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Abstract. The modern theory of fully nonlinear operators had been in-

spired by the skew symmetry of minors in cooperation with the symmetry
of symmetric functions. We present some consequences of this interaction

for m-Hessian operators. One of them is setting of the isoperimetric varia-

tional problem for Hessian integrals. The m-admissible minimizer is found
that allows a new simple proof of the well-known Poincaré-type inequalities

for Hessian integrals. Also a new set of inequalities, generated by a special

finite set of functions, is presented.

1. Introduction

The modern theory of fully nonlinear second-order partial differential equa-

tions counts more than 35 years and has been initiated in the papers [8], [19],

where the a priori estimates of Hölder constants for the second derivatives of

solutions have been established. It reduced the problem of classical solvability of

the Dirichlet problem for fully nonlinear second-order partial differential equa-

tions to finding the a priori estimate of solutions in C2. For an attempt to give

a general description of obtaining this estimate for fully nonlinear operators we

refer to [3], [4], [19].
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There are other trends in this theory. One of them is to extend some qual-

itative results known in the theory of linear elliptic operators to fully nonlinear

operators. The first examples of such pattern are the embedding-type theorems

for Hessian integrals introduced in the papers [5], [29], [27]. A discussion on

some other problems inherited from the linear case may be found, for instance,

in the recent papers [28], [7] and many others.

On the other hand, there are developments, which have no analogs in the

linear theory, and these are of interest in our paper. It singles out the fully

nonlinear operators of very special structure. A classical representative of this

kind is the Monge–Ampère operator

detuxx, u ∈ C2(Ω), Ω ⊂ Rn,

where uxx is the Hessian matrix of u. Up to 1970, investigation of the Monge–

Ampère equation had been performed in the framework of differential geom-

etry (see [21] and references therein). Since 1975, the Dirichlet problem for

Monge–Ampère equations has become a model to modify methods developed

in the theory of linear second-order partial differential equations to fully non-

linear equations. In particular, it became the basis for the study of m-Hessian

operators:

(1.1) Tm[u] = Tm(uxx), 0 ≤ m ≤ n.

Here T0(S) ≡ 1, Tm(S) is the m-trace of the symmetric matrix S, that is the

sum of all the principal minors of order m. The set of operators (1.1) includes

the Laplace and Monge–Ampère operators, with m = 1, m = n, respectively.

The m-Hessian operator is m-homogeneous and has two kinds of symmetries.

The first is the orthogonal invariance of m-traces. Namely, if B is an n × n

orthogonal matrix, then

(1.2) Tm(S) = Tm(BSBT ), BBT = id.

Such symmetry admits a substitute of the m-traces of symmetric matrix by the

elementary symmetric functions of order m of its eigenvalues λ(S):

Tm(S) = Sm(λ(S)) =
∑

i1<...<im

λi1 . . . λim .

It follows from the papers [3], [25] that such symmetry is sufficient for classical

solvability of the Dirichlet problem for m-Hessian equations. May be this is

the reason that up to now the majority of scholars prefer to write m-Hessian

operators (1.1) in terms of eigenvalues of the Hesse matrix D2u = uxx:

(1.3) Tm[u] = Sm(λ[D2u]).

The orthogonal invariance is a well-known type of symmetry of m-Hessian

operators but in this paper we focus on the second type of symmetry, which
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we call a skew symmetry. In mid 70s this unnamed symmetry was discovered

and investigated in quite different areas of mathematics. It brought out new

nonlinear differential operators and mathematical models.

In Section 2 of this paper we give a brief outline of this story and show

that the skew symmetric operators are divergence free, if homogeneous, generate

exterior n-forms, etc. In fact, all this is a straightforward consequence of the

skew symmetry of minors and that is why we discuss skew symmetric functions

and operators. In this paper we give a survey of some well-known facts for the

set of m-Hessian operators as a consequences of this type of symmetry.

The approach of Section 2 suggests that we may interpret Hessian integrals

Im[u] :=

∫
Ω

−uTm[u] dx, m = 1, . . . , n,

as a collection of new type of volumes related to a bounded domain Ω ⊂ Rn and

functional sets {
u ∈ C2(Ω) : Tm[u] > 0

}
.

In order to compare these volumes we set up and solve a variational isoperimet-

ric problem in Section 3. Somewhat unexpectedly this setting has led to the

new Poincaré-type inequalities. These inequalities were first discovered by N.S.

