
Topological Methods in Nonlinear Analysis
Volume 54, No. 1, 2019, 177–202

DOI: 10.12775/TMNA.2019.033

c© 2019 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University in Toruń

TOPOLOGICAL CHARACTERISTICS OF SOLUTION SETS

FOR FRACTIONAL EVOLUTION EQUATIONS

AND APPLICATIONS TO CONTROL SYSTEMS

Shouguo Zhu — Zhenbin Fan — Gang Li

Abstract. This paper explores an abstract Riemann–Liouville fractional

evolution model with a weighted delay initial condition. We develop the
resolvent technique, a generalization of semigroup method, to formulate an

appropriate notion of mild solutions to this abstract system and present the

topological characteristics of the corresponding solution set in a weighted
space. Furthermore, in view of the topological characteristics, we analyze

the approximate controllability of the abstract system without Lipschitz

assumption. We end up addressing an infinite dimensional fractional de-
lay diffusion control system and a finite dimensional fractional ordinary

differential control system by utilizing our theoretical findings.

1. Introduction

Fractional differential systems have in recent years been active research topics

because of their broad applicability in describing many physical problems with

memory features and genetic properties. Many fruitful findings on fractional

equations have been reported in the literature (see [23], [29], [33], [36]).

Du and Wang [8] demonstrated that Riemann–Liouville fractional systems

are more suitable to describe some practical applications in viscoelastic materials
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than equations with Caputo derivatives. Furthermore, authors in [31] pointed

out that when the Caputo-type derivative is employed in the definition of “state

space description” in practical applications, the system memory no longer exists

at time s = 0, but appears at s > 0, namely the system is not physically

consistent. Thereby, it is necessary to focus on Riemann–Liouville fractional

equations.

On the other hand, Agarwal et al. [1] handled a Riemann–Liouville evo-

lution system with a delay initial condition satisfying φ(0) = 0. However, it

is well-known that the solutions of Riemann–Liouville fractional systems admit

singularity at zero, except that φ(0) = 0. If φ(0) 6= 0, the solutions of the de-

lay evolution system in [1] may not be well-defined. Hence, if φ(0) 6= 0, it is

necessary to introduce a new suitable initial condition.

To investigate fractional evolution models, the initial step is a question how

to formulate a suitable notion of mild solutions. The concept of a mild solution to

a Caputo fractional evolution system was first presented by applying the idea of

probability density functions and C0-semigroups (see [9]). In [30], by introducing

a solution operator, Prüss analyzed a Volterra equation and investigated the well-

posedness of this equation. It should be pointed out that, with the help of the

solution operator approach in [30], the definition of mild solutions to a Caputo

type fractional system in [11] was also formulated.

Emphasis here is that the solution operator method, a generalization of the

semigroup technique, is convenient and efficient in investigating fractional sys-

tems. However, the solution operator method from [30] and [11] can not be

used to solve Riemann–Liouville fractional systems since these systems admit

singularity at zero. New approaches must be proposed. In [22], by introducing

a β-order fractional resolvent, the notion of solutions to a Riemann–Liouville

fractional homogeneous problem was constructed. The results in [22] were later

generalized to an inhomogeneous linear system (see [10]) and a fractional semi-

linear system (see [39], [40]) by the resolvent method. In this paper, we will

develop the resolvent technique to treat the fractional delay diffusion control

system (2.1).

When the uniqueness of solutions cannot be ensured, a natural question is

to conduct some investigations on the topological characteristics of the solution

set. Moreover, the topological characteristics are powerful tools to study periodic

problems (see [3], [7]). Thereby, an increasing research interest has been devoted

to analyzing the topological structure problems (refer to [2], [6], [15], [20], [34]).

But it is a pity that few related results have been proposed for Riemann–Liouville

evolution systems and this fact is another motivation of the current research.

In addition, the approximate controllability problems of evolution systems

have drawn tremendous attention because of their extensive applications in many
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fields, such as engineering practice, control theory, electrical circuit and techni-

cal science, etc. Under the Lipschitz assumption of the nonlinear terms, many

investigators analyzed the problems by using the range condition proposed by

Naito [27], such as [21] and [25]. For example, Kumar and Sukavanam [21]

recently investigated the approximate controllability of Caputo type fractional

delay evolution systems in Hilbert spaces with the help of the range condition

and the Lipschitz assumption of the nonlinear term f . It should be mentioned

here that the authors in above literature only verified the condition (Hc) (see

Section 4).

Motivated by the above two aspects, we are interested in studying the topo-

logical structure of solution set to a Riemann–Liouville fractional delay semilin-

ear system and displaying its application to approximate controllability problems

by utilizing the resolvent theory and the condition (Hc), when the Lipschitz con-

tinuity of f is lacked.

The novelties of the current article are highlighted as follows:

(1) Considering that the solutions of Riemann–Liouville fractional delay evo-

lution system (2.2) have singularity at zero, we introduce a weighted delay initial

condition for this system. Furthermore, by the resolvent approach, we propose

an appropriate notion of solutions in a weighted space.

(2) We combine the topological structure of solution set and control problem

organically. Moreover, employing the resolvent and the topological character-

istics, we overcome the difficulty of the lack of Lipschitz assumption without

imposing any additional conditions, when addressing the approximate control-

lability problem. In addition, we apply the theoretical findings to the fractional

delay diffusion control system (2.1) and a finite dimensional fractional ordinary

differential control system.

The arrangement of the present article is as follows. We come up with our

problem and collect some preliminaries required in Section 2. Section 3 is de-

voted to formulating an appropriate definition of mild solutions and displaying

the topological characteristics of the corresponding solution set by employing the

resolvent technique. Section 4 contains the approximate controllability results of

the abstract model. We end the article with addressing an infinite dimensional

fractional delay diffusion control system and a finite dimensional fractional or-

dinary differential control system in Section 5.

2. Model statement and preliminaries

This paper copes with the approximate controllability of an abstract frac-

tional delay evolution model which can describe an infinite dimensional fractional

diffusion system by employing a resolvent approach and the topological charac-

teristics of the solution set.
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2.1. A fractional delay diffusion system. We tackle the following frac-

tional delay diffusion control system with a β-order Riemann–Liouville fractional

derivative:

(2.1)


Dβy(t, x) = ∆y(t, x) + f(t, ỹt(x)) + (Bu)(t, x), t ∈ J ′, x ∈ Ω,

y(t, x) = 0, t ∈ J ′, x ∈ ∂Ω,

ỹ0(t, x) = φ(t, x), t ∈ [−r, 0], x ∈ Ω.

Here β ∈ (0, 1), Ω ⊆ RN (N ≥ 1) is a bounded domain with a C2-boundary ∂Ω,

J ′ = (0, b], B is a bounded linear map. Moreover, ỹ(t, x) = Γ(β)t1−βy(t, x) for

t ∈ J := [0, b], ỹ(0, x) = lim
t→0+

ỹ(t, x),

ỹt(θ, x) = ỹ(t+ θ, x) =

Γ(β)(t+ θ)1−βy(t+ θ, x), t+ θ ∈ [0, b],

φ(t+ θ, x), t+ θ ∈ [−r, 0],

for t ∈ J and θ ∈ [−r, 0], φ is continuous and f is a nonlinear function without

Lipschitz condition.

If β = 1, system (2.1) is reduced to the classical parabolic system, which can

serve as models for describing various physical phenomena in many fields, such

as heat conduction, diffusion and seepage.

