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FORMAL BARYCENTER SPACES WITH WEIGHTS:

THE EULER CHARACTERISTIC

Sadok Kallel

Abstract. We compute the Euler characteristic with compact supports χc

of the formal barycenter spaces with weights of some locally compact spaces,

connected or not. This reduces to the topological Euler characteristic χ

when the weights of the singular points are less than one. As foresighted by
Andrea Malchiodi, our formula is related to the Leray–Schauder degree for

mean field equations on a compact Riemann surface obtained by C.C. Chen

and C.S. Lin.

1. Statement of the main result

Given a space X, we will write Bk(X) for the space of formal barycenters of

k points in X [11]. By construction there are inclusions Bk(X) ↪→ Bk+1(X) for

all k and we will write B(X) the direct limit. This is known to be a contractible

space if X is of the homotopy type of a CW.

Let Qr := {y1, . . . , yr} ⊂ X be a fixed finite set of “singular points” in X.

We assign to every x ∈ X a weight

w(x) =

1 if x 6∈ Qr,
wi if x = yi,

2010 Mathematics Subject Classification. 55M99, 57N80.
Key words and phrases. Euler characteristic; compact supports; Leray–Schauder degree;

stratification.

801



802 S. Kallel

where wi > 0. Let ρ be any positive number and define the set

(1.1) BQr
ρ (X) =

{∑
i

tixi ∈ B(X)

∣∣∣∣ ∑
i

w(xi) ≤ ρ
}

This is topologized as a subspace of B(X) (see Section 2). If wi = 1 for all i,

the singular points are “invisible” (i.e. they cease to be singular) and B∅ρ(X) =

Bbρc(X), where bρc is the greatest integer less or equal to ρ (with b · c being the

floor function).

The formal barycenter spaces with weights play nowadays a significant role

in geometric analysis. They were introduced in [4] in order to study singular

Liouville equations arising in the problem of prescribing the Gaussian curva-

ture and the appearence of conical singularities on compact Riemann surfaces

under a conformal change of the metric. The weighted barycenter spaces come

with filtration terms that relate to low sublevels of a C1-functional whose Euler-

Lagrange equation is the Liouville type equation. The non-contractibility of the

weighted barycenter spaces implies a change of topology in the sublevels from

which the existence of solutions is deduced. A conjecture about the contractibil-

ity of BQr
ρ (X) is stated in the case X = Σ is a closed Riemann surface, and

this conjecture is addressed in [3]. The computation of the Euler characteris-

tic that we provide in this note gives precise, albeit weaker conditions on the

contractibility of BQr
ρ (X) for general X, connected or not, compact or not. We

expect that this result, in the case when X is a proper smooth (not necessarily

connected) subset of a compact Riemann surface Σ, can enable one to determine

the Leray-Schauder degree formula for the singular Liouville equation appearing

when the prescribed curvature is sign-changing, a problem recently addressed

in [7], extending the computation done in [5] for positive curvatures.

Throughout the paper, χ will denote the topological Euler–Poincaré charac-

teristic, and χc the Euler characteristic with compact support (see Section 3).

When X is connected, and there are no singular weights so that Qr = ∅, the Euler

characteristic of the barycenter spaces has been computed for general polyhedral

spaces in [11]:

(1.2) χBk(X) = 1−
(
k − χ
k

)
= 1− 1

k!
(1− χ)(2− χ) . . . (k − χ).

It turns out that this formula is still valid for disconnected spaces (Section 5)

and even if we replace χ by χc everywhere in the formula (Remark 1.4).

The main contribution of this paper is to compute χc(BQr
ρ (X)) for a gen-

eral family of spaces X, not necessarily connected, and from there deduce the

topological Euler characteristic χ for many cases of interest (Corollary 1.2).

We define a basic space to be a connected space which is either a finite CW

complex or the complement of a subcomplex in a finite CW complex. We recall

that X ⊂ Z is locally closed (or “LC”) if it is open in its closure (see Section 3).
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A typical example we consider in this paper is whenX is the interior of a manifold

with boundary. Denote by P({1, . . . , r}) (resp. P∗({1, . . . , r})) the power set of

all subsets of {1, . . . , r} (resp. those excluding the empty set).

Theorem 1.1. Let X be a finite union of basic spaces and write χc = χc(X)

the Euler characteristic with compact supports of X. Let pi ∈ X, 1 ≤ i ≤ r be

the singular points with weights wi > 0, and let ρ > 0. Then

χc(BQr
ρ (X)) = 1−

(
bρc − χc + r

bρc

)
−

∑
{i1,...,ik}
∈P∗({1,...,r})

(−1)k
(
bρ− wi1 − . . .− wikc − χc + r

bρ− wi1 − . . .− wikc

)

with the understanding that binomial coefficients where bρ−wi1 − . . .−wikc < 0

are set to zero.

When r = 0 (in this case the bottom summation term in the formula above

is set to zero) or, when all wi are equal to 1 (in which case the pi’s cease to be

singular), one recovers the formula (1.2). Binomial coefficients can be computed

in the case of negative integer entries and they have integral values (Remark 4.6).

From Theorem 1.1, we can deduce the topological Euler characteristic χBQr
ρ (X)

as a function of χ := χ(X) in the following two relevant cases.

Corollary 1.2. Assume wi ≤ 1 for all i. If X is compact or if X is the

interior of an even dimensional manifold with boundary (or a union of those),

then χ(BQr
ρ (X)) = χc(BQr

ρ (X)). In other words, the topological Euler characte-

ristic of BQr
ρ (X) is given by the formula in Theorem 1.1 after replacing χc by χ

everywhere in the formula.

Proof. When X is compact and the wi ≤ 1 for all i, BQr
ρ (X) is compact

and the claim is immediate since χc and χ agree on compact spaces. When X

is the interior of a manifold with boundary X, then X is open in X, and the

formula applies. If the manifold dimension is even, the Euler characteristic of the

boundary is zero (being that of an odd closed manifold) and so by definition (see

Section 3) χc(X) = χ(X)−χ(∂X) = χ(X) = χc(X) (by compactness of X). The

formula in Theorem 1.1 gives that χc(BQr
ρ (X)) = χc

(
BQr
ρ (X)

)
. By compactness

of this barycenter space, this in turn is equal to χ
(
BQr
ρ (X)

)
so that

χc(BQr
ρ (X)) = χ

(
BQr
ρ (X)

)
But a manifold with boundary X is homotopy equivalent to its interior X ' X

via a homotopy H that is supported in a collar. Since the pi’s are in X and

can be considered to be away from the collar (after applying a homeomor-

phism if necessary), the homotopy H can be extended to a homotopy equivalence

BQr
ρ (X) ' BQr

ρ (X), and the claim follows. �
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Remark 1.3. In the formula of Theorem 1.1, we can regard the term(
bρc − χc + r

bρc

)
as the contribution of ∅ ∈ P({1, . . . , r}). In other words, if for I = {i1, . . . , ik} ⊂

{1, . . . , r}, we set wI =
k∑
j=1

wij , with the convention that when I = ∅, wI = 0

and the cardinality |I| = 0; then our formula takes the more succinct form

χc(BQr
ρ (X)) = 1−

∑
I∈P({1,...,r})

(−1)|I|
(
bρ− wIc − χc + r

bρ− wIc

)
.