Trudinger and Xu-Jia Wang in [27]. A different, straightforward approach to

Hessian Poincaré-type inequalities was given in [28], based on convexity meth-

ods developed originally in [29].

We deduce these inequalities by a different method but the most essential

link is the same as in [27]. Namely, it is the nontrivial solvability of the Dirichlet

problem

(1.4) Tm[w]− Tl[w] = 0, w|∂Ω = 0, 0 ≤ l < m ≤ n.

Equation (1.4) may be rewritten as Tm,l[u] = 1 and in this form qualified as the

simplest equation with Hessian quotient operator

(1.5) Tm,l :=
Tm[u]

Tl[u]
, 1 ≤ l < m ≤ n,

introduced in the papers of N.S. Trudinger [24], [25]. Notice that a quotient

operator Tm,l[u] is not skew symmetric. A sufficient condition close to neces-

sary conditions for classical solvability of the Dirichlet problem for the equation

Tm,l[u] = f > 0 was found in the paper [25]. The following theorem is a partic-

ular case of Theorem 1.1 from loc.cit.

Theorem 1.1. Let Ω ⊂ Rn be a bounded domain, ∂Ω ∈ C4+α. Assume that

∂Ω is (m − 1)-convex. Then problem (1.4) has a unique in C2(Ω) nontrivial

solution w ∈ C4+α(Ω) for odd q = ml and two solutions, w,−w, otherwise.



34 N.M. Ivochkina — N.V. Filimonenkova

The notion of p-convexity of the hypersurface via its p-curvature kp[∂Ω]

may be found in [13], [16]. With its help the assumption from Theorem 1.1 is

equivalent to the inequality km−1[∂Ω] > 0, km−1[∂Ω] is the (m − 1)-curvature

of ∂Ω.

A brief outline of the theory of Hessian quotients Tm,l is given in Section 4.

In Section 5 we consider a direct approach to deduction of the Poincaré-type

inequalities, that is, to finding an m-admissible minimizer to the functional

(1.6) Jm,l[u] :=
I

1/(m+1)
m [u]

I
1/(l+1)
l [u]

, u|∂Ω = 0, 0 ≤ l < m ≤ n.

The answer is known, see Section 3. Namely, the unique nontrivial solution of

problem (1.4) with w = wm,l ≤ 0 provides minimum to the functional (1.6) on

the set of m-admissible functions. Hence, δ2Jm,l[wm,l] ≥ 0 on this set. The

latter leads to a collection of regulated by functions {wm,l} new inequalities.

The following theorem is a typical result of this type.

Theorem 1.2. Let ∂Ω ∈ C4+α, u ∈
◦
W 2

1(Ω). Assume that the Gauss curva-

ture of ∂Ω is positive. Then

(1.7)
n− 1∫

Ω

|wx|2 dx

(∫
Ω

u∆w dx

)2

+

∫
Ω

|ux|2 dx ≤
∫

Ω

uiuj
∂

wij
(detwxx) dx,

where w ≤ 0 is the nontrivial solution to problem (1.4) with l = 1, m = n.

2. On skew symmetry of fully nonlinear differential operators

In order to indicate the idea of the formalism introduced in the mid-seventies

(see, for instance, [22], [23], [9], [1], [20], [2]), we present a slightly updated version

of Theorem 2.1 from [10].

Theorem 2.1. Let Ω ⊂ Rn be a bounded domain, v = (v1, . . . , vn)T ∈ C1(Ω):

vi :=
∂v

∂xi
, vx := (vki )n1 .

The following statements are equivalent:

(a) the Lagrangian F [v] = F (vx) belongs to the kernel of variational deriva-

tive, i.e.
∫

Ω
F (vx) dx does not depend on v(x), x ∈ Ω;

(b) the identities

(2.1)
∂

∂xi
∂F [v]

∂vki
≡ 0, k = 1, . . . , n,

are valid;

(c) the operator F [v] = F (vx) is a linear combination of minors of det vx of

arbitrary order.
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The skew symmetry of minors is of common knowledge and it has turned out

that (a), (b) are consequences of this property via (c).

Definition 2.2. We say an operator F [v] = F (vx), v = (v1, . . . , vn)T ∈
C1(Ω), is skew symmetric if it is a linear combination of minors of det vx of

arbitrary order.