For 0 < β < 1, by employing Fourier-Laplace techniques, Hilfer [14] investi-

gated the existence of the solutions to the following Riemann–Liouville fractional

diffusion equation:Dβy(t, x) = Cβ∆y(t, x), (t, x) ∈ (0,+∞)× RN ,
J1−β
t y(0, x) = y0(x), x ∈ RN ,

where Cβ is a diffusion constant.

To analyze the fractional delay diffusion control system (2.1), we first ad-

dress the following abstract control system with a β-order Riemann–Liouville

fractional derivative:

(2.2)

Dβy(t) = Ay(t) + f(t, ỹt) + (Bu)(t), t ∈ J ′ = (0, b],

ỹ0(t) = φ(t), t ∈ [−r, 0]

in a Banach space V , where A generates a β-order resolvent {Rβ(t)}t>0, φ is

continuous on [−r, 0], ỹ(t) = Γ(β)t1−βy(t) for t ∈ J , ỹ(0) = lim
t→0+

ỹ(t), and

ỹt(θ) = ỹ(t+ θ) =

Γ(β)(t+ θ)1−βy(t+ θ), t+ θ ∈ [0, b],

φ(t+ θ), t+ θ ∈ [−r, 0],

for t ∈ J and θ ∈ [−r, 0].

For our subsequent investigations, we collect here some preliminaries. Let

X, Y and Z be three metric spaces and let (V, ‖·‖) and (U, ‖·‖U ) be two Banach
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spaces. The symbol L (U ;V ) denotes the set consisting of linear and bounded

operators from U to V and L (V ) represents L (V ;V ). Moreover, the notation

C([c, e];V ) means the collection of V -valued functions which are continuous and

normed by ‖y‖[c,e] = sup
s∈[c,e]

‖y(s)‖ for y ∈ C([c, e];V ). Let

(2.3) C1−β(J ;V ) =
{
y ∈ C(J ′;V ) : ỹ( · ) = Γ(β)( · )1−βy( · ), ỹ ∈ C(J ;V )

}
be normed by ‖y‖C1−β = sup

s∈J
‖Γ(β)s1−βy(s)‖, where ỹ(0) = lim

s→0+
ỹ(s). Then

C1−β(J ;V ) is a Banach space. Furthermore, we put P (X) = {D ⊆ X : D 6= ∅}
and employ the symbol ∗ to denote the convolution of functions, i.e.

(g ∗ h)(s) =

∫ s

0

g(s− τ)h(τ) dτ, s > 0.

We begin with some definitions and facts from multi-valued analysis.

Definition 2.1 ([16]). A multi-valued operator h : X → P (Y ) is said to be

quasicompact if h(D) is precompact for any compact set D ⊆ X.

Lemma 2.2 ([19]). Let h : X → P (Y ) be quasicompact and closed. Then h

is upper semi-continuous (briefly, u.s.c.).

Definition 2.3 ([4]). X is called:

(a) an absolute retract (shortly, X ∈ AR) if for any metric space Z and

any closed set D ⊂ Z, every continuous operator µ : D → X admits

a continuous extension µ : Z → X,

(b) an absolute neighbourhood retract (X ∈ ANR, in short) provided that

for any metric space Z and any closed set D ⊂ Z, every continuous

operator µ : D → X possesses a continuous extension µ : U → X, where

U is a neighbourhood of D.

Definition 2.4 ([7]). D ∈ P (X) is called a contractible set provided that

there exists a continuous homotopy ν : D × [0, 1] → D and a point y0 ∈ D to

ensure that for any y ∈ D, ν(y, 1) = y0 and ν(y, 0) = y.

Definition 2.5 ([17]). D ∈ P (X) is called an Rδ-set provided that D =
∞⋂
m=1

Dm, where {Dm} is a decreasing sequence of nonempty, compact and con-

tractible sets.

Definition 2.6 ([7]). h : X → P (Y ) is called an Rδ-map provided that h is

u.s.c. and h(y) is an Rδ-set for any y ∈ X.

Lemma 2.7 ([5]). Let V be a Banach space and ω : X → V a continuous

operator. Suppose that ω is proper (for each compact set K ⊆ V , ω−1(K) is

compact). If, in addition, there exists a sequence {ωm} with ωm : X → V satis-

fying
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(a) ωm is proper and lim
m→∞

ωm = ω, uniformly on X;

(b) for all z ∈ U(z0), the equation ωm(x) = z possesses exactly one solution,

where z0 is a given point and U(z0) is a neighbourhood of z0 in V ,

then ω−1(z0) is an Rδ-set.

Lemma 2.8 ([13]). Suppose that ϕ : X → P (X) can be factorized by

ϕ = ϕm ◦ . . . ◦ ϕ1.

Here ϕi : Xi−1 → P (Xi), i = 1, . . . ,m, are Rδ-maps, X0 = Xm = X ∈ AR and

Xi ∈ ANR, i = 1, . . . ,m− 1. If, in addition, there is a compact set K to ensure

that ϕ(X) ⊆ K ⊆ X, then Fix(ϕ), the fixed point set of ϕ, is nonempty.

Additionally, reviewing the concept of resolvent, we propose some properties.

Definition 2.9 ([22]). Let β ∈ (0, 1). By a β-order fractional resolvent

(resolvent, for short), we understand a family {Rβ(s)}s>0 ⊆ L (V ) satisfying

(a) Rβ( · )y ∈ C((0,∞);V ) and lim
s→0+

Γ(β)s1−βRβ(s)y = y for any y ∈ V ;

(b) Rβ(τ)Rβ(s) = Rβ(s)Rβ(τ) for s, τ > 0;

(c) Rβ(τ)Jβs Rβ(s) − Jβτ Rβ(τ)Rβ(s) = gβ(τ)Jβs Rβ(s) − gβ(s)Jβτ Rβ(τ), for

s, τ > 0,

where gβ(s) = sβ−1/Γ(β), s > 0 and the symbol Jβs means the β-order fractional

integral operator.

The generator A : D(A) ⊆ V → V of the resolvent {Rβ(s)}s>0 is

Ay = Γ(2β) lim
s→0+

s1−βRβ(s)y − y/Γ(β)

sβ
,

where

D(A) =

{
y ∈ V : lim

s→0+

s1−βRβ(s)y − y/Γ(β)

sβ
exists

}
.

Lemma 2.10. Assume that A generates a resolvent {Rβ(s)}s>0. Then

(2.4) M := sup
s∈J

∥∥Γ(β)s1−βRβ(s)
∥∥ <∞,

where Γ(β)s1−βRβ(s)|s=0 := lim
s→0+

Γ(β)s1−βRβ(s).

Proof. For y ∈ V , due to Definition 2.9 and

Γ(β)s1−βRβ(s)y
∣∣
s=0

= lim
s→0+

(
Γ(β)s1−βRβ(s)y

)
,

we have sup
s∈J

∥∥Γ(β)s1−βRβ(s)y
∥∥ <∞. Thus, in view of Γ(β)s1−βRβ(s) ∈ L (V )

and the uniform boundedness principle, we derive M <∞. �

Lemma 2.11 ([22]). Let {Rβ(s)}s>0 be a resolvent with generator A. Then

(a) Rβ(s)D(A) ⊆ D(A), s > 0;
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(b) D(A) = V ;

(c) Rβ(s)y = gβ(s)y +A(gβ ∗Rβ)(s)y for any y ∈ V and s > 0.