Remark 1.4. Interestingly and when there are no critical points, we see that

χcBk(X) = 1−
(
k − χc
k

)
,

which means that the formula computing χc(Bk(X)) is similar to (1.2).

Example 1.5. When r = 1 the sum is over ∅ and {1}, and we obtain

(1.3) χc(BQ1
ρ (X)) = 1−

(
bρc − χc + 1

bρc

)
+

(
bρ− w1c − χc + 1

bρ− w1c

)
.

We can check this formula against special cases. Write ρ = bρc+ ε, 0 ≤ ε < 1.

BQ1
ρ (X) =

Bbρc(X) if ε < w1 < 1 (i.e. bρ− w1c = bρc − 1),

contractible if w1 ≤ ε (i.e. bρ− w1c = bρc).

This is consistent with the Euler characteristic computation since when ε<w1<1,

χ(BQ1
ρ (X)) = 1−

(
bρc − χc + 1

bρc

)
+

(
bρc − χc
bρc − 1

)
= 1−

(
bρc − χc
bρc

)
and this recovers the formula in Remark 1.4. When w1 ≤ ε however, bρ−w1c =

bρc so that in (1.3), χcBQ1
ρ (X) = 1 always. Note that the weighted barycenter

space is contractible, but this is in general not enough to justify that χc = 1.

Example 1.6. When r = 2 the sum is over ∅, {1}, {2} and {1, 2}, so that

χc(BQ2
ρ (X)) = 1−

(
bρc − χc + 2

bρc

)
+

(
bρ− w1c − χc + 2

bρ− w1c

)
+

(
bρ− w2c − χc + 2

bρ− w2c

)
−
(
bρ− w1 − w2c − χc + 2

bρ− w1 − w2c

)
.

Here too, the various homotopy types for BQ2
ρ (X) can be described (see Sec-

tion 6).

Remark 1.7. To help check the validity of the formula in Theorem 1.1, there

are two fundamental properties that must be satisfied:
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(a) Under the condition wk ≤ ρ < wk+1 ≤ . . . ≤ wr we must have

χc
(
BQr
ρ (X)

)
= χc

(
BQk
ρ (X −Qr−k)

)
.

This identity is already true at the level of spaces; i.e. BQr
ρ (X) = BQk

ρ (X−Qr−k)

under the stated condition. In particular, if ρ < wi for all i, then

χcBQr
ρ (X) = 1−

(
bρc − χc + r

bρc

)
= χc

(
Bbρc(X −Qr)

)
.

The last equality follows from the fact that under the stated conditions,

χc(X \Qr) = χc(X)− r.

(b) The second fundamental property is that if wi1 = . . . = wik = 1, then the

points pi1 , . . . , pik are not singular anymore and BQr
ρ (X) = BQr−k

ρ (X), so that

χc
(
BQr
ρ (X)

)
= χc

(
BQr−k
ρ (X)

)
.

This is also verified by our formula.

The formula in Theorem 1.1 is intimately related to the Chen–Lin degree dρ
(see [5]) as we mentioned earlier.

Corollary 1.8. Let X and Qr as in Theorem 1.1. Consider the Chen–Lin

generating series

g(x) = (1 + x+ x2 + . . .)−χc+r
r∏
j=1

(1− xwj )

and write it in powers of x as in

g(x) = 1 + b1x
n1 + b2x

n2 + . . .+ bkx
nk + . . .

where 1 ≤ n1 < n2 < . . . Suppose nk ≤ ρ < nk+1. Then

χc(BQr
ρ (X)) = −

k∑
j=1

bj = 1− dρ.

Proof. One can give the proof right away and it is combinatorial. We have

the expression, for m > 0,

(1.4) (1 + x+ x2 + . . .)m

= 1 +

(
m

1

)
x+

(
m+ 1

2

)
x2 + . . . =

∑
n=0

(
m+ n− 1

n

)
xn

based on the identity

(1.5) 1 +

(
m

1

)
+

(
m+ 1

2

)
+ . . .+

(
m+ n− 1

n

)
=

(
m+ n

n

)
.
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Remark 4.6 explains why both formulas above are valid for all integers m. In fact

(1 + x+ x2 + . . .)m = (1− x)−m if m is negative. So starting with (1.4), we can

write

(1 + x+ x2 + . . .)−χc+r =
∑
n=0

(
−χc + r + n− 1

n

)
xn.

Multiplying this by
∏

(1− xwi) we get the series

g(x) = 1 + b1x
n1 + b2x

n2 + . . .+ bkx
nk + . . .

Let i1 ≤ . . . ≤ ik be a sequence such that wi1 + . . . + wik ≤ ρ, and let

i be the smallest integer such that i + wi1 + . . . + wik > ρ (that is, i − 1 =

bρ−wi1 − . . .−wikc). Any such sequence contributes to the coefficients of g(x)

via the terms with exponents

xwi1+...+wik , x1+wi1+...+wik , . . . , xi−1+wi1+...+wik .

Here the term (−1)kxwi1+...+wik comes evidently from the product
∏

(1 − xwi)

and the factor xj in xj+wi1+...+wik comes from (1 + x + x2 + . . .)−χc+r, with

the coefficient
(−χc+r+j−1

j

)
. The total contribution from these exponents to the

sum
k∑
j=1

bj is therefore the sum of their coefficients. To recap, the sequence

i1 ≤ . . . ≤ ik with i− 1 = bρ− wi1 − . . .− wikc contributes to
k∑
j=1

bj the term

(−1)k
[
1 +

(
−χc + r

1

)
+

(
−χc + r + 1

2

)
+ . . .+

(
−χc + r + i− 1− 1

i− 1

)]
which is equal according to (1.5) to

(−1)k
(
−χc + r + i− 1

i− 1

)
= (−1)k

(
bρ− wi1 − . . .− wikc − χc + r

bρ− wi1 − . . .− wikc

)
.

Adding these over all sequences i1 ≤ . . . ≤ ik with the property that wi1 + . . .+

wik ≤ ρ gives the desired identity

dρ = 1 +

k∑
j=1

bj = 1− χc. �

Notation 1.9. Throughout this note we make the assumption that B∅ = B,

B0(X) = ∅ and that X ∗ ∅ = X.

