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Abstract. This paper deals with classifying the dynamics of topologically

Anosov plane homeomorphisms. We prove that a topologically Anosov

homeomorphism f : R2 → R2 is conjugate to a homothety if it is the time
one map of a flow. We also obtain results for the cases when the nonwan-

dering set of f reduces to a fixed point, or if there exists an open, connected,

simply connected proper subset U such that f(U) ⊂ Int(U), and such that⋃
n≤0

fn(U) = R2.

In the general case, we prove a structure theorem for the α-limits of orbits

with empty ω-limit (or the ω-limits of orbits with empty α-limit).

1. Introduction

A homeomorphism f : M →M of the metric space to itself is called expansive

if there exists α > 0 such that given x, y ∈ M,x 6= y, then d(fn(x), fn(y)) > α

for some n ∈ Z. The number α is called the expansivity constant of f .

The study of expansive systems is both classic and fascinating. In Lewowicz’s

words [10], the fact that every point has a distinctive dynamical meaning implies

that a rich interaction between dynamics and topology is to be expected.

If δ > 0, a δ-pseudo-orbit for f is a sequence (xn)n∈Z such that d(f(xn), xn+1)

is less than δ for all n ∈ Z. If ε > 0, we say that the orbit of x ε-shadows a given

pseudo-orbit if d(xn, f
n(x)) < ε for all n ∈ Z. Finally, we say that f has the
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shadowing property if for each ε > 0 there exists δ > 0 such that every δ pseudo-

orbit is ε-shadowed by an orbit of f . In other words, systems with the shadowing

property are precisely the ones in which “observational errors” do not introduce

unexpected behavior, in the sense that simulated orbits actually “follow” real

orbits.

Anosov diffeomorphisms, the best known chaotic dynamical systems, are

expansive and have the shadowing property. Moreover, expansive homeomor-

phisms with the shadowing property on compact metric spaces are known to

have spectral decomposition in Smale’s sense ([1]).

On non-compact spaces however, it is well known that a dynamical system

may be expansive or have the shadowing property with respect to one metric,

but not with respect to another metric that induces the same topology. In [6]

topological definitions of expansiveness and shadowing are given that are equiv-

alent to the usual metric definitions for homeomorphisms on compact metric

spaces, but are independent of any change of compatible metric. In [4], the au-

thor applies these definitions with the plane R2 as the phase space and proves

a fixed point theorem. Following his spirit, we take these definitions and try to

classify the dynamics with the plane R2 as the phase space.

Let f : R2 → R2 be a continuous map and δ : R2 → R a continuous and

strictly positive function. A δ-pseudo-orbit for f is a sequence (xn)n∈Z ⊂ R2

such that ‖f(xn) − xn+1‖ < δ(f(xn)). Let ε : R2 → R be a continuous and

strictly positive function. A δ-pseudo-orbit (xn)n∈Z is ε-shadowed by an orbit,

if there exists x ∈ R2 such that ‖xn − fn(x)‖ < ε(xn) for all n ∈ Z.

Throughout this paper f : R2 → R2 is a topologically Anosov (TA) homeo-

morphism. That is:

• it is topologically expansive: there exists a continuous and strictly pos-

itive function ε : R2 → R such that for all x, y ∈ R2, x 6= y there exists

k ∈ Z satisfying ‖fk(x)− fk(y)‖ > ε(fk(x));

• it satisfies the topological shadowing property: for all continuous and

strictly positive functions ε : R2 → R there exists δ : R2 → R a con-

tinuous and strictly positive function such that every δ-pseudo-orbit is

ε-shadowed by an orbit.

As an example, a rigid translation is topologically expansive but does not sa-

tisfy the topological shadowing property (see Lemma 4.1 in [4] for a proof). An

example of TA homeomorphism is any homothety (see [4] for a proof); following

the same ideas it can be seen that the map z 7→ 2z̄, z ∈ C is also a TA homeo-

morphism. By reverse homothety we mean the map z 7→ λz, z ∈ C, λ 6= 0, 1,−1.