Hereafter, we always suppose that

(HA)
{
s1−βRβ(s)

}
s>0

is compact and there exists a constant C > 0 to ensure

that
∥∥d (s1−βRβ(s)

)
/ds
∥∥ ≤ C/s, s ∈ J ′.

Remark 2.12. This assumption comes from the practical applications. Fur-

thermore, based on Lemma 3.8 in [11], if {s1−βRβ(s)}s>0 is a compact and

analytic operator family of analyticity type (ω0, θ0), (HA) is automatically sat-

isfied.

Lemma 2.13. Suppose that condition (HA) holds. Then

lim
τ→0

∥∥(s+ τ)1−βRβ(s+ τ)− s1−βRβ(s)
∥∥ = 0, s ∈ J ′.

Proof. Let s ∈ J ′, y ∈ V with ‖y‖ ≤ 1, and |τ | < s with s + τ ∈ J ′. It

follows, upon employing (HA), that∥∥(s+ τ)1−βRβ(s+ τ)y − s1−βRβ(s)y
∥∥

≤
∥∥∥∥∫ s+τ

s

d(σ1−βRβ(σ))

dσ
y dσ

∥∥∥∥ ≤ C‖y‖∣∣∣∣ ∫ s+τ

s

σ−1 dσ

∣∣∣∣
≤ C| ln(s+ τ)− ln s| → 0, τ → 0.

This indicates that lim
τ→0

∥∥(s+ τ)1−βRβ(s+ τ)− s1−βRβ(s)
∥∥ = 0, for s ∈ J ′. �

Due to Lemma 2.13, we can derive the following result which is similar to the

semigroup property by following the procedure in Lemmas 3.4 and 3.5 of [11].

Lemma 2.14. Let assumption (HA) be fulfilled. Then, for s ∈ J ′,
(a) lim

τ→0+

∥∥Γ(β)(s+τ)1−βRβ(s+ τ)−
(
Γ(β)τ1−βRβ(τ)

) (
Γ(β)s1−βRβ(s)

)∥∥=0;

(b) lim
τ→0+

∥∥Γ(β)s1−βRβ(s)−
(
Γ(β)τ1−βRβ(τ)

)(
Γ(β)(s−τ)1−βRβ(s−τ)

)∥∥=0.

3. Topological characteristics of solution set

The target of this section is to formulate an appropriate concept of mild

solutions to system (2.2) and display the topological characteristics of the corre-

sponding solution set by utilizing the resolvent approach. To this end, we assume

that

(Hf) f : J × C([−r, 0];V )→ V satisfies:

(a) υ → f(s, υ) is continuous for almost every s ∈ J ;

(b) s→ f(s, υ) is measurable for each υ ∈ C([−r, 0];V );

(c) for all υ ∈ C([−r, 0];V ) and almost every s ∈ J ,

‖f(s, υ)‖ ≤ a(s) + k‖υ‖[−r,0]
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with k ∈ [0, β/(Mb)) and a ∈ Lp(J ;R+), p > 1/β, where M is

defined by formula (2.4).

(HB) B : Lp(J ;U)→ Lp(J ;V ) is a linear and bounded operator.

We start with the following important result which is helpful in proposing

a suitable concept of mild solutions to (2.2).

Lemma 3.1. Suppose that condition (HA) is fulfilled and p > 1/β. Then

(a) Rβ ∗ g ∈ C(J ;V ), where g ∈ Lp(J ;V );

(b) the map Λ: Lp(J ;V ) → C1−β(J ;V ), defined by (Λg)( · ) = (Rβ ∗ g)( · ),

is compact.

Proof. Following the proofs of Lemmas 3.1 and 4.2 in [40], we can easily

check the results of this lemma. �

To formulate the definition of mild solutions to (2.2) by the resolvent tech-

nique, for convenience, we first deal with the following system:

(3.1)

Dβy(t) = Ay(t) + f(t), t ∈ J ′ = (0, b],

ỹ0(t) = φ(t), t ∈ [−r, 0],

where f ∈ Lp(J ;V ), φ is continuous on [−r, 0].

Let y satisfy (3.1). Due to lim
t→0+

ỹ(t) = ỹ(0) = φ(0) and the dominated

convergence theorem, we can easily derive J1−β
t y(t)

∣∣
t=0

= φ(0). Thus, for t ∈ J ′,
by employing the operator Jβt on both sides of (3.1), we obtain

y(t) = gβ(t)φ(0) +A(gβ ∗ y)(t) + (gβ ∗ f)(t).

Employing (c) of Lemma 2.11 yields

gβ ∗ y = (Rβ −A(gβ ∗Rβ)) ∗ y = Rβ ∗ (y −A(gβ ∗ y))

= Rβ ∗ (φ(0)gβ + gβ ∗ f) = gβ ∗ (φ(0)Rβ +Rβ ∗ f) ,

which indicates that

y(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− s)f(s) ds, t ∈ J ′.

Remark 3.2. It is worth mentioning that for the Riemann–Liouville delay

evolution system in [1], to ensure the continuity of y ∈ C([−r, b];V ), the con-

dition of φ, φ(0) = 0, is necessary. Now, we make full use of the properties of

resolvent to introduce a weighted delay initial condition in system (3.1). Accord-

ing to (a) of Definition 2.9 and the definition of ỹ on [−r, b], that is,

ỹ(t) =

Γ(β)t1−βy(t), t ∈ [0, b],

φ(t), t ∈ [−r, 0],

ỹ is continuous in C([−r, b];V ) for any φ ∈ C([−r, 0];V ).
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As such, we can present the following notion of mild solutions to (2.2).

Definition 3.3. For given u ∈ Lp(J ;U) with p > 1/β, by a mild solution

to system (2.2) related to u, we understand the function ỹ ∈ C([−r, b];V ) which

satisfies y|J′ ∈ C1−β(J ;V ),

y(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)(f(τ, ỹτ ) + (Bu)(τ)) dτ, t ∈ J ′

and

ỹ(t) = φ(t), t ∈ [−r, 0].

Remark 3.4. For y ∈ C1−β(J ;V ), let

ỹ[φ](t) =

Γ(β)t1−βy(t), t ∈ J,
φ(t), t ∈ [−r, 0].

Then based on Definition 2.9 and Lemma 3.1, ỹ[φ] ∈ C([−r, b];V ) is a mild

solution of (2.2) related to u if and only if y ∈ C1−β(J ;V ) satisfies

(3.2) y(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)
(
f(τ, ỹ[φ]τ ) + (Bu)(τ)

)
dτ, t ∈ J ′.

For simplicity, set S(u) =
{
y ∈ C1−β(J ;V ) : y satisfies (3.2)

}
. Moreover, we

abbreviate the notation ỹ[φ] to ỹ. We then propose a priori estimate for S(u)

which is useful in the later analysis.

Lemma 3.5. Let hypotheses (HA), (Hf) and (HB) hold. Then, for any y ∈
S(u),

‖y‖C1−β ≤ λ := Eβ (MbkΓ(β))

(
Mkb‖φ‖[−r,0]

β
+M‖φ(0)‖

+M

(
b
p− 1

βp− 1

)1−1/p

(‖a‖Lp + ‖Bu‖Lp)

)
,

where M is defined by formula (2.4).