2. Conical subspaces

The formal barycenter spaces Bn(X) are topologized as quotients of sym-

metric joins. An element there, also called a “configuration”, is a (formal)

finite abelian sum
n∑
i=1

tixi, with
∑
ti = 1, ti ≥ 0, with the identifications

tix + tjx = (ti + tj)x and, if ti = 0, the corresponding entry is suppressed

(see [11] and [4])
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We will make heavy use of the following construction discussed in [1], [3].

For A closed in X, define

Bn(X,A) = Bn(X) ∪
{∑

tixi ∈ Bn+1(X)

∣∣∣∣ xi ∈ A for some i

}
.

This is the space consisting of all configurations with at most n points in X \A
but possibly longer configurations if one of the points is in A. The following is

clear

• B0(X,A) = A.

• Bn(X,A1) ∪ . . . ∪ Bn(X,Ak) = Bn
(
X,
⋃
Ai
)
.

We can extend this definition as follows.

Definition 2.1. For pairs of spaces (X,Ai), define

Bn(X,A1, . . . , Ak)

=

{
t1x1 + . . .+ tnxn + s1a1 + . . .+ skak ∈ Bn+k(X)

∣∣∣∣ aj ∈⋃Ai,∑
ti +

∑
sj = 1, ti, sj ≥ 0

}
.

This consists of configurations in Bn+k(X) having at most n points in X−
⋃
Ai.

Again B0(X,A1, . . . , Ak) = Bk
(⋃

Ai
)
. These spaces are closed if the (X,Ai) are

closed pairs. By abuse of notation we write Ai = pi if Ai = {pi} is a singleton.

Our definition coincides with that in ([4, § 3]) who adopt instead the notation

Xn,k
i1,...,ik

for our conical spaces Bn(X, pi1 , . . . , pik).

Lemma 2.2. The conical subspaces Bn(X, p1, . . . , pk) are always contractible

as soon as k ≥ 1.

Proof. We have an inclusion Bn(X, p1, . . . , pk) ⊂ Bn+k−1(X, p1), and the

deformation retraction of Bn+k−1(X, p1) to p1 restricts to a deformation retrac-

tion of Bn(X, p1, . . . , pk). �

The weighted barycenter spaces BQr
ρ (X) only depend on the homeomorphism

type of X. There is a major difference between the cases when the weights wi are

smaller or bigger than one. In the former case, the spaces behave like “quotients”,

while in the latter case they behave like “complements”. For instance, consider

one singular point p with weight w, and let X be the unit disk D in Rn. If w > 1,

then BQ1

1 (D) = D−{p}, and the homotopy type depends on the dimension of D.

When the weights wi are < 1, it is possible to describe BQr
ρ (X) as a colimit

of a diagram of spaces of the form B∗(X) or B∗(X, pi1 , . . . , pik).
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Lemma 2.3. Let Q = {p1, . . . , pr}, Ω = {1, . . . , r}, w(pi) = wi and suppose

0 < wi < 1 for all i ∈ Ω. There is a colimit decomposition

BQr
ρ (X) =

⋃
{i1,...,ik}⊂Ω

Bbρ−wi1
−...−wik

c(X, pi1 , . . . , pik).

We can refine this union by only considering the maximal conic subspaces

making up the union. As indicated by ([3, Definition 2.1]), Bn(X, pi1 , . . . , pir )

includes in Bm(X, pj1 , . . . , pjs) if n ≤ m and {i1, . . . , ir} splits into a subset in

{j1, . . . , js} and another subset of cardinality ≤ m− n. Here Bn(X, pi1 , . . . , pik)

is maximal in BQr
ρ (X) if it is not contained in a larger conic subspace.

Example 2.4. Let ρ = 4.5. Suppose we have 3 singular points with weights

w1 = 0.3, w2 = 0.4, w3 = 0.6, then

BQ3
ρ (X) = B4(X, p1) ∪ B4(X, p2) ∪ B3(X, p1, p2, p3).

All subspaces in the union are maximal subspaces.

Example 2.5. When r = 1, with a single singular point p of weight 0<w≤1,

then

BQ1
ρ (X) = Bbρc(X) ∪ Bbρ−wc(X, p).

One can see immediately that BQ1
ρ (X) = Bbρc(X) if bρ−wc < bρc since in that

case Bbρ−wc(X, p) ⊂ Bbρc(X), and that BQ1
ρ (X) = Bbρc(X, p) is contractible if

bρ− wc = bρc (Example 1.5).

Example 2.6. Suppose r = 2, p1, p2 having weights w1, w2. In the case

w1, w2 ≤ ρ − bρc = ε, w1 + w2 > ε, we can have a configuration of length

bρc + 1 provided the configuration contains p1 or p2, but no configuration can

be of length bρc+ 2. This means that

BQ2
ρ (X) = Bbρc(X, p1) ∪ Bbρc(X, p2)

Other descriptions occur depending on the choices of w1, w2 (see Section 6).

Notice that in the present case

Bbρc(X, p1) ∩ Bbρc(X, p2) = Bbρc(X) ∪ Bbρc−1(X, p1, p2).

It is always true that the intersection of conical subspaces is again a union

of conical subspaces. This fact is crucial when it comes to determining some

quotients and some homotopy types.

We next list the main properties for the conic spaces needed in our computa-

tion of the Euler characteristic. We restrict below to when (X,A) is a CW-pair.

Lemma 2.7. Assume n ≥ 1. The following hold :

(a) Bn(X,A) is contractible if A is contractible. In particular, Bn(X, p) is

contractible.
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(b) (See [1]) Let A be a closed subspace of X. Then

Bn(X)

Bn−1(X,A)
' Bn(X/A).

(c) If X is contractible, then Bn(X/A) ' ΣBn−1(X,A) where Σ means sus-

pension.

Proof. (a) is Lemma 2.2. For the second claim, notice that

Bn(X)

Bn−1(X,A)
=

Bn(X/A)

Bn−1(X/A, p)
,

where p is the preferred basepoint in X/A. Since Bn−1(X/A, p) is contractible

we obtain the homotopy equivalence in claim (b). The simplest example here is

when n = 1, B0(X,A) = A, B1(X) = X and the quotient is X/A.

Claim (c) is a direct consequence of (b) and the fact that Bn(X) is also

contractible. �

Example 2.8. When X = D is a closed m-dimensional ball with boundary

∂D = Sm−1, Bn(X) is contractible since D is contractible, so Lemma 2.7 (c)

implies that Bn(Sm) ' Σ(Bn−1(D,Sm−1)).