As being TA is a conjugacy invariant, the whole conjugacy class of homotheties

and reverse homotheties belongs to the family of TA homeomorphisms. In this

work we deal with the problem of classifying TA homeomorphisms. In particular,
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are all TA homeomorphisms conjugate to a homothety or a reverse homothety?

We prove that this is the case if the homeomorphism is the time one map of

a flow defined by a C1 vector field (Theorem 4.2). If there is a global attracting

fixed point z0 (that is, fn(x)→ z0 for all x ∈ R2), we prove that f must be also

conjugate to a homothety or a reverse homothety. What about an expansive

attractor? Is the Plykin attractor TA? We prove it is not, at least if its basin

of attraction is the whole plane. More generally, we prove that if there exists an

open, connected, simply connected proper subset U such that f(U) ⊂ Int(U),

and such that
⋃
n≤0

fn(U) = R2, then K =
⋂
n≥0

fn(U) must be a single point.

Finally, we prove that if f ∈ Homeo(R2) is TA, and Ω(f) = {x0}, x0 ∈ Fix(f),

then f is conjugate to a homothety if f is orientation preserving , and conjugate

to a reverse homothety if f is orientation reversing. These results are part of

a bigger plan that we state here as a conjecture:

Conjecture 1.1. Every TA homeomorphism on R2 is conjugate to a ho-

mothety or a reverse homothety.

We have decided to present all of our results on the plane. We point out

however that some intermediate results remain valid for higher dimensions with

straightforward generalization of the proofs. Nevertheless for our main results

we use Kerékjátó’s Theorem (see [8], [9]) which has been extended to Rn, n 6= 4, 5,

when the map preserves orientation (Theorems 3.7 and 5.3); Poincaré–Bendixon’s

Theorem which is strictly two dimensional (Theorem 4.2).

2. The one-dimensional case

In this brief section we characterize topologically Anosov homeomorphisms

on R.

Theorem 2.1. Let f be a topologically Anosov homeomorphism on R. Then,

f is topologically conjugate to g1 where g1(x) = ±2x or g2 where g2(x) = ±x/2,

depending on whether f preserves or reverses orientation.

Let us prove a useful lemma.

Lemma 2.2. Let f : R→ R be a topologically Anosov homeomorphism. Then,

there exists a unique fixed point for f .

Proof. If f reverses orientation, it is clear that Fix(f) = {p}, for some

p ∈ R. If f is orientation preserving, and fixed point free, then f is topologically

conjugate to a translation, which does not admit the shadowing property (this

is easy to see, but we refer the reader to Lemma 4.1 in [4] for a proof).

Regarding uniqueness, suppose that x1 < x2 are fixed points and let g be

the restriction of f to [x1, x2]. Then g is a metric expansive homeomorphism in

a compact interval, contradicting Bryant’s theorem in [3]. �
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Proof of Theorem 2.1. By the previous lemma, Fix(f) = {x0}. With-

out loss of generality, let us consider the case x0 = 0. We deal first with the

orientation preserving case.

Consider h : R→ R defined as follow:

• h(0) = 0.

• Fix some point p ∈ R+ and define h(p) = q where q is an arbitrary point

of R+. Let g1 : R → R and g2 : R → R be defined as g1(x) = 2x and

g2(x) = x/2. Then, if fn(p) tends to ∞ define h(fn(p)) = gn1 (h(p)),

n ∈ Z and if fn(p) tends to 0 define h(fn(p)) = gn2 (h(p)), n ∈ Z.

• In the open interval (p, f(p)) define h as an arbitrary increasing homeo-

morphism.

• Finally, let x > 0 be an arbitrary point. Then, x ∈
[
fk(p), fk+1(p)

]
for

some k ∈ Z. Thus we define h on x as h(x) = gki (h(f−k(x))), i = 1, 2,

depending on whether fn(p) tends to ∞ or to 0.

• The construction is the same for x ∈ R−.