Proof. Let y ∈ S(u). Then, for τ ∈ [0, t], t ∈ J ′, we derive

‖ỹτ‖[−r,0] = sup
θ∈[−r,0]

‖ỹ(τ + θ)‖

≤ sup
s∈[−r,0]

‖ỹ(s)‖+ sup
s∈[0,τ ]

‖ỹ(s)‖ ≤ ‖φ‖[−r,0] + sup
s∈[0,τ ]

Γ(β)s1−β‖y(s)‖.

Thus, for t ∈ J ′,

Γ(β)t1−β‖y(t)‖

≤M‖φ(0)‖+Mb1−β
∫ t

0

(t− τ)β−1
(
a(τ) + k‖ỹτ‖[−r,0] + ‖(Bu)(τ)‖

)
dτ
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≤M
(
‖φ(0)‖+

(
b
p− 1

βp− 1

)1−1/p
(‖a‖Lp + ‖Bu‖Lp) +

kb‖φ‖[−r,0]
β

)
+Mkb1−β

∫ t

0

(t− τ)β−1 sup
s∈[0,τ ]

Γ(β)s1−β‖y(s)‖ dτ.

Let

g(t) =

∫ t

0

(t− τ)β−1 sup
s∈[0,τ ]

s1−β‖y(s)‖ dτ.

Then we can easily see that g is a monotonously increasing function. In fact, we

have

g(t) =

∫ t

0

θβ−1 sup
s∈[0,t−θ]

s1−β‖y(s)‖ dθ,

which means that, for 0 < t1 < t2,

g(t2)− g(t1) ≤
∫ t2

0

θβ−1 sup
s∈[0,t2−θ]

s1−β‖y(s)‖ dθ

−
∫ t1

0

θβ−1 sup
s∈[0,t1−θ]

s1−β‖y(s)‖ dθ

≤
∫ t1

0

θβ−1
(

sup
s∈[0,t2−θ]

s1−β‖y(s)‖ − sup
s∈[0,t1−θ])

s1−β‖y(s)‖
)
dθ

+

∫ t2

t1

θβ−1 sup
s∈[0,t2−θ]

s1−β‖y(s)‖ dθ ≥ 0,

that is, g is monotonously increasing. Thus,

Γ(β)t1−β‖y(t)‖ ≤ sup
η∈[0,t]

Γ(β)η1−β‖y(η)‖

≤M
(
‖φ(0)‖+

(
b
p− 1

βp− 1

)1−1/p

(‖a‖Lp + ‖Bu‖Lp) +
kb‖φ‖[−r,0]

β

)
+Mkb1−β

∫ t

0

(t− τ)β−1 sup
s∈[0,τ ]

Γ(β)s1−β‖y(s)‖ dτ.

Hence, the Gronwall inequality of singular version [37] tells us

Γ(β)t1−β‖y(t)‖ ≤ Eβ (MbkΓ(β))

(
Mkb‖φ‖[−r,0]

β
+M‖φ(0)‖

+M

(
b
p− 1

βp− 1

)1−1/p

(‖a‖Lp + ‖Bu‖Lp)

)
.

Therefore, ‖y‖C1−β ≤ λ. �

With the aid of Lemmas 3.1 and 3.5, we now focus on the topological cha-

racteristics of S(u), including compactness and Rδ-property.

Theorem 3.6. Assume that conditions (HA), (HB) and (Hf) hold. Then,

for fixed u ∈ Lp(J ;U), p > 1/β, S(u) is nonempty and compact.
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Proof. Due to Lemma 3.1, we can define a map Φ: C1−β(J ;V )→C1−β(J ;V )

by

(Φy)(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)
(
f(τ, ỹτ ) + (Bu)(τ)

)
dτ, t ∈ J ′.

Since y ∈ S(u) is equivalent to y ∈ Fix(Φ), our problem reduces to checking that

Fix(Φ) is nonempty and compact. For clarity, we split the verification into the

following procedures.

Step 1. Set Bλ = {y ∈ C1−β(J ;V ) : ‖y‖C1−β ≤ λ}, where

λ ≥ max

{
M

β −Mkb

(
β‖φ(0)‖

+ β

(
b
p− 1

βp− 1

)1−1/p(
‖a‖Lp + ‖Bu‖Lp

)
+ kb‖φ‖[−r,0]

)
, λ

}
.

We shall demonstrate that Φ(Bλ) ⊆ Bλ. Let y ∈ Bλ. Then, for τ ∈ [0, t], t ∈ J ′,
we have

‖ỹτ‖[−r,0] ≤ ‖φ‖[−r,0] + ‖y‖C1−β .

Thus, for t ∈ J ′, we derive

Γ(β)t1−β‖(Φy)(t)‖

≤M‖φ(0)‖+Mb1−β
∫ t

0

(t− τ)β−1
(
a(τ) + k‖ỹτ‖[−r,0] + ‖(Bu)(τ)‖

)
dτ

≤M‖φ(0)‖+Mb1−β
∫ t

0

(t− τ)β−1
(
kλ+ k‖φ‖[−r,0] + a(τ) + ‖(Bu)(τ)‖

)
dτ

≤M‖φ(0)‖+
Mkb(λ+ ‖φ‖[−r,0])

β
+M

(
b
p− 1

βp− 1

)1−1/p(
‖a‖Lp + ‖Bu‖Lp

)
≤λ.

Hence, Φ(Bλ) ⊆ Bλ.

Step 2. We verify the continuity of Φ on Bλ. Let {ym}m≥1 ⊆ Bλ with

lim
m→∞

ym = y in Bλ. Then, for t ∈ J ′, we get lim
m→∞

ỹm(t) = ỹ(t). Moreover, for

t ∈ [−r, 0], according to the definition of ỹ, we have lim
m→∞

ỹm(t) = φ(t) = ỹ(t).

Furthermore, we derive ‖ym‖C1−β ≤ λ and ‖y‖C1−β ≤ λ. As such, for τ ∈ [0, t],

t ∈ J ′, we have

lim
m→∞

ỹmτ = ỹτ , ‖ỹmτ‖[−r,0] ≤ λ+ ‖φ‖[−r,0], ‖ỹτ‖[−r,0] ≤ λ+ ‖φ‖[−r,0].

Hence, according to (Hf), for τ ∈ (0, t), t ∈ J ′, we derive

‖f(τ, ỹmτ )− f(τ, ỹτ )‖ ≤ 2(a(τ) + kλ+ k‖φ‖[−r,0])

and

‖f(τ, ỹmτ )− f(τ, ỹτ )‖p → 0, m→ +∞.
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Consequently, for t ∈ J ′, by virtue of Hölder’s inequality and the dominated

convergence theorem, we obtain

sup
t∈J

{
t1−β Γ(β)‖(Φym)(t)− (Φy)(t)‖

}
≤ b1−βM sup

t∈J

∥∥∥∥∫ t

0

(t− τ)β−1(f(τ, ỹmτ )− f(τ, ỹτ ) dτ

∥∥∥∥
≤M

(
b
p− 1

βp− 1

)1−1/p(∫ b

0

‖f(τ, ỹmτ )− f(τ, ỹτ )‖p dτ
)1/p

→ 0,

as m→ +∞. Thus, we can infer that Φ is continuous on Bλ.

Step 3. We investigate the compactness of the map Φ on Bλ.

Due to (Hf) and (HB), one derives
(
f( · , ỹ( · )) + (Bu)( · )

)
∈ Lp(J ;V ), for

p > 1/β. Thus, Lemma 3.1 leads to the compactness of the operator Φ on Bλ.