3. The compactly supported Euler characteristic

The compactly supported Euler characteristic χc, sometimes called the “com-

binatorial” Euler characteristic, is defined for locally compact spaces and has the

property that for any disjoint decomposition of X =
∐
Xi where each Xi is a lo-

cally closed subspace of X,

χc(X) =
∑

χc(Xi).

As is common, we reserve the word “stratification” {Xi} for X if X is a disjoint

union of the Xi’s and all Xi’s are locally closed in X.

Remark 3.1. Being locally closed in a topological space X has various equiv-

alent definitions (see [8, Proposition 1]). Here’s conveniently the list of equiva-

lences: A is locally closed in X ⇔ A = U ∩ clA for some open set U ⇔ clA \A
is closed ⇔ A ∪ (X \ clA) is open. It seems more convenient to think in terms

of the third equivalence: A is LC in X if clA \A is closed.

The above additivity formula for χc makes it a very computable character-

istic. Its drawback is that it is not an invariant of homotopy type. For example

when D is the open unit disk, then χ(D) = 1 if D is even dimensional, and

χ(D) = −1 if D has odd dimension. In particular, if X is contractible, χc(X) is

not necessarily 1. As expected, χc(X) = χ(X) if X is compact.
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If X is open in a compact Hausdorff space X, in particular if X is the

complement of a subcomplex in a finite CW-complex X, then

(3.1) χc(X) = χ(X)− χ(X \X) = χ

(
X

X \X

)
− 1.

The 1 is subtracted to compensate for one less factor in H0. This is the formula

we use to compute χc throughout the paper.

Definition 3.2. We say that X admits a “BM-compactification” X if X

is a finite CW complex and X \ X is a closed subcomplex (cf. [9, § 10] and [6,

§ 2.6]). If X is compact, then X = X.

Example 3.3 ([12]). If X, Y admit BM-compactifications, then

(3.2) χc(X ∗ Y ) = χc(X) + χc(Y )− χc(X)χc(Y )

either X or Y is compact, or both. Also and as a consequence of this formula,

we find that

(3.3) χc
(
ΣkX

)
= 1 + (−1)k(χc(X)− 1),

where ΣkX := Sk ∗X is the suspension iterated k times of X. When k is even

χc
(
ΣkX

)
= χcX and when k is odd χc

(
ΣkX

)
= 2− χc(X).

Example 3.4. This next example is pertinent and discusses the computation

of χc(B
Q1
ρ (D)), where D is the open unit disk in Rn, ρ = bρc + ε and where

the unique singular point p1 at the origin has weight 0 < w1 ≤ ε. This is

a good illustration of the importance of having the locally closed condition when

computing χc, and is also some explanation of the peculiarity discussed at the

end of Remark 1.5.

Now evidently in this case BQ1
ρ (D)=Bbρc(D, p1) is contractible. Take bρc=1,

then B1(D, p1) consists of all configurations of the form t1x+ t2p1, t1 + t2 = 1.

This is the cone on D but we must identify all points of the form t1p1+t2p1 ∼ p1,

so B1(D, p1) is homeomorphic to the reduced cone cD obtained from the cone by

collapsing the segment [v, 0] to 0, where v is the vertex of the cone, and 0 the

origin of D. This space is stratified as follows. We will specify the dimension

by writing Dn for the n-dimensional open disk. Its cone with vertex v can be

stratified as Dn+1 t {v} t Dn. The reduced cone cD has then a locally closed

stratification of the form (up to homeomorphism)

cD = (Dn+1 \ L) tDn,

where L is a diameter in the open disk Dn+1 (note already that v has been

identified with 0 ∈ Dn in this decomposition).

A BM-compactification of Dn+1 \ L is the closed disk D
n+1

and D
n+1 \

(Dn+1 \L) is the sphere Sn together with a diameter attached, so it is homotopy
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equivalent to Sn ∨ S1. We can then write

χc(B1(D, p1)) = χc(cD) = χc(D
n+1 \ L) + χc(D

n)

= χ(D
n+1

)− χ(Sn ∨ S1) + χ(D
n
)− χ(Sn−1)

= 1− (χ(Sn)− 1) + 1− χ(Sn−1) = 1,

so this is always 1 as predicted by Theorem 1.1. The way we compute this in

Section 4.1 is by using a slightly different stratification which is better adapted

to the general situation.

3.1. Topology. The topology of BQr
ρ (X) can be subtle, especially when

dealing with pushouts and compactifications. We make some observations and

draw attention to subtle issues related to the topology of barycenter spaces.

If A ⊂ X is a closed subspace, then Bn(A) is closed in Bn(X). This is not

generally true if we replace closed by open. Take A = (0, 1) and X = [0, 1]. The

sequence ((
1− 1

n

)
x1 +

1

n
x2

)
, with x1 =

1

2
and x2 = 1,

is in B2([0, 1]) \ B2((0, 1)) and converges to x1 ∈ (0, 1) = B1(0, 1) ⊂ B2(0, 1),

which means that B2(A) cannot be open in B2(X). That the statement is true

for closed sets and not open sets is a consequence of the fact that generally

Bn(X) \ Bn(A) is not Bn(X \A). In fact and as sets

Bn(X) = Bn(X \A) ∪ Bn−1(X,A).

This union is not a pushout or an adjunction space construction ([2, Section 4.5]).

Indeed, the intersection of both factors in the union is Bn−1(X \A). The union

doesn’t have the quotient topology of the corresponding adjunction space since

there is part of the boundary of Bn(X \A) intersecting Bn−1(X,A) and yet not

being in Bn−1(X \A).

Notation 3.5 (and terminology). If X is compact, then we write X = X,

and if not, then X is the closure of X, and (X,X) is a BM-compactification. In

this latter case, we write conveniently ∂X := X \X.

Lemma 3.6. Let Qr = {p1, . . . , pr} ⊂ X, and suppose X is basic. Then

Bn(X −Qr)−Bn−1(X −Qr) is locally closed in Bn(X), and this pair is a BM-

compactification.

Proof. A configuration
∑
tixi in Bn(X −Qr)−Bn−1(X −Qr) approaches

its boundary in Bn(X) if one xi approaches Qr ∪ ∂X, or if a ti approaches 0 or

if two points of the configuration approach each other. In other words and more
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precisely, we have

Bn(X) \ (Bn(X −Qr)− Bn−1(X −Qr))

= (Bn(X) \ Bn(X −Qr)) ∪ Bn−1(X −Qr) = Bn−1(X,Qr ∪ ∂X).

This is closed in Bn(X) which is compact and is the closure of Bn(X − Qr) −
Bn−1(X −Qr). �

The lemma above is what enables us to compute χc for such complements in

Section 4 next.

