases, we obtain the existence of numbers qij ∈ N for j ∈ {1, . . . , i}
with the property that (see (4.28) together with (4.29), . . . , (4.30) with (4.31))∥∥xzqi1+ri − xzqi1∥∥ > ξ

16
· 1

2b
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∥∥xzqii+ri−ri−1
− xzqii

∥∥ > ξ

16
· 1

2b
,

i.e. ∥∥xzpi1+ri − xzpi1∥∥ > ξ

16
· 1

2b
,(4.32)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∥∥xzpii+ri − xzpii+ri−1

∥∥ > ξ

16
· 1

2b
,(4.33)

where pi1 = qi1, . . . , p
i
i = qii − ri−1. We repeat that these inequalities follow from

the construction for any sufficiently large i ∈ N.

We apply Theorem 2.5, where we put s1 := 0, si+1 := ri, i ∈ N. Of course

(see (4.10)), lim
i→∞

si = ∞. Evidently, for any large i ∈ N and all considered
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integers j, we also have pij ∈ N. Thus, (4.32), . . . , (4.33) imply a contradiction

with (2.1) for ε = 2−b−4 ξ; i.e. the solution of the Cauchy problem (4.24) is not

asymptotically almost periodic. �

Remark 4.2. We point out that Theorem 4.1 improves the main results of

papers [8], [18], [20] (see also Remark 3.4). Hence, concerning other references,

remarks, and examples, we can refer to those articles (and also to [9], [19]). We

explicitly recall only the fact that any non-trivial solution {xk}k∈N0
of any ho-

mogeneous linear almost periodic difference system cannot be almost periodic if

lim inf
k→∞

‖xk‖ = 0.

We refer to [39, Lemma 3.10].

To illustrate the fact that our main result is new even in the real and complex

case, we mention the example below. In addition, in this example, we show how

our result improves results of [8], [20] (see Theorems 3.3 and 3.5).

Example 4.3. Let us consider the real case (i.e. let F = R) with the usual

absolute value. Let m = 4 and let the considered group X be the set of all

matrices in the following form
a cosα −a sinα 0 0

a sinα a cosα 0 0

0 0 b cosβ −b sinβ

0 0 b sinβ b cosβ

 ,

where a, b 6= 0, α, β ∈ R. Based on Theorem 4.1, we know that, for any countable

set of non-zero vectors u ∈ R4, in any neighbourhood of any system {Ak}k∈N0
∈

LP(X ), there exists a system {Bk}k∈N0
for which the solution {xk}k∈N0

of the

Cauchy problem

xk+1 = Bk · xk, k ∈ N0, x0 = u

is not asymptotically almost periodic or lim inf
k→∞

‖xk‖ = 0. For comparison, The-

orem 3.3 guarantees that the solutions are not almost periodic. Of course, a se-

quence can be asymptotically almost periodic and, at the same time, non-almost

periodic. Using Theorem 3.5, it is possible to guarantee only the existence of one

solution {xk}k∈N0 of xk+1 = Bk · xk which is not asymptotically almost periodic

or lim inf
k→∞

‖xk‖ = 0.

Example 4.4. In fact, from the proof of Theorem 4.1, it follows that the

statement of Theorem 4.1 is true also for concrete vectors u ∈ Fm satisfying

‖u‖ ≥ 1 for which there exist matrices M1, . . . ,Ml ∈ X such that (4.1) is valid.
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Hence, similarly as in Example 4.3, for the set X of all matrices
a cosα −a sinα 0 0 0

a sinα a cosα 0 0 0

0 0 1 0 0

0 0 0 b cosβ −b sinβ

0 0 0 b sinβ b cosβ

 ,

where a, b 6= 0, α, β ∈ R, we obtain the same conclusion as in Example 4.3 for

any countable set of vectors u = (u1, u2, u3, u4, u5)T ∈ R5 with the property that

|u1|+ |u2|+ |u4|+ |u5| > 0.

In addition, using the proof of Theorem 4.1, it is possible to prove the fol-

lowing result (cf. Theorem 3.5).

Theorem 4.5. Let the unit ball {u ∈ Fm; ‖u‖ ≤ 1} be compact. Let X be

commutative and have the property that there exists ξ > 0 such that, for any

δ > 0 and for any u ∈ Fm, ‖u‖ ≥ 1, there exist matrices M1, . . . ,Ml ∈ X
satisfying

(4.34) Mi ∈ O%δ (I), i ∈ {1, . . . , l}, ‖Ml · . . . ·M1 · u− u‖ > ξ.

Then, for any ε > 0, {Ak}k∈N0
∈ LP(X ), and for any sequence {vn}n∈N of

non-zero vectors vn ∈ Fm, there exists {Bk}k∈N0
∈ Oσε ({Ak}) with the property

that the solution {xnk}k∈N0
of

xk+1 = Bk · xk, k ∈ N0, x0 = vn

is not asymptotically almost periodic or lim inf
k→∞

‖xnk‖ = 0 for all n ∈ N.

Proof. It suffices to show that the number l of matrices M1, . . . ,Ml in (4.34)

can be taken as the same for the given δ > 0 and for all u ∈ Fm, 1 ≤ ‖u‖ ≤ 2

(consider the beginning of the proof of Theorem 4.1). For any v ∈ {u ∈ Fm;

1 ≤ ‖u‖ ≤ 2}, there exist matrices Mv
1 , . . . ,M

v
l(v) ∈ X such that

Mv
j ∈ O

%
δ (I), j ∈ {1, . . . , l(v)}, ‖Mv

l(v) · . . . ·M
v
1 · v − v‖ > ξ.

Thus, there exists an open set U ⊆ Fm such that v ∈ U and

‖Mv
l(v) · . . . ·M

v
1 · u− u‖ >

ξ

2
, u ∈ U.

From the set of all such sets U , one can extract a finite set {U1, . . . , Ui} which

covers the considered set {u ∈ Fm; 1 ≤ ‖u‖ ≤ 2}. Let us consider l as the maxi-

mum of the used l(v). Thus, this theorem follows from the proof of Theorem 4.1,

where ξ is replaced by ξ/2. �
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