• We claim that 0 is a global repeller or attractor and then conjugate to

gi, i = 1, 2, respectively. If not there exist, q < 0 and p > 0 such that

d(q, p) < δ, fn(p) tends to ∞, n→ +∞ and fn(q) tends to 0, n→ +∞
(or viceversa). So, given an arbitrary δ > 0 consider a δ-pseudo-orbit

(xn)n∈Z defined as: xn = fn(q) for n ≤ 0, and xn = fn−1(p) for n ≥ 1. It

is clear that there is no orbit that ε-shadows (xn)n∈Z for a convenient ε.

This proves the claim.

If f reverses orientation, we know that f2 is an orientation preserving topo-

logically Anosov homeomorphism and then conjugate to a homothety. We also

have that Fix(f2) = {0} (if not we have a contradiction with the expansivity

of f2). Thus, every point p ∈ R verifies that f2n(p) tends monotonously to∞ or

to 0 when n tends to +∞. But this implies that f2n+1(p) tends monotonously to

∞ or to 0 when n tends to +∞. So, we are able to define a conjugation between

f and g1(x) = −2x if 0 is a repeller (g2(x) = −x/2 if 0 is an attractor) in the

same way we did in the orientation preserving case. �

3. Non-accumulating future (or past) orbits

Points with empty α- or ω-limits are specially important for the study of TA

plane homeomorphisms. We explain why in this section.

Lemma 3.1. Let f ∈ Homeo(R2). If ω(x) = ∅ there exists ε : R2 → R
a continuous positive map with the property that if y 6= x, then there exists n > 0

such that ‖fn(x)−fn(y)‖ > ε(fn(x)). In particular, if (xn)n∈Z is a pseudo-orbit

such that for some n0, xn = fn(x) for all n ≥ n0, then the only possible orbit

that ε-shadows (xn)n∈Z is that of x.
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Proof. First note ω(x) = ∅ implies that there exists a family of pairwise

disjoint open sets (Un)n∈N such that each Un is a neighbourhood of fn(x). We

claim that there exists a family of open sets (Vn)n∈N such that for all n ∈ N,

Vn ⊂ Un, Vn is a neighbourhood of fn(x), and a continuous map h :
⋃
n
Vn→R2

which is a homeomorphism onto its image such that hf |⋃
n
Vn

= Th, where T (v) =

v + e, e = (1, 0) for all v ∈ R2.

Take a homeomorphism h : U0 → B((0, 0), 1/3), and let V0 ⊂ U0 be an open

set containing x such that f(V0) ⊂ U1. Define Ũ1 := f(V0) and extend the

homeomorphism h to Ũ1 as h|Ũ1
= Thf−1. Note that hf |V0 = Th|V0 .

We now define V1 ⊂ Ũ1 such that f(V1) ⊂ U2. Let Ũ2 = f(V1) and extend h

to Ũ2 as h|Ũ2
= Thf−1.

Inductively, if h is defined on Ũi ⊂ Ui, we extend h to Ũi+1 ⊂ Ui+1 as

follows. We take Vi ⊂ Ũi such that f(Vi) ⊂ Ui+1 and let Ũi+1 = f(Vi). We then

let h|Ũi+1
= Thf−1. Note that, for all i, hf |Vi

= Th|Vi
. This proves the claim.

Now take ε̃ : R2 → R a continuous positive map verifying that for all n ∈ N,

B((k, 0), ε̃((k, 0))) ⊂ h(Vk) and also that if y 6= x, then there exists n > 0

such that ‖Tn(x)− Tn(y)‖ > ε̃(Tn(x)). Finally, we define ε : R2 → R such that

B(fn(x), ε(fn(x))) ⊂ h−1(B((k, 0)), ε̃((k, 0))) and extend it to a continuous posi-

tive map of R2. To check that this map satisfies the condition of the lemma, just

notice that, if for some y, fn(y) ∈ Vn for all n ∈ N, then Tnh(y) = h(fn(y)). �

Lemma 3.2. Let f ∈ Homeo(R2) be a TA homeomorphism. If α(x) = ∅,
then ω(x) 6= ∅.