Another remark pertaining to topology is to take A,B disjoint in X. For

example can have B = X \ A. Then Bi(A) ∗ Bj(B) is a subset of Bi+j(X),

meaning the topology of the join coincides with the induced topology. The

closure of Bi(A) ∗ Bj(B) in Bi+j(X) is homeomorphic to Bi(A) ∗ Bj(B) if and

only if however the closures are disjoint A ∩B = ∅.

Example 3.7. Consider the stratum in BQr
ρ (X) consisting of all configura-

tions having exactly k singular points p1, . . . , pk appearing in the configuration

(i.e. having non-zero coefficients), and no other singular points. Let’s denote

this stratum by Bn(X −Qr)
◦∗ Bk{p1, . . . , pk}. A configuration in Bn(X −Qr)

◦∗
Bk{p1, . . . , pk} is then of the form

n∑
i=0

tixi + s1p1 + . . .+ skpk, si 6= 0, xi 6∈ Qr.

This stratum as a subspace of BQr
ρ (X) can be written as

(3.4) Bn(X −Qr)
◦∗ Bk{p1, . . . , pk} := Bn(X −Qr) ∗ Bk{p1, . . . , pk}

− Bn(X −Qr) ∗ Bk−1{p1, . . . , pk}

Its χc-computation can therefore be deduced from Lemma 3.6 (see Proposi-

tion 4.5).

4. Proof of Theorem 1.1

This proof is broken in several steps. We recall throughout that B0(X) = ∅
and that X ∗ ∅ = X. Notation and terminology are as in Definition 3.2 and

Notation 3.5.

Lemma 4.1. Let X be a basic set. Then χc(Bn(X)) = 1−
(
n−χc

n

)
.

Proof. The proof is carried out for (X,X) pair, the case when X compact is

known. The BM-compactification of Bn(X) is certainly not Bn(X) as indicated

in Lemma 3.6. We therefore need to stratify Bn(X) as follows. Set

Xn := Bn(X)− Bn−1(X)



Formal Barycenter Spaces with Weights: the Euler Characteristic 813

so that in light of the aforementioned lemma, Xn = Bn(X) and Xn \ Xn =

Bn−1(X, ∂X). By Lemma 2.7 we have

Xn

Xn \Xn

=
Bn(X)

Bn−1(X, ∂X)
' Bn

(
X

∂X

)
and we get immediately for n ≥ 2

(4.1) χc(Xn) = χ(Xn/Xn \Xn)− 1 = χ

(
Bn
(
X

∂X

))
− 1 = −

(
n− χc − 1

n

)
with the last equality obtained from (1.2) and the identity (3.1).

To get to χc(Bn(X)) we write

Bn(X) = (Bn(X) \ Bn−1(X)) t . . . t (B2(X) \X) tX ∼= Xn t . . . tX1

which is a stratification with locally closed strata, so we can use the additivity

of χc to see that

χcBn(X) =
∑

1≤i≤n

χc(Xi)

= −
(
n− χc − 1

n

)
−
(
n− χc − 2

n− 1

)
− . . .−

(
−χc

1

)
(1.5)
= 1−

(
n− χc
n

)
which proves the lemma. �

Corollary 4.2. Let X be a basic set and Qr ⊂ X. Then

χc(Bn(X −Qr)) = 1−
(
n− χc + r

n

)
.

The next two lemmas are a preparation for Proposition 4.5.

Lemma 4.3. For X basic and Qr ∈ X, we have

X

Qr ∪ ∂X
'


X

∂X
∨

r∨
S1 if ∂X 6= ∅,

X ∨
r−1∨

S1 if X compact.

This a straightforward consequence of the fact that in a path-connected space,

the identification of two points is up to homotopy like the one point union with

a circle. The proof is skipped. The analog of this lemma for disconnected spaces

is given in Lemma 5.4. The next Lemma is imported from [1].

Lemma 4.4 ([1, Lemma 5.10]). Let (X,A) and (Y,B) be two connected CW

pairs. Then (X ∗ Y )/(A ∗ Y ) ' (X/A) ∗ Y and

(X ∗ Y )/(X ∗B ∪A ∗ Y ) '


X/A ∗ Y/B for A 6= ∅, B 6= ∅,
ΣX/Ao Y for A 6= ∅, B = ∅,
Σ(X × Y ) ∨ S1 for A = ∅, B = ∅,

where X o Y := (X × Y )/(x0 × Y ) is the half-smash product.



814 S. Kallel

Proposition 4.5. Again X basic, ∅ 6= Qr ⊂ X and χc := χc(X). For k ≥ 1,

define Bn(X −Qr)
◦∗ Bk{p1, . . . , pk} as in (3.4). Then

χc
(
Bn(X −Qr)

◦∗ Bk{p1, . . . , pk}
)

= (−1)k+1

(
n− χc + r

n

)
.

Proof. We recall that BkQk = Bk{p1, . . . , pk} is homeomorphic to the k − 1

dimensional simplex ∆k−1 and that Bk−1Qk is its boundary sphere ∂∆k−1. Con-

sider, as in Example 3.7, the subspace

Xi = Bi(X −Qr)
◦∗ BkQk − Bi−1(X −Qr))

◦∗ BkQk.

We clearly have

Bn(X −Qr)
◦∗ BkQk = Xn t . . . tX0,

where the last two spaces are given by X1 = (X − Qr)
◦∗ BkQk −

◦
BkQk and

X0 =
◦
BkQk = BkQk −Bk−1Qk (the interior of a disk of dimension k− 1). Note

that the first stratum Xn is open in Bn(X −Qr)
◦∗BkQk. This is a locally closed

stratification and

χc
(
Bn(X −Qr)

◦∗ BkQk
)

=
∑

0≤i≤n

χc(Xi).

The simplest case is when n = 0 where evidently

(4.2) χc(X0) = χc(
◦
BkQk) = χc(

◦
∆k−1) = (−1)k−1.

For n ≥ 1, and assuming X is compact, a BM-compactification for Xn is given

by Xn = Bn(X) ∗ Bk(Qk). The complement of Xn in Xn is

(Bn(X) ∗ Bk−1(Qk)) ∪ (Bn−1(X, {p1, . . . , pr}) ∗ Bk(Qk)),

so that, from the definition of χc, we have

χc(Xn) = χ

(
Bn(X) ∗ Bk(Qk)

(Bn(X) ∗ Bk−1(Qk)) ∪ (Bn−1(X, {p1, . . . , pr}) ∗ Bk(Qk))

)
− 1.