Therefore, by applying Schauder’s fixed point theory, we achieve Fix(Φ) 6= ∅.
Step 4. We study the compactness of the set Fix(Φ). By virtue of Lemma 3.5,

we acquire the boundedness of Fix(Φ) and Fix(Φ) ⊆ Bλ ⊆ Bλ. Thus, the

compactness of the map Φ on Bλ signifies that Φ(Fix(Φ)) is relatively compact.

Moreover, due to the continuity of Φ, we can easily check the closeness of Fix(Φ).

Hence, from Fix(Φ) ⊆ Φ(Fix(Φ)), we conclude that Fix(Φ) is compact, i.e. S(u)

is compact. �

Theorem 3.7. Let conditions (HA), (HB) and (Hf) be fulfilled. Then for

fixed u ∈ Lp(J ;U), p > 1/β, S(u) is an Rδ-set.

Proof. Based on (Hf) and the well-known Lasota-Yorke approximation the-

orem (see Theorem 17.6 in [12]), we can find a sequence {fm} with fm : J ×
C([−r, 0];V )→ V to ensure that fm(τ, · ) is locally Lipschitz continuous and

‖fm(τ, υ)− f(τ, υ)‖ < εm,

for almost every τ ∈ J and υ ∈ C([−r, 0];V ), where εm ∈ (0, 1) and lim
m→∞

εm = 0.

Thus, (Hf) implies

(3.3) ‖fm(τ, υ)‖ ≤ a(τ) + k‖υ‖[−r,0] + 1.

Now, we introduce the map Φm : C1−β(J ;V )→ C1−β(J ;V ) of the form

(Φmy)(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)(fm(τ, ỹτ ) + (Bu)(τ)) dτ, t ∈ J ′.

Due to (3.3) and Lemma 3.1, the map Φm is well-defined. Let y ∈ S(u). Then,

for t ∈ J ′,

t1−βΓ(β)
∥∥((I − Φm)y

)
(t)−

(
(I − Φ)y

)
(t)
∥∥(3.4)

≤Mb1−β
∥∥∥∥∫ t

0

(t− τ)β−1 (fm(τ, ỹτ )− f(τ, ỹτ )) dτ

∥∥∥∥ ≤ Mbεm
β

,
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where I : C1−β(J ;V ) → C1−β(J ;V ) is an identity map. Thus, in view of (3.4),

we derive that lim
m→∞

(I − Φm) = I − Φ, uniformly on C1−β(J ;V ). Moreover,

similar to the verification of Theorem 3.6, for any z ∈ C1−β(J ;V ), it can be

deduced that the equation (I − Φm)(y) = z, that is,

(3.5) y(t) = z(t) +Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)
(
fm(τ, ỹτ ) + (Bu)(τ)

)
dτ, t ∈ J ′

possesses solutions. Furthermore, with the help of the locally Lipschitz assump-

tion on fm(τ, · ), an argument similar to the one utilized in Theorem 3.6 in [35]

shows that the solution to (3.5) is unique.

Next, we shall demonstrate that the map I − Φm is proper. On account

of Step 2 of Theorem 3.6, we can obtain the continuity of I − Φm. Now,

for each compact set K in C1−β(J ;V ), we come to check the compactness

of the set (I − Φm)−1(K). For convenience, put (I − Φm)−1(K) = D, i.e.

(I − Φm)(D) = K. Then, for a sequence {yn} ⊆ D, we can choose {zn} ⊆ K

satisfying (I − Φm)(yn) = zn. As such, we have

yn(t) = zn(t) +Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)
(
fm(τ, ỹnτ ) + (Bu)(τ)

)
dτ, t ∈ J ′.

The combination of (3.3), the boundedness of {zn} and Lemma 3.5 indicates

that {yn} is bounded in C1−β(J ;V ). Thus, due to the compactness of K and

following the proof employed in Step 3 of Theorem 3.6, we can derive the relative

compactness of {yn} in C1−β(J ;V ). Moreover, by the closeness of K and the

continuity of I − Φm, D is a closed set. Hence, D is compact. Consequently,

I −Φm is proper. Similarly, I −Φ is proper. Therefore, by utilizing Lemma 2.7,

one can infer that S(u) = (I − Φ)−1(0) is an Rδ-set. �

Remark 3.8. By introducing the weighted delay initial condition and uti-

lizing the resolvent approach, we have displayed the topological characteris-

tics of solution sets of Riemann–Liouville fractional delay evolution systems in

a weighted space, which extends some results in recent literature on topological

properties of solution sets of evolution systems.

4. Approximate controllability

In this section, with the help of the topological characteristics of solution set

to system (2.2) and the resolvent method, we exhibit the approximate controlla-

bility results for this system without the Lipschitz assumption of the nonlinear

terms.

Definition 4.1. By the reachable set of (2.2), we mean the set Kb(f) =

{y(b, u, f) : y( · , u, f) ∈ S(u)}. Furthermore, if Kb(f) = V , system (2.2) is said

to be approximately controllable on J .
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For convenience, define a linear map Ψ: Lp(J ;V )→ V by

Ψ(g) =

∫ b

0

Rβ(b− τ)g(τ) dτ, g ∈ Lp(J ;V ), p >
1

β
.

To display the approximate controllability results, we need the following addi-

tional hypothesis.

(Hc) For any g ∈ Lp(J ;V ), there exists u ∈ Lp(J ;U) such that Ψ(Bu) = Ψg.

By virtue of (Hc) and Lemma 2 in [32], we can choose a continuous operator

G : Lp(J ;V )→ Lp(J ;U) satisfying that, for any g ∈ Lp(J ;V ),

Ψ(B(Gg)) + Ψg = 0,(4.1)

‖Gg‖Lp(J;U) ≤ d‖g‖Lp(J;V ),(4.2)

where d > 0 is a constant.

We first explore the approximate controllability for the linear system of (2.2).

Theorem 4.2. Let conditions (HA), (HB) and (Hc) hold. Then Kb(0) = V .

Proof. Let ξ ∈ D(A). For arbitrary ε > 0, in view of D(A) = V , we can

take ζ ∈ D(A) satisfying ‖ζ − φ(0)‖ < b1−βΓ(β)ε/(2M).

On the other hand, by virtue of Lemma 2.10 and (a) of Definition 2.9, we

can choose some b ∈ J ′ to satisfy∥∥(Γ(β)b
1−β

Rβ(b)
)2

(ξ −Rβ(b)ζ)− (ξ −Rβ(b)ζ)
∥∥

≤
∥∥Γ(β)b

1−β
Rβ(b) + I

∥∥∥∥(Γ(β)b
1−β

Rβ(b)− I
)
(ξ −Rβ(b)ζ)

∥∥ < ε

2
.

According to Lemma 2.11, we have ξ −Rβ(b)ζ ∈ D(A). Thus, we can take

g(τ) =



−(b− τ)1−βΓ2(β)

b

[
− (b− τ)1−βRβ(b− τ)

+ 2(b− τ)
d
(
(b− τ)1−βRβ(b− τ)

)
dτ

]
(ξ −Rβ(b)ζ), t ∈ [b− b, b],

0, t ∈ [0, b− b],

to ensure that Ψg =
(
Γ(β)b1−βRβ(b)

)2
(ξ − Rβ(b)ζ). Additionally, because of

condition (HA) and Lemma 2.13, we get g ∈ Lp(J ;V ). In addition, due to (Hc),

we can choose a function u ∈ Lp(J ;U) to guarantee that

Ψ(Bu) = Ψg =
(
Γ(β)b1−βRβ(b)

)2
(ξ −Rβ(b)ζ).