Proof. If α(x) = ω(x) = ∅, by Lemma 3.1 there exists ε : R2 → R a con-

tinuous positive map with the property that if y 6= x, then there exists n,m > 0

such that

‖fn(x)− fn(y)‖ > ε(fn(x)) and ‖f−m(x)− f−m(y)‖ > ε(f−m(x)).

Take δ : R2 → R a continuous positive map as in the definition of shadowing,

and consider the following δ-pseudo-orbit (xn)n∈Z: xn = fn(x) for all n < 0;

xn = fn(y) for all n ≥ 0, where y ∈ B(x, δ(x)). Then, the orbit of x must

ε-shadow this pseudo-orbit, but this is impossible by the choice of the map ε.�

For the remainder of this section f ∈ Homeo(R2) is assumed to be TA and

z0 ∈ Fix(f).

Lemma 3.3. If there exists z ∈ R2 such that α(z) = ∅ and ω(z) = {z0}, then

z0 is Lyapunov stable.

Proof. By Lemma 3.1 there exists E : R2 → R a continuous positive map

with the property that if (xn)n∈Z is a pseudo-orbit such that xn = fn(z) for all

n ≤ n0, then the only possible orbit that E-shadows (xn)n∈Z is that of z because
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α(z) = ∅. Given ε > 0, take n0 such that fn(z) /∈ B(z0, ε) for all n ≤ n0,

and construct ξ : R2 → R a continuous positive map such that ξ(z0) = ε and

ξ(fn(z)) = E(fn(z)) for all n ≤ n0. Take δ : R2 → R a continuous positive

map, such that every δ-pseudo-orbit is ξ-shadowed by an orbit. It follows that

y ∈ B(z0, δ(z0)) implies fn(y) ∈ B(z0, ε) for all n ≥ 0 (otherwise there exists

a δ-pseudo-orbit that cannot be ξ-shadowed). �

Lemma 3.4. If there exists x 6= z0 such that α(x) = ω(x) = {z0}, then there

exists y0 6= z0 and z such that y0 ∈ ω(z).

Proof. Suppose that α(x) = ω(x) = {z0} and take ε : R2 → R a continuous

positive map such that the entire orbit of x is not contained in B0 = B(z0, ε(z0)).

Modifying the function ε if necessary, we may assume that B(fn(x), ε(fn(x)))∩
B0 = ∅ for all n such that fn(x) /∈ B0.

Take δ : R2 → R a continuous positive map as in the definition of shadow-

ing, and take positive integers N,M big enough such that d(f−N (x), fM (x)) <

min{δ(z) : z ∈ B0}. Then, w0 = z0, wi+1 = f−N+i(x), i = 0, . . . ,M + N − 1,

wM = z0 defines a periodic δ-pseudo-orbit (wn)n∈Z. Note that if the orbit of

a point z ε-shadows this pseudo-orbit, it must visit infinitely many times any

B(fn(x), ε(fn(x))) such that fn(x) /∈ B0. Therefore, there exists y0 6= z0 such

that y0 ∈ ω(z). �

Lemma 3.5. If Ω(f) = {z0}, then there exists x ∈ R2 such that α(x) = ∅ or

ω(x) = ∅.

Proof. First note that as Ω(f) = {z0}, for all x the sets α(x) and ω(x) are

either empty or the single point z0 (as y ∈ α(x) ∪ ω(x) implies y ∈ Ω(f)). We

finish the proof by pointing out that if α(x) = {z0}, then ω(x) = ∅ because of

the preceeding lemma. �

Lemma 3.6. If Ω(f) 6= {z0}, then there exists y0 6= z0 and z such that

y0 ∈ ω(z).