The quotient in the first term on the right can be described precisely (Lem-

ma 4.4). For k ≥ 2, this is

χc(Xn) = χ

(
Bn(X)

Bn−1(X, {p1, . . . , pr})
∗ BkQk
Bk−1Qk

)
− 1(4.3)

(by Lemma 4.4, first case)

= χ

(
Bn
(
X ∨

r−1∨
S1

)
∗ Sk−1

)
− 1

= χ

(
ΣkBn

(
X ∨

r−1∨
S1

))
− 1
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(3.3)
= (−1)k

(
χ

(
Bn(X ∨

r−1∨
S1

)
− 1

)
(1.2)
= −(−1)k

(
n− χ+ r − 1

n

)
.(4.4)

Adding up (4.2) and (4.4), we obtain (in case k ≥ 2)

χc(Bn(X −Qr)
◦∗ Bk({p1, . . . , pk}) = −(−1)k

((
n− χ+ r − 1

n

)
+

(
n− 1− χ+ r − 1

n− 1

)
+ . . .+

(
1− χ+ r − 1

1

)
+ 1

)
and this is

−(−1)k
(
n− χ+ r

n

)
as desired. This covers the case k ≥ 2.

For the case k = 1, the exact same steps as in (4.3) apply only that the first

step becomes

χc(Xn) = χ

(
Bn(X) ∗ p

Bn(X) ∪Bn−1(X,Qr) ∗ p

)
− 1 = χ

(
ΣBn

(
X

Qr

))
− 1

by the second case of Lemma 4.4. The rest is the same.

To double check the case k = 1, using Lemma 3.6, we can write

Bn(X −Qr)
◦∗ p = Bn(X −Qr) ∗ p− Bn(X −Qr),

so we have a similar stratification by locally closed subsets

Xi = (Bi(X −Qr) ∗ p \ Bi(X −Qr))− (Bi−1(X −Qr) ∗ p \ Bi−1(X −Qr))

= (Bi(X −Qr)− Bi−1(X −Qr)) ∗ p− (Bi(X −Qr)− Bi−1(X −Qr))− p

for i ≥ 1 and X0 = p. As before Bn(X − Qr)
◦∗ p = Xn t . . . t X0 and we

can compute the χc of each stratum. Since χc(Y ∗ p) = 1, if Y has a BM-

compactification, see (3.2), we have that χc(Y ∗ p− p) = 0. This gives that

χc(Bn(X −Qr)
◦∗ p) = −

∑
1≤i≤n

χc(Bi(X −Qr)− Bi−1(X −Qr)) + χ(p)

(4.1)
= 1 +

∑
1≤i≤n

(
i− χ+ r − 1

i

)
=

(
n− χ+ r

n

)
which is what we wanted to prove.

In conclusion, the above calculations give the right answer in the case X is

compact. When (X,X) is a BM compactification, we have to modify each step

of the proof by incorporating a boundary ∂X, keeping in mind that the singular

points pj are in the interior. The modifications are indicated below, yielding the

same final results. For k ≥ 2, we use the same stratification by Xn, only that

Xn will change.
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• For n ≥ 1, Xn = Bn(X) ∗ Bk(Qk), and the complement Xn \Xn is

(Bn(X) ∗ Bk−1(Qk)) ∪ (Bn−1(X, ∂X ∪ {p1, . . . , pr}) ∗ Bk(Qk)).

• When k ≥ 2, the quotient Xn/(Xn \Xn) is up to homotopy

Bn
(
X

∂X
∨

r∨
S1

)
∗ Sk−1.

Lemma 4.3, and the same computation as in (4.4) yields the same formula

with χ replaced by χc.

• For k = 1, no changes, simply apply (4.1) with χc instead of χ.

This concludes the proof if X is a basic set. �

4.1. Proof of the main theorem. We derive the formula of Theorem 1.1

for a basic set X and singular points p1, . . . , pr. We will prove that

χc(BQr
ρ (X)) = 1−

(
bρc − χc + r

bρc

)
−

∑
{i1,...,ik}∈P∗({1,...,r})

(−1)k
(
bρ− wi1 − . . .− wikc − χc + r

bρ− wi1 − . . .− wikc

)
.

Proof. The key point is to write BQr
ρ (X) as the disjoint union of subspaces

BQr
ρ (X) =Bbρc(X −Qr) t

∐
i

Bbρ−wic(X −Qr)
◦∗ pi(4.5)

t
∐
{i1,i2}

Bbρ−wi1−wi2c(X −Qr)
◦∗ B2{pi1 , pi2}

t
∐

{i1,i2,i3}

. . . t Bbρ−w1−...−wrc(X −Qr)
◦∗ Br{p1, . . . , pr}.

In this notation Bi(X − Qr)
◦∗ Z is empty if i < 0, B0(X − Qr)

◦∗ Z = Z and

in 6= im if n 6= m. In this disjoint union, notice that if pi has weight wi ≤ ρ,

then it appears in the term Bbρ−wic(X −Qr)
◦∗ pi (and it appears only there) so

everything is accounted for once. We claim that

χc(BQr
ρ (X)) = χc

(
Bbρc(X −Qr)

)
+

∑
{i1,...,ik}

χc
(
Bbρ−wi1−...−wik

c(X −Qr)
◦∗ B2{pi1 , . . . , pik}

)
and this sum yields precisely the desired formula in light of Proposition 4.5 and

Lemma 4.2. As pointed out multiple times, the factors

Bbρ−wi1
−...−wik

c(X −Qr)
◦∗ B2{pi1 , . . . , pik}

are not locally closed in BQr
ρ (X) in general, but they are themselves stratified

by strata {Xi} which are LC in BQr
ρ (X), so χc is additive on (4.5) and the proof

follows. �
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Remark 4.6. We point out a computational aspect of this formula. Binomial

coefficients
(
n
k

)
can be computed in the case of negative integers n, and non-

negative k. One should view
(
X
k

)
as the rational function

X(X − 1) . . . (X − (k − 1))

k(k − 1) . . . 1
,

so substituting n (any integer) for X gives that for 0 ≤ n < k,
(
n
k

)
= 0, while for

n < 0 (eg. [13]) (
n

k

)
= (−1)k

(
−n+ k − 1

k

)
, k > 0, n < 0.

We set
(
n
0

)
= 1 for all n ∈ Z. Obviously, we can check that with this definition,

the identity in (1.5) remains valid. This is because it is valid at the level of

rational functions (replacing m in the formula by X). Note that, if m = 0,

all terms on the left of (1.5) are zero but the first term 1. Similarly, (1.4) is

valid for all m, and for negative m, (1 + x + x2 + x3 + . . .)m = (1 − x)−m.