Hence, we get

‖ξ − (Rβ(b)φ(0) + Ψ(Bu))‖

≤ ‖Rβ(b)φ(0)−Rβ(b)ζ‖+
∥∥(ξ −Rβ(b)ζ)−

(
Γ(β)b1−βRβ(b)

)2
(ξ −Rβ(b)ζ)

∥∥
≤ bβ−1

∥∥(b1−βRβ(b))(φ(0)− ζ)
∥∥+

ε

2
≤ bβ−1M

Γ(β)
‖φ(0)− ζ‖+

ε

2
< ε.
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Thus, we arrive at D(A) ⊂ Kb(0), which results in Kb(0) = V . �

Now, with the help of the topological characteristics of solution set of sys-

tem (2.2) and Theorem 4.2, we analyze the approximate controllability of (2.2).

Theorem 4.3. Under conditions (HA), (HB), (Hf) and (Hc), system (2.2)

is approximately controllable if

(4.3) Mkbd

(
p− 1

βp− 1

)1−1/p

‖B‖Eβ(MkbΓ(β)) < 1,

where d > 0 satisfies (4.2) and M is defined by formula (2.4).

Proof. To make our verification more transparent, we analyze this problem

in the following steps.

Step 1. We show that the map S : Lp(J ;U)→ P (C1−β(J ;V )) is an Rδ-map.

In view of Theorem 3.7 and Definition 2.6, we just need to check that S is u.s.c.

First, we demonstrate the quasicompactness of S. Let D be a bounded set in

Lp(J ;U). For a sequence {yn} ⊆ S(D), by the analogous approach as employed

in Theorem 3.6, we can acquire the relative compactness of {yn}. Hence, we can

infer that S is quasicompact.

Next, we handle the closeness of S. Let lim
m→∞

um = u in Lp(J ;U) and

ym ∈ S(um) with lim
m→∞

ym = y in C1−β(J ;V ). According to ym ∈ S(um), one

derives

(4.4) ym(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)(f(τ, ỹmτ ) + (Bum(τ)) dτ, t ∈ J ′.

Then we obtain through Lemma 3.5 that {ym} is bounded in C1−β(J ;V ). Thus,

similar to the verification of Step 2 of Theorem 3.6, for t ∈ J ′, we can easily infer

that ∫ t

0

Rβ(t− τ)f(τ, ỹmτ )dτ →
∫ t

0

Rβ(t− τ)f(τ, ỹτ ) dτ, m→∞.

Moreover, for t ∈ J ′, Hölder’s inequality implies that∥∥∥∥ ∫ t

0

Rβ(t− τ)((Bum)(τ)− (Bu)(τ)) dτ

∥∥∥∥
≤ M

Γ(β)
bβ−1/p

(
p− 1

βp− 1

)1−1/p

‖Bum −Bu‖Lp → 0.

As such, taking the limit m→∞ to both sides of (4.4), for t ∈ J ′, we derive

(4.5) y(t) = Rβ(t)φ(0) +

∫ t

0

Rβ(t− τ)(f(τ, ỹτ ) + (Bu)(τ)) dτ.

Hence, we achieve that y ∈ S(u). Therefore, the closeness of S is acquired.

Consequently, Lemma 2.2 guarantees that S is u.s.c.



192 S. Zhu — Z. Fan — G. Li

Step 2. Define a multi-map Q :Lp(J ;U)→ P (Lp(J ;U)) by

Q(u) = G ◦F ◦ S(u0 + u), u ∈ Lp(J ;U),

for any u0 ∈ Lp(J ;U). Here the operator F : C1−β(J ;V ) → Lp(J ;V ) is de-

fined by

(Fy)(τ) = f(τ, ỹτ ) for y ∈ C1−β(J ;V ) and τ ∈ J,

and G satisfies (4.1) and (4.2). We shall show that Fix(Q) 6= ∅ by employing

Lemma 2.8. Obviously, Q is well-defined. Moreover, since the operators G and

F are single-valued and continuous, they are Rδ-maps. Additionally, one can

easily verify that Lp(J ;U), C1−β(J ;V ) ∈ AR.

Now, let u ∈ Lp(J ;U) and u ∈ Q(u). For y ∈ S(u0 + u), due to (4.2), we

obtain

‖u‖Lp(J;U) ≤ d‖F (y)‖Lp(J;V ) ≤ d
(∫ b

0

‖f(t, ỹt)‖p dt
)1/p

≤ d
(
‖a‖Lp + kb1/p(‖y‖C1−β + ‖φ‖[−r,0])

)
.

which together with Lemma 3.5 implies that

lim sup
‖u‖Lp(J;U)→∞

‖u‖Lp(J;U)

‖u‖Lp(J;U)
≤Mkbd

(
p− 1

βp− 1

)1−1/p

‖B‖Eβ(MkbΓ(β)) < 1.

Thus, there exists r > 0 to ensure that QBr ⊂ Br, where

Br =
{
u ∈ Lp(J ;U) : ‖u‖Lp(J;U) ≤ r

}
.

Furthermore, by the similar approach as utilized in Theorem 3.6, we can derive

the compactness of S(u0 + Br). Thus, by means of the continuity of G and F ,

we derive the compactness of the set K := Q(Br). Therefore, Lemma 2.8 yields

that Fix(Q) 6= ∅.

Step 3. We shall check that Kb(f) = V . Owing to Theorem 4.2, we only

need to investigate the relation between Kb(0) and Kb(f). For yb ∈ Kb(0), we

can pick u0 ∈ Lp(J ;U) satisfying that

yb = Rβ(b)φ(0) + Ψ(Bu0).

For above u0 ∈ Lp(J ;U), let u ∈ Fix(Q). Then we can take y ∈ S(u0 + u) such

that u = G ◦F (y). Thus, according to (4.1), we have

y(b, u0 + u, f) = Rβ(b)φ(0) + Ψ(B(u0 + u)) + Ψ ◦F (y)

= Rβ(b)φ(0) + Ψ(Bu0) + Ψ(B(u) + F (y))

= yb + Ψ(B ◦G ◦F (y) + F (y)) = yb,

which indicates that Kb(0) ⊆ Kb(f). Hence, Kb(f) = V . Therefore, the appro-

ximate controllability of (2.2) is achieved. �
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Remark 4.4. In most of the existing results on the approximate controlla-

bility problems (see [21], [25], [27]), with the help of the Lipschitz assumption

of the nonlinear terms and the range condition proposed by Naito [27], many

investigators handle these problems in Hilbert spaces by utilizing a space de-

composition method. In the present paper, we explore the problems in general

Banach spaces by employing the topological structure of the solution set and

the resolvent method without the Lipschitz condition. Hence, our conclusion

extends and generalizes some recent results on this topic.

5. Applications

Up to now, we have established our theoretical results by utilizing the re-

solvent theory and the topological characteristics of the solution set. In what

follows, we firstly address the fractional delay diffusion control system (2.1) by

our theoretical findings and provide an example about approximate controllabil-

ity of the system (2.1). Then, we explore a finite dimensional fractional ordinary

differential control system.