Proof. Take x 6= z0 ∈ Ω(f) and note that we may assume that x /∈ Fix(f)

(otherwise we are done with the proof). Take α > 0 such that B(z0, α), B(x, α)

and B(f(x), α) are pairwise disjoint. Take ε : R2 → R a continuous positive

map such that ε(z0) = ε(x) = ε(f(x)) = α and take δ : R2 → R a contin-

uous positive map as in the definition of shadowing. Take 0 < β < δ(x)/2

such that f(B(x, β)) ⊂ B(f(x), δ(f(x))/2). As x ∈ Ω(f), there exists y and

n > 0 such that both y and fn(y) belong to B(x, β). Then, f(y) belongs

to B(f(x), δ(f(x))/2). Then construct the following periodic δ-pseudo-orbit:

x0 = x, xi = f i(y) for all i = 1, . . . , n− 1, xn = x = x0. This pseudo-orbit must

be ε-shadowed by the orbit of a point z. Therefore, the orbit of z must visit

infinitely many times B(x, α), and the result follows. �
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We obtain our first result:

Theorem 3.7. If Ω(f) = {z0}, then f is conjugate to a homothety or a re-

verse homothety.

Proof. As was already pointed out, for all x the sets α(x) and ω(x) are

either empty or the single point z0 (as y ∈ α(x) ∪ ω(x) implies y ∈ Ω(f)).

By Lemma 3.5 there exists x ∈ R2 such that α(x) = ∅ or ω(x) = ∅. Moreover,

if α(x) = ∅, then ω(x) = {z0} (indeed, Lemma 3.2 implies that ω(x) 6= ∅).
Finally, we claim that if there exists x such that α(x) = ∅ (and therefore

ω(x) = {z0}), then every z 6= z0 verifies α(z) = ∅ (and therefore ω(z) = {z0}).
Indeed, by Lemma 3.3, x0 is Lyapunov stable, which implies that any z 6= z0
such that α(z) = {z0} must verify also ω(z) = {z0}, which is impossible by

Lemma 3.4. We conclude that if there exists x such that α(x) = ∅, then z0 is a

global attractor, that is, lim
n→+∞

fn(z) = z0 for all z ∈ R2.

If there is no x such that α(x) = ∅, then α(x) = {z0} for all x, and therefore

ω(x) = ∅ for all x.

We have proven that z0 is either a global attractor or a global repeller which

is asymptotically stable. The result now follow from Kerékjártó’s theorem ([8],

[9], or for a more modern approach [7]). �

Theorem 3.8 (Kerékjártó). A planar homeomorphism f with an asympto-

tically stable fixed point is conjugate, on its basin of attraction, to one of the

maps z 7→ z/2 or z 7→ z/2, depending on whether f preserves or reverses the

orientation.

Corollary 3.9. If z0 satisfies lim
n→+∞

fn(z) = z0 for all z ∈ R2, then f is

conjugate to a homothety or a reverse homothety.

Proof. In this case, Ω(f) = {z0} and we are done by the previous theorem.�

We finish this section by describing the possible ω- (or α-) limits of points

with non-accumulating past (or future) orbits.

Lemma 3.10. If ω(x) = ∅, then α(x) contains at most one periodic orbit.

Proof. By Lemma 3.1, there exists ε : R2 → R a continuous positive map

with the property that if y 6= x, then there exists n ∈ Z, n > 0 such that

‖fn(x) − fn(y)‖ > ε(fn(x)). In particular, if (xn)n∈Z is a pseudo-orbit such

that, for some n0 xn = fn(x) for all n ≥ n0, then the only possible orbit that

ε-shadows (xn)n∈Z is that of x.

Suppose that α(x) contains two different periodic orbits z1 and z2. Modi-

fying the function ε if necessary, we may assume that B(fn(zi), ε(f
n(zi))) ∩

B(fm(zj), ε(f
m(zj))) 6= ∅ if and only if i = j and m = n.
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Take δ : R2 → R a continuous positive map, such that every δ-pseudo-orbit

is ε-shadowed by an orbit and take n1, n2 positive integers such that f−n1(x) ∈
B(z1, δ(z1)) and f−n2(x) ∈ B(z2, δ(z2)). Construct now two δ-pseudo-orbits

(x1n)n∈Z and (x2n)n∈Z as follows: x1n = f (−n1−n)(z1) for all n < −n1; x1n = fn(x)

for all n ≥ −n1; x2n = f (−n2−n)(z2) for all n < −n2; x2n = fn(x) for all n ≥ −n2.