Note that for m = −1, all binomial coefficents
(
k
n

)
appearing in the formula

with 0 ≤ k < n are zero, and we are left with
(−1

1

)
= −1. This gives that

(1 +x+x2 +x3 + . . .)−1 = 1−x, which is precisely what one expects. Similarly,

the formula we use throughout
(
m
n−1

)
+
(
m
n

)
=
(
m+1
n

)
is valid for all m and n > 0.

5. Barycenter spaces of disconnected apaces

We first observe that the Euler characteristic of Bn(X) only depends on

χ = χ(X), and not on the number of components.

Proposition 5.1. If X has a finite number of components, then

χBn(X) = 1−
(
n− χ
n

)
for n ≥ 1.

Proof. For n = 1 there is nothing to prove. Assume n ≥ 2. The proof

proceeds by induction on the number of components. The formula is true for

connected spaces [11]. Write X = Y t A where A is a connected component.

We can then assume the theorem is true for Y . Pick p1 ∈ Y and p2 ∈ A, and

consider the subspace Bn(X, {p1, p2}) of all barycenter configurations containing

either p1 or p2. Then this is a union of two connected spaces

Bn(X, {p1, p2}) = Bn(X, p1) ∪ Bn(X, p2)

and these spaces intersect along the subspace

Bn(X) ∪ Bn−1(X, p1, p2)

(recall that B0(X, p1, p2) = B2({p1, p2}) which is an interval). Since both spaces

Bn(X, pi) are contractible, their union has the homotopy type of the suspension
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of their intersection and we have

Bn(X, {p1, p2}) ' Σ(Bn(X) ∪ Bn−1(X, p1, p2))

since Bn−1(X, p1, p2) is contractible

' Σ

(
Bn(X)

Bn(X) ∩ Bn−1(X, p1, p2)

)
' Σ

(
Bn(X)

Bn−1(X, {p1, p2}

)
by Lemma 2.7 (b)

' ΣBn(X/p1 ∼ p2) ' ΣBn(Y ∨A).

Note that Y ∨A has one component less than that of X and χ(Y ∨A) = χ− 1,

where χ = χ(X). Taking Euler characteristics gives that

χBn(X, {p1, p2}) = 2− χBn(Y ∨A)

by induction

= 1 +

(
n− (χY + χA− 1)

n

)
= 1 +

(
n− χ+ 1

n

)
.

On the other hand,

Bn(X)

Bn−1(X, {p1, p2})
' Bn(Y ∨A),

and we can use the formula for the quotient χ(A/B) = χ(A)−χ(B) + 1 to write

χBn(Y ∨A) = χ

(
Bn(X)

Bn−1(X, {p1, p2})

)
= χBn(X) + 1− χBn−1(X, {p1, p2})

which recombines into

χBn(X) = −1 + χBn−1(X, {p1, p2}) + χBn(Y ∨A)

= 1 +

(
n− χ
n− 1

)
−
(
n− χ+ 1

n

)
= 1−

(
n− χ
n

)
The proof is complete. �

5.1. A combinatorial proof of Proposition 5.1. We know that the ho-

mology of Bk(X) only depends on the homology of X (a fact more general than

Euler characteristics) [11]. The following shows that this is true for disconnected

spaces as well.

Theorem 5.2 ([1]). Suppose X = AtB is the disjoint union of spaces (not

necessarily connected). Then, for k ≥ 2, Bk(A tB) has the same homology as

Bk(A) ∨ ΣBk−1(A) ∨ Bk(B) ∨ ΣBk−1B

∨
k−1∨
`=1

Bk−`(A) ∗ B`(B) ∨
k−1∨
`=2

ΣBk−`(A) ∗ B`−1(B).



Formal Barycenter Spaces with Weights: the Euler Characteristic 819

Example 5.3. We can describe some homotopy types of some barycenter

spaces of disjoint unions:

(a) When k = 2, B2(A tB) has actually the homotopy type of

B2(A) ∨ Σ(A×B) ∨ B2(B).

(b) When one of the components is contractible, say B ' p, then

Bn(A tB) ' Bn(A t p) = Bn(A) ∪ Bn−1(A) ∗ p ' Bn(A) ∨ ΣBn−1A.

This last equivalence follows from the fact that we are attaching a cone on

Bn−1(A) which is itself contractible in Bn(A).

(c) For k ≥ 2, it is not hard to check that there is a homotopy equivalence

B2(A t {y1, . . . , yk}) ' B2(A) ∨
k∨

ΣA ∨
(k
2)∨
S1

which is in fact the decomposition in Theorem 5.2 obtained at the level of spaces

(d) It is not always true that when the components are contractible, Bk(X) is

also contractible for k ≥ 2. This only happens when k is larger (or equal) to the

number of components. In fact, if X = [n+1] is a set consisting of n+1-vertices,

then Bk+1([n+ 1]) is the k-th skeleton of n-dimensional simplex ∆n, and thus is

a bouquet of spheres

Bk([n+ 1]) '
(
n

k

)
Sk−1, k ≤ n,

which is the notation for a bouquet of that many spheres. This we can recover

iteratively as follows:

Bk([n+ 1]) = Bk([n] t [1]) ' Bk([n]) ∨ ΣBk−1([n])

'
((

n− 1

k

)
+

(
n− 1

k − 1

))
Sk−1 =

(
n

k

)
Sk−1.

We now derive Proposition 5.1 from Theorem 5.2 easily as follows. By taking

χ of the wedge decomposition in the theorem, we find that

χBk(A tB) =χBkA+ (2− χBk−1A) + χBkB + (2− χBk−1B)

+

k−1∑
`=1

(χBk−`A+ χB`B − χBk−`AχB`B)

+

k−1∑
`=2

(2− χBk−`A− χB`−1B + χBk−`AχB`−1B)− 2k.

The term “−2k” accounts for the wedge points being counted multiple times.

We can set χ1 = χ(A) and χ2 = χ(B) and proceed by induction. Replacing
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binary coefficients in the above expression we get the identity

χBk(A tB) = 4 +

(
k − 1− χ1

k − 1

)
−
(
k − χ1

k

)
+

(
k − 1− χ2

k − 1

)
−
(
k − χ2

k

)
+

k−1∑
`=1

(
1−

(
k − `− χ1

k − `

)(
`− χ2

`

))

+

k−1∑
`=2

(
1 +

(
k − `− χ1

k − `

)(
`− 1− χ2

`− 1

))
− 2k

= 1−
k∑
`=0

(
k − `− χ1

k − `

)(
`− 1− χ2

`

)
= 1−

(
k − χ1 − χ2

k

)
.