5.1. Infinite dimensional delay diffusion control systems. For sim-

plicity, we only study the case when N = 1, Ω = (0, 1) and J ′ = (0, 1] in system

(2.1). By an analogous technique, we can handle more general cases.

From now on, we always suppose that V = U = L2(0, 1), 1/2 < β < 1 and

A = ∂2/∂x2 with domain

D(A) = {ν ∈ V : ν′, ν′′ ∈ V, ν(0) = ν(1) = 0}.

It follows that the eigenvalues of operator A are −m2π2, m ∈ N+, with the

corresponding normalized eigenvectors em(x) =
√

2 sin(mπx), m ∈ N+, x ∈
(0, 1). Then the resolvent Rβ(t) generated by A (see [22]) is

(5.1) Rβ(t)g(x) =

∞∑
m=1

tβ−1Eβ,β(−m2π2tβ)〈g, em〉em(x), t > 0, g ∈ V.

In addition, due to [28], A also generates a compact and analytic semigroup

{T (t)}t>0 with

T (t)g(x) =
∞∑
m=1

e−m
2π2t〈g, em〉em(x).

Thus, we can deduce, by employing Laplace transformations and probability

density functions [24], that for any g ∈ V ,

t1−βRβ(t)g(x) = β

∫ ∞
0

τξβ(τ)T (tβτ)g(x) dτ, t > 0,

which indicates that

t1−βRβ(t) = β

∫ ∞
0

τξβ(τ)T (tβτ) dτ,
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where

ξβ(τ) =
1

β
τ−1−1/β$β

(
τ−1/β

)
,

$β(τ) =
1

π

∞∑
m=0

(−1)mτ−(m+1)β−1 Γ((m+ 1)β + 1)

(m+ 1)!
sin((m+ 1)πβ), τ ∈ R+.

Moreover, based on the compactness of {T (t)}t>0, we derive that
{
t1−βRβ(t)

}
t>0

is compact (see Lemma 3.4 in [38]). Additionally, since {T (t)}t>0 satisfies T ′(t) =

AT (t), t‖AT (t)‖ ≤ C1, 0 < t ≤ 1 and ‖T (t)‖ ≤ 1, t ≥ 0 (see [28]), by the

dominated convergence theorem, we can easily acquire that

d(t1−βRβ(t))

dt
= β2tβ−1

∫ ∞
0

τ2ξβ(τ)AT (tβτ) dτ, 0 < t ≤ 1,

∥∥∥∥d(t1−βRβ(t))

dt

∥∥∥∥ ≤ βC1

tΓ(β)
, 0 < t ≤ 1

and ∥∥Γ(β)t1−βRβ(t)
∥∥ ≤ 1, 0 ≤ t ≤ 1,

where C1 is a constant. For convenience, denote M = 1. Hence, (HA) is satisfied.

On the other hand, for any u ∈ L2(J ;U), one has

u(t) =

∞∑
m=1

um(t)em, um(t) = 〈u(t), em〉.

Inspired by [24], we now introduce the operator B : L2(J ;U) → L2(J ;V ) as

follows:

(5.2) (Bu)(t) =

∞∑
m=1

um(t)em,

where

um(t) =


0, 0 ≤ t < 1−m−2/β ,
um(t), 1−m−2/β ≤ t < 1,

0, t = 1.

Obviously, B is bounded. Let

y(t)(x) = y(t, x) =

∞∑
m=1

ym(t)em(x),

ỹ(t)(x) = ỹ(t, x) =

∞∑
m=1

ỹm(t)em(x),

and

φ(t)(x) = φ(t, x) =

∞∑
m=1

φm(t)em(x).
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Then the corresponding linear system of (2.1) can be transformed into the form:

(5.3)

Dβym(t) = −m2π2ym(t) + um(t), 0 < t ≤ 1,

ỹm(t) = φm(t), t ∈ [−r, 0].

Lemma 5.1. Let Rβ(t) be an operator defined in (5.1) and B : L2(J ;U) →
L2(J ;V ) an operator given in (5.2). Then, for any q ∈ L2(J ;V ), there exists

u ∈ L2(J ;U) to ensure that∫ 1

0

Rβ(1− τ)q(τ) dτ =

∫ 1

0

Rβ(1− τ)(Bu)(τ) dτ.

Proof. Denote

W =

∫ 1

0

(
1− τ)β−1Eβ,β

(
−m2π2(1− τ)β

))2
dτ,

Ŵ =

∫ 1

1−m−2/β

(
(1− τ)β−1Eβ,β

(
−m2π2(1− τ)β

))2
dτ.

In view of Theorem 1.6 in [29], we derive

(5.4) |Eβ,β(−m2π2(1− τ)β)| ≤ C

1 +m2π2(1− τ)β
, τ ∈ J,

where C is a positive constant, not depending on m. Moreover, by Cauchy–

Schwarz inequality, it follows that

W ≥
(∫ 1

0

(1− τ)β−1Eβ,β(−m2π2(1− τ)β) dτ

)2

≥ E2
β,β+1

(
−m2π2

)
.

Thus, we get

0 < E2
β,β+1

(
−m2π2

)
≤ W ≤ C2

2β − 1
.

Similarly, we have

0 < m(2/β)−4E2
β,β+1

(
− π2

)
≤ Ŵ ≤ C2m(2/β)−4

2β − 1
.

Furthermore, due to (5.4), we obtain

W
Ŵ
≤ 1 +

∫ 1−m−2/β

0

(
(1− τ)β−1Eβ,β

(
−m2π2(1− τ)β

))2
dτ

Ŵ
(5.5)

≤ 1 +

∫ 1−m−2/β

0

(1− τ)2β−2
(

C

1 +m2π2(1− τ)β

)2

dτ

m(2/β)−4E2
β,β+1(−π2)

≤ 1 +
C2

π4E2
β,β+1(−π2)

.
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For any q ∈ L2(J ;V ), we set

q(τ) =

∞∑
m=1

qm(τ)em, qm(τ) = 〈q(τ), em〉

and

h =

∫ 1

0

Rβ(1− τ)q(τ) dτ =

∞∑
m=1

hmem, hm = 〈h, em〉.

Based upon (5.1), we have∫ 1

0

(1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
qm(τ) dτ = hm.

For linear system (5.3), by employing the minimum norm property (see Lemma 2.1

in [18]), we obtain

(5.6)

∫ 1

0

|qm(τ)|2 dτ ≤
∫ 1

0

|qm(τ)|2 dτ,

where

(5.7) qm(τ) = (1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
W−1hm.

Now, we take

(5.8) ûm(τ) = (1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
Ŵ−1hm.

Then, we derive

(5.9)

∫ 1

1−m−2/β

(1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
ûm(τ) dτ = hm.

In addition, we define u(τ) =
∞∑
m=1

um(τ)em, where

um(τ) =


0, 0 ≤ τ < 1−m−2/β ,
ûm(τ), 1−m−2/β ≤ τ < 1,

0, τ = 1.

By virtue of (5.5)–(5.8), it follows that

‖u‖2L2(J;U) =

∞∑
m=1

∫ 1

1−m−2/β

|ûm(τ)|2 dτ =

∞∑
m=1

Ŵ−1h2m

=

∞∑
m=1

W
Ŵ

∫ 1

0

|qm(τ)|2 dτ ≤
(

1 +
C2

π4E2
β,β+1(−π2)

)
‖q‖L2 ,

which indicates that u ∈ L2(J ;U). Additionally, in view of the definition of the

operator B, we derive

(Bu)(τ) =

∞∑
m=1

um(τ)em,
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where

um(τ) =


0, 0 ≤ τ < 1−m−2/β ,
um(τ), 1−m−2/β ≤ τ < 1,

0, τ = 1,

=


0, 0 ≤ τ < 1−m−2/β ,
ûm(τ), 1−m−2/β ≤ τ < 1

0, τ = 1.