As noted above, then the only possible orbit that ε-shadows any of these pseudo-

orbits is that of x. However, if the orbit of x ε-shadows the pseudo-orbit (x1n)n∈Z,

fn(x) ∈ B(x1n, ε(x
1
n)) for all n < −n1. This clearly implies that the orbit of x

cannot ε-shadow the pseudo-orbit (x2n)n∈Z, a contradiction. �

Recall that a map is future expansive if there exists ε > 0 such that x 6= y

implies there exists n ≥ 0 such that d(fn(x), fn(y)) > ε. The following classic

result will be used in the next lemma. It has been attributed to Utz in [10] with

no reference to be found. A nice, elementary proof can be found in [5].

Theorem 3.11. If K is compact and supports a future-expansive homeomor-

phism, then it is finite.

Lemma 3.12. Let K be compact and invariant, and suppose there exists

α > 0, C > 0, such that for x, y ∈ K with 0 < d(x, y) < α implies that there

exists j > 0 such that d(f j(x), f j(y)) > C. Then, K is finite.

Proof. Note that if C > α, we get that f |K is α-future expansive. If

C ≤ α we get that f |K is C-future expansive. In any case, K must be finite by

Theorem 3.11. �

Lemma 3.13. Let K be a compact invariant set with expansivity constant C.

Suppose that for all x ∈ K there exists a neighbourhood U of x, and z ∈ U such

that the orbit of z C/2-shadows any pseudo-orbit (xn)n∈Z such that xn = fn(y),

n < 0 for some y ∈ U and xn = fn(z), n ≥ 0. Then K is finite.

Proof. Take a finite cover of K with neighbourhoods as in the hypothesis

of the lemma. Let α > 0 be such that d(x, y) < α, then x and y belong to one of

the balls of such a cover. Then, if d(x, y) < α, both pseudo-orbits xn = fn(x),

n < 0 and xn = fn(z), n ≥ 0 and yn = fn(y), n < 0 and yn = fn(z), n ≥ 0

are C/2-shadowed by the orbit of z, and therefore d(f−n(x), f−n(y)) < C for

all n > 0. By expansivity, if 0 < d(x, y) < α, then there exists j ≥ 0 such that

d(f j(x), f j(y)) > C. We are done by the previous lemma. �

Lemma 3.14. If ω(z) = ∅, then α(z) is either unbounded or a single periodic

orbit.

Proof. Suppose that α(z) is bounded, so that it is a compact invariant

set K. We know that f |K is expansive: there exists C > 0 such that x 6= y,
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x, y ∈ K implies there exists n ∈ Z such that d(fn(x), fn(y)) > C. We claim

that K verifies the hypothesis of the previous lemma.

Take ε : R2 → R as in Lemma 3.1, and modify it, if necessary, such that

2ε(x) < C for all x ∈ K.

Take δ : R2 → R as in the definition of topological shadowing and, for all

x ∈ K, take Ux = B(x, δ(x)/2). Take n0 such that f−n0(z) ∈ U = Ux, for some

x ∈ K. By the choice of ε : R2 → R, the orbit of z C/2-shadows any pseudo-orbit

such that xn = fn(y), n < 0 for some y ∈ U , xn = f−n0+n(z), n ≥ 0. This

proves the claim, and therefore K is finite. Now, by Lemma 3.10, K must be

a single periodic orbit. �

4. Time one maps

We recall the classical Poincaré-Bendixon’s theorem on S2:

Theorem 4.1. Let (ft)t∈R be a flow defined by a C1-vector field on the

sphere S2. Then, the α-limit and the ω-limit of any orbit is either a singularity,

a periodic orbit, or a cycle of connections.