The last identity can be verified directly, or found in [10, (1.78)]. This completes

this cute argument and the proof of Proposition 5.1. �

5.2. Euler characteristic of BQr
ρ (X) for X disconnected. We extend

the previous computation to the barycenter space with singular weights and to

the Euler characteristic with compact supports. Here too we show that the final

answer doesn’t differ from the connected case. Starting with the stratification

of BQr
ρ (X) in (4.5), valid for all X, we follow the steps in the proof of Propo-

sition 4.5. Only one step needs to be modified which is the identification in

Lemma 4.3 which is no longer true if X is disconnected. The correct identifica-

tion in that case is given by the following lemma.

Lemma 5.4. Let X be a disjoint union of components Ai, which are locally

closed in Ai, and of compact components Bj. We write

X =

q⊔
i=1

Ai t
t⊔

j=1

Bj .

Assume without loss of generality that A1, . . . , As have singular points each of

respective cardinality a1, . . . , as 6= 0. Assume as well that B1, . . . , B` have each

singular points of respective cardinality b1, . . . , b` 6= 0. Obviously a1 + . . .+ as +

b1 + . . . + b` = r. The other components As+1, . . . , Aq, B`+1, . . . , Bt have no

singular points. Then

X

∂X ∪Qr
'
(
A1

∂A1

∨ . . . ∨ Aq

∂Aq
∨B1 ∨ . . . B` ∨

r−∨̀
S1

)⊔
B`+1 t . . . tBt.

Proof. Each component Bi with bi singular points contributes a bouquet
bi−1∨

S1 in the quotient. Since ∂X =
⊔
∂Ai, each component Aj with aj singu-

lar points contributes a bouquet of
ai∨
S1 in the quotient (the extra leaf in the

bouquet comes from the fact that there is non-trivial boundary, see Lemma 4.3).

Since a1 + . . .+ as + b1 − 1 + . . . b` − 1 = r− `, this accounts for the bouquet of

circles and the rest is immediate. �
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Remark 5.5. We can double-check this decomposition against the compu-

tation χc(X −Qr) = χc(X)− r. Indeed, let’s recall that

χ(Z1 ∨ . . . ∨ Zn ∨
m∨
S1) =

∑
χ(Zi)− (n+m− 1).

We have

χ

(
X

∂X ∪Qr

)
=

q∑
i=1

χ

(
Ai

∂Ai

)
+
∑̀
j=1

χ(Bi)− (q + `+ r − `− 1) +

t∑
j=`+1

χBj

=

q∑
i=1

(χc(Ai) + 1) +

t∑
j=1

χ(Bj)− q − r + 1 = χc(X)− r + 1,

where χc(X) =
∑
χc(Ai) +

∑
χ(Bj). This gives that

χc(X −Qr) = χ

(
X

∂X ∪Qr

)
− 1 = χc(X)− r

as expected.

Theorem 5.6. Theorem 1.1 is true if X is disconnected.

Proof. As in the proof of Proposition 4.5, we use the same stratification of

BQr
ρ (X) with generic stratum Xn. By taking the appropriate compactification

and applying both Lemmas 5.1, 5.4 and Remark 5.5, we obtain that

χc(Xn) = (−1)k
(
χBn

(
X

∂X ∪Qr

)
− 1

)
= −(−1)k

(
n− χc + r − 1

n

)
,

which is the same as in the connected case. The rest of the argument runs as in

the proof in Section 4.1. �

6. The case of two singular points

Interestingly, eventhough the distribution of the singular points among the

components doesn’t affect the Euler characteristic, it does greatly affect the

homology. We analyze completely the various homotopy types (depending on

weights) of the space BQ2
ρ (X) with X having at most two connected components

(this can easily be extended to any number of components).

Proposition 6.1. Suppose X is connected, 0 < w1 ≤ w2 ≤ 1. Write ρ =

bρc + ε, 0 ≤ ε < 1, and n = bρc. Then the possible homotopy types of BQ2
ρ (X)

are:

(a) contractible, if 0 < w1 + w2 ≤ ε,
(b) ΣBn(X ∨ S1), if w1 ≤ ε, w2 ≤ ε, w1 + w2 > ε,

(c) contractible, if w1 ≤ ε, w2 > ε,

(d) Bn(X ∨ S1), if w1 > ε,w2 > ε,w1 + w2 ≤ 1 + ε,

(e) Bn(X), if w1 + w2 > 1 + ε.
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Proof. (a) This is the case when BQ2
ρ (X) ' Bn(X, p1, p2) which is con-

tractible (Lemma 2.2).

(b) This is the case when BQ2
ρ (X) = Bn(X, p1) ∪ Bn(X, p2). This union

was worked out in the proof of Proposition 5.1 and is of the homotopy type of

ΣBn(X/p1 ∼ p2) ' ΣBn(X ∨ S1).

(c) This is the case BQ2
ρ (X) = Bn(X, p1), and is contractible.

(d) This is the case BQ2
ρ (X) = Bn(X) ∪ Bn−1(X, p1, p2) which is up to ho-

motopy Bn(X ∨ S1).

(e) This is immediate. �

Turning to the disconnected case, we can write X = A1t. . .tAq as a disjoint

union of non-empty connected components. As before Qr = {p1, . . . , pr} are the

singular points with weights w1, . . . , wr. Let’s write BQr
ρ (X) in the form

(6.1) BQr1,...,rq
ρ (X)

indicating the location of the singular points ri of which are in Ai,
∑
ri = r.

Proposition 6.2. Let X = A1 tA2, r = 2.

(a) Suppose 0 < bρc+ w1 + w2 ≤ ρ. Then

BQ1,1
ρ (X) ' BQ2,0

ρ (X) ' Bbρc(X, p1, p2) ' ∗.

(b) 0 < bρc+ w1, bρc+ w2 ≤ ρ, bρc+ w1 + w2 > ρ. Then

BQ1,1
ρ (X) ' ΣBbρc(A1 ∨A2), BQ2,0

ρ (X) ' ΣBbρc(A1 ∨ S1 tA2).

(c) Suppose 0 < bρc+ w1 ≤ ρ, bρc+ w2 > ρ. Then

BQ1,1
ρ (X) ' ∗ ' BQ2,0

ρ (X).

(d) Suppose ρ < bρc+ w1, bρc+ w2, bρc+ w1 + w2 ≤ 1 + ρ. Then

BQ1,1
ρ (X) ' Bbρc(A1 ∨A2), BQ2,0

ρ (X) ' Bbρc(A1 ∨ S1 tA2).

(e) Suppose ρ < bρc+ w1, bρc+ w2 ≤ 1 + ρ, bρc+ w1 + w2 > 1 + ρ. Then

BQ1,1
ρ (X) = Bbρc(X) = BQ2,0

ρ (X).

Proof. The proof runs exactly as in the previous proposition keeping track

of the identifications in Bn(X/p1 ∼ p2) as in Lemma 5.4. �
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