Thus, by means of (5.1) and (5.9), we obtain∫ 1

0

Rβ(1− τ)(Bu)(τ) τ

=

∫ 1

0

∞∑
m=1

(1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
〈(Bu)(τ), em〉em dτ

=

∞∑
m=1

∫ 1

0

(1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
um(τ)em dτ

=

∞∑
m=1

∫ 1

1−m−2/β

(1− τ)β−1Eβ,β
(
−m2π2(1− τ)β

)
ûm(τ) dτem

=

∞∑
m=1

hmem =

∫ 1

0

Rβ(1− τ)q(τ) dτ,

which means that system (2.1) satisfies (Hc). �

Hence, due to Lemma 5.1 and Theorem 4.3, we can easily derive the following

result:

Theorem 5.2. Let 1/2 < β < 1, B : L2(J ;U) → L2(J ;V ) be an operator

defined in (5.2) and (Hf) hold. Then system (2.1) is approximately controllable if

kd√
2β − 1

‖B‖Eβ(kΓ(β)) < 1,

where d > 0 satisfies (4.2).

Example 5.3. Consider the following Riemann–Liouville fractional delay

diffusion system:

(5.10)



D2/3y(t, x) =
∂2

∂x2
y(t, x)

+
e−t

et + e−t
sin ỹt(x) + (Bu)(t, x), t, x ∈ (0, 1],

y(t, 0) = y(t, 1) = 0, t ∈ (0, 1],

ỹ0(t, x) = φ(t, x), t ∈ [−r, 0],
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where ỹ(t, x) = Γ(2/3)t1/3y(t, x) for t ∈ [0, 1], ỹ(0, x) = lim
t→0+

ỹ(t, x), ỹt(θ, x) =

ỹ(t+ θ, x) for t ∈ [0, 1] and θ ∈ [−r, 0], φ is continuous.

Define the operator f : [0, 1]× C([−r, 0];V )→ V by

f(t, ỹt)(x) =

(
e−t

et + e−t

)
sin ỹt(x).

Then f is bounded. Hence, we can take k = 0 in condition (Hf).

Let B : L2(J ;U) → L2(J ;V ) be an operator defined in (5.2). Then, due to

Theorem 5.2, system (5.10) is approximately controllable.

Remark 5.4. The Example 5.3 is adapted from [14]. In [14], Hilfer inves-

tigated the homogeneous fractional diffusion system without delay of (2.1) and

explained the importance of this kind of system for the theoretical physics and

chemistry. In particular, he (or she) pointed out that the significance of studying

this system originates in the necessary to sharpen the concepts of equilibrium,

stationary states, and time evolution in the long time limit.

Remark 5.5. In applications about approximate controllability of infinite

dimensional diffusion systems, we can always give the concrete expressions of

operator A, order β and function f . It is a pity that it is difficult to give

a concrete expression of operator B directly. However, for finite dimensional

ordinary differential control systems, we can give the expression of operator B

directly. Next, we provide an example about approximate controllability of these

systems.

5.2. Finite dimensional ordinary differential control systems.

Example 5.6. Consider the following fractional control system

(5.11)

D
2/3y(t) =

(
−2 1

1 −2

)
y(t) + sin(ỹ(t)) +

(
1

0

)
u(t), t ∈ [0, t1],

lim
t→0+

ỹ(t) = y0,

where y(t) ∈ R2, ỹ(t) = Γ(2/3)t1/3y(t), u ∈ L2([0, t1];R) and y0 ∈ R2.

Denote

β =
2

3
, A =

(
−2 1

1 −2

)
, B =

(
1

0

)
, f(t, ỹ(t)) = sin(ỹ(t)).

By utilizing Laplace transformations, the solutions to equation (5.11) can be

expressed by

y(t) = Rβ(t)y0 +

∫ t

0

Rβ(t− τ)
(
Bu(τ) + f(τ, ỹ(τ))

)
dτ,
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where Rβ(t) = tβ−1Eβ,β(Atβ). By virtue of Definition 2.9, it is easy to check

that {Rβ(t)}t>0 is a resolvent. Moreover, by applying Laplace transformations

and probability density functions, we can derive

t1−βRβ(t) = Eβ,β(Atβ) = β

∫ ∞
0

τξβ(τ)eAt
βτ dτ.

Since all the eigenvalues of A are negative, eAt (t > 0) is bounded and

compact. Hence, {t1−βRβ(t)}t>0 is bounded, compact and equicontinuous (see

Lemma 3.4 in [38]).

In order to verify that system (5.11) satisfies condition (Hc), we first introduce

the following lemma:

Lemma 5.7.

(a) The linear system of (5.11) is controllable on [0, t1] (for any y0, y1 ∈ R2,

there exists u ∈ L2([0, t1];R) to ensure that the solution y of the linear

system satisfies y(t1) = y1) if and only if

rank[B,AB] = 2.

(b) The linear system of (5.11) is controllable on [0, t1] if and only if the

Gramian matrix

W =

∫ t1

0

Rβ(t1 − τ)BBTRTβ (t1 − τ) dτ

is invertible. In such a case, for any h ∈ R2, the control function

u(t) = BTRTβ (t1 − t)W−1h

satisfies the minimum norm property, that is,

‖u‖L2(J;R) = inf

{
‖v‖L2(J;R) :

∫ t1

0

Rβ(t1 − τ)Bv(τ) dτ = h

}
.

Proof. Similar to the proofs of Theorem 3 in [26] as well as Lemma 2.1

in [18], we can easily check the results of this Lemma. �

Now, we are ready to show that system (5.11) satisfies (Hc). Based on

rank[B,AB] = 2 and Lemma 5.7, we know that the linear system of (5.11) is

controllable on [0, t1] and W is invertible. Thus, for any g ∈ L2([0, t1];R2),

setting

h =

∫ t1

0

Rβ(t1 − τ)g(τ) dτ,

we can take

u( · ) = BTRTβ (t1 − · )W−1h ∈ L2([0, t1];R)

to ensure that∫ t1

0

Rβ(t1 − τ)g(τ) dτ =

∫ t1

0

Rβ(t1 − τ)(Bu)(τ) dτ,
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where B : L2([0, t1];R) → L2([0, t1];R2) is a linear and bounded operator de-

fined by

(Bu)(τ) = Bu(τ).

Thus, (Hc) holds. Therefore, according to Theorem 4.3 and the boundedness of

f , system (5.11) is approximately controllable.

Acknowledgments. The authors thank the referees for their valuable sug-

gestions.
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[26] D. Matignon and B. d’Andréa-Novel, Some results on controllability and observability

of finite-dimensional fractional differential systems, in: Proceedings of the Computational

Engineering in Systems and Application Multiconference, vol. 2, Lille, France, July 1996,

IMACS, IEEE-SMC, pp. 952–956.

[27] K. Naito, Controllability of semilinear control systems dominated by the linear part,

SIAM J. Control Optim. 25 (1987), 715–722.

[28] Z. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equa-

tions, Springer–Verlag, New York, 1983.

[29] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

[30] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
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