Recall that a connection between two singularities x1 and x2 (not necessarily

different) is an orbit x such that α(x) = x1 and ω(x) = x2 (or α(x) = x2
and ω(x) = x1). We say that the connection is from x1 to x2 of from x2
to x1, respectively. A cycle of connections is a finite number of singularities

x1, . . . , xn such that there is a connection from xi to xi+1 for all i ∈ 1, . . . n− 1

and a connection from xn to x1 (or such that there is a connection from xi to

xi−1 for all i ∈ 2, . . . , n and a connection from x1 to xn ).

Throughout this section, we let f : R2 → R2 be a TA homeomorphism that

is the time one map of a flow. The orbit of a point x for the flow will be noted

O(x). Note that the flow extends to the sphere S2 with a singularity at infinity.

We say that a connection between two singularities x1 and x2 is finite if xi 6=∞,

i = 1, 2. Our first goal is to prove:

Theorem 4.2. f is conjugate to a homothety.

Lemma 4.3. There are no periodic orbits or finite connections.

Proof. We claim that any of those phenomena contradicts the topological

expansivity. Indeed, take a continuous and strictly positive function ε : R2 → R
such that for all x, y ∈ R2, x 6= y there exists k ∈ Z satisfying

∥∥fk(x)− fk(y)
∥∥ >

ε(fk(x)). Suppose that there is a finite connection. Then, there exists x, x1, x2 ∈
R2 such that α(x) = x1 and ω(x) = x2. Take N large enough such that |k| > N

implies fk(x) ∈ B(x1,m/2) ∪ B(x2,m/2), with m = min
{
ε(z) : z ∈ O(x)

}
.

Note that if y ∈ O(x), enlarging N if necessary we may assume that |k| > N

implies also fk(y) ∈ B(x1,m/2) ∪B(x2,m/2).
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Now, take δ > 0 such that d(x, y) < δ implies d(fn(x), fn(y)) < m for all

|n| ≤ N . Then, for all k ∈ Z, ‖fk(x) − fk(y)‖ < m, violating the expansivity

condition. The proof for a periodic orbit is analogous and left to the reader. �

The previous lemma implies that if there is a cycle of connections contain-

ing ∞, there exists x such that α(x) =∞, ω(x) = x0 with x0 a singularity, and

there exists y such that α(y) = x0, ω(y) =∞.

Lemma 4.4. There are no cycles of connections.

Proof. We have already seen that there are no finite connections (Lem-

ma 4.3). We need to discard a cycle of connections containing ∞. By the

remark preceeding this lemma, there exists x such that α(x) = ∞, ω(x) = x0
with x0 a singularity, and there exists y such that α(y) = x0, ω(y) =∞.

Now, by Lemma 3.1, one may choose ε : R2 → R a continuous positive map

with the property that if z 6= x, then there exists n ∈ Z, n < 0 such that

‖fn(x) − fn(z)‖ > ε(fn(x)) (the only orbit that ε-past-shadows the orbit of

x is the orbit of x itself). There exists k > 0 such that fk(y) /∈ B(x0, ε(x0))

because ω(y) =∞. Take δ : R2 → R a continuous positive map, such that every

δ-pseudo-orbit is ε-shadowed by an orbit.

We will finish the proof by constructing a δ-pseudo-orbit (xn)n∈Z that is not

ε-shadowed by any orbit. Let n0 be such that for all n ≥ n0 fn(x) ∈ B(x0, δ(x0))

and such that for all n ≤ −n0 fn(y) ∈ B(x0, δ(x0)). Define xn = fn(x) for all

n ≤ n0, xn0+1 = x0, xn0+2 = fn0(y), xn = f(xn−1) for all n > n0 + 2. Note

that (xn)n∈Z is a δ-pseudo-orbit that is not ε-shadowed, because the choice of ε

implies that the only candidate is the orbit of x, but fk(y) /∈ B(x0, ε(x0)). �

It follows by the Poincaré–Bendixon’s theorem that both the α and ω-limit

of any point are either empty or consist of a single fixed point. Moreover, if

α(x) = ∅, then ω(x) = x0, x0 ∈ Fix(f) (and vice-versa).

Lemma 4.5. If there exists an orbit x such that ω(x) 6= ∅, then ω(x) is

Lyapunov stable.

Proof. By the previous remark, we may assume that ω(x) = x0 (and there-

fore α(x) = ∅). The result now follows from Lemma 3.3. �

Lemma 4.6. If there exists an orbit x such that ω(x) 6= ∅, then ω(x) is a sink.

Proof. Note that topological expansivity implies that Fix(f) is a discrete

set. Take a neighbourhood U of ω(x) such that U ∩ Fix(f) = ω(x). By the

previous lemma, there exists a neighbourhood V ⊂ U of ω(x) such that the ω

limit of any orbit in V cannot be empty, and therefore must be ω(x). The result

follows. �
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Remark 4.7. We have the analogous statement: If there exists an orbit x

such that α(x) 6= ∅, then α(x) is a source.

Lemma 4.8. If there exists an orbit x such that ω(x) 6= ∅, then f is topolo-

gically conjugate to a homothety.

Proof. By the previous lemma, there exists an open and invariant set U

such that f |U is conjugate to a homothety. Let us show that U = R2. Otherwise,

take x ∈ ∂U . Note that the ω limit of x must be empty, otherwise it would be

a sink by the previous lemma, contradicting that it belongs to ∂U . Also, the

α limit of x must be empty. Otherwise, it would be a source and therefore the

α limit of some point in U , contradicting that there are no connections. This

contradicts Lemma 3.2. �

Remark 4.9. Analogously, if there exists an orbit x such that α(x) 6= ∅,
then f is topologically conjugate to a homothety.

We are now ready to finish the proof of Theorem 4.2.

Proof. Note that by Lemma 3.2 and the remark following Lemma 4.4, there

exists an orbit x such that ω(x) 6= ∅, or there exists an orbit x such that α(x) 6= ∅.
The result now follows from the previous lemma and remark. �

5. Attractor at infinity

Throughout this section we assume that infinity is a topological attractor;

that is, there exists an open simply connected proper subset U with compact

closure, such that U ⊂ Int(f(U)), and such that ∪n≥0fn(U) = R2. We denote

K =
⋂
n≤0

fn(U). Note that K is compact, invariant, connected and non-empty.(
Of course we have an analogous situation if infinity is a topological repeller;

that is, there exists an open, connected, simply connected proper subset U such

that f(U) ⊂ Int(U), and such that
⋃
n≤0

fn(U) = R2
)

.

Lemma 5.1. There exists ε : R2 → R a continuous positive map such that if

y 6= x, x, y /∈ K there exists n > 0 such that ‖fn(x) − fn(y)‖ > ε(fn(x)). In

particular, if (xn)n∈Z is a pseudo-orbit such that for some n0 xn = fn(x) for all

n ≥ n0, x /∈ K, then the only possible orbit that ε-shadows (xn)n∈Z is that of x.

Proof. Just note that f |R2\K is conjugate to x 7→ λx, λ > 1 on R2 \ (0, 0).

We refer the reader to [7, p. 503, proof of Theorem 1.1] for a detailed proof. �

Lemma 5.2. K = {x0}.

Proof. We know that f |K is expansive: there exists C > 0 such that x 6= y,

x, y ∈ K implies there exists n ∈ Z such that d(fn(x), fn(y)) > C. Take
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ε : R2 → R as in the previous lemma, and modify it, if necessary, such that

2ε(x) < C for all x ∈ K.

Take δ : R2 → R as in the definition of topological shadowing and, for all

x ∈ K, take V = B(x, δ(x)/2). Note that the orbit of any z ∈ V \ K, C/2-

shadows any pseudo-orbit such that xn = fn(y), n < 0, xn = fn(z), n ≥ 0

for some y ∈ V . So, Lemma 3.13 implies that K must be finite and as it is

connected, a single point. �

As a corollary, we obtain:

Theorem 5.3. If there is an attractor at infinity, then f is conjugate to

a homothety or a reverse homothety.
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