Notice that it does not make sense to speak about skew symmetry when only

minors of the first order are taken in (c). In this case Theorem 2.1 is trivial.

Nevertheless, the divergence free linear differential operators might be qualified

as generated by skew symmetric ones.

This amazing property had been a starting point to some important devel-

opments in quite different areas of mathematics and not surprisingly the choice

of v as well as notations were different therein. For instance, the authors of

[23], [1] worked with vector-fields v ∈ Rn. In the paper [22] the vector-functions

v = ux/
√

1 + u2
x, u ∈ C2, are under consideration and geometric curvature

operators were investigated from this point of view.

In the present paper the case v = ux, i.e. Hessian operators, generated by

the Hessian matrix uxx, is of main interest. The following proposition has been

known for a long time. In order to underline its connection with skew symmetry,

we formulate it in our terminology.

Corollary 2.3. Let v = ux, u ∈ C2. Assume that the operator F [u] =

F (uxx) is m-homogeneous and skew symmetric. Then

(2.2) F [u] ≡ 1

m

∂

∂xi

(
uj
∂F [u]

∂uij

)
≡ 1

m

∂2

∂xi∂xj

(
u
∂F [u]

∂uij

)
.

The simplest example of m-homogeneous and skew symmetric operator is

m-Hessian operator (1.1):

Tm[u] = Tm(uxx).

Recall that by the symbol Tm(uxx) we denote the m-trace of the matrix uxx,

that is the sum of all m-order principal minors, T0 ≡ 1.

The skew symmetry of minors may be considered as an equivalent of the skew

symmetry of exterior n-forms. Such approach to m-homogeneous fully nonlinear

operators was described, for instance, in the paper [12]. Namely, denote by

ωm,n−m[v] the exterior form

(2.3) ωm,n−m[v] =
∑

(i1<...<im)

(im+1<...<in)

σ(i)dvi1 ∧ . . . ∧ dvim ∧ dxim+1 ∧ . . . ∧ dxin ,

where σ(i) equals to 1 either −1 depending on evenness of permutation (i1, . . . im,

im+1, . . . , in). Denote also ωn(x) = ω0,n[v]. The following proposition is the

result of straightforward computation via (2.3), (2.1).
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Theorem 2.4. Let v ∈ C1. Then

(2.4) ωm,n−m[v] = Tm(vx)ωn(x), 0 ≤ m ≤ n.

It looks reasonable to interpret m-homogeneous skew symmetric operators as

operator-densities of some measures in Ω, which leads to the restriction Tm(vx) >

0. Let, for instance, in (2.4)

v = ux ⇒ ωm,n−m[v] = Tm(uxx)ωn(x),

v =
ux√

1 + u2
x

⇒ ωm,n−m[v] = km[Γ(u)]ωn(x),(2.5)

where km[Γ(u)] is the m-curvature of the graph of u (see [13], [16]). So, if one

plans to deal with geometric measures in the sense (2.5), it is necessary to require

km[Γ(u)] > 0.

If Tm[u](x) > 0, the m-Hessian operator Tm[u] = Tm(uxx), x ∈ Ω, may be

interpreted as an m-Hessian operator-density of some measure in Ω. Possibly,

this was the reason to introduce the notion of “Hessian measures” in [26] under

similar circumstances.

In order to describe some properties of ωm,n−m[ux], we fix orientation by the

requirement
∫

Ω
ωn(x) > 0, Ω is a bounded domain in Rn. This agreement and

the above argumentation single out a functional set {u ∈ C2(Ω) : Tm[u] > 0},
1 ≤ m ≤ n. The following theorem (see, for instance, [16]) indicates some

complications with these sets.

Theorem 2.5. Let Ω be a bounded domain in Rn, ∂Ω ∈ Ck, k ≥ 2. Assume

there is a point x0 ∈ ∂Ω such that km−1[∂Ω](x0) = 0. Then

(2.6) {u ∈ C2(Ω) : u|∂Ω = const, Tm[u] > 0} = ∅,

for all 1 < m ≤ n.

Notice that m = 1 is excluded from Theorem 2.5 because k0[∂Ω] = 1 by

definition. Relation (2.6) shows that in contrast to the linear elliptic equations

the theory of m-Hessian operators, m > 1, is nonlocal.

On the other hand, Theorem 3 from the paper [3], page 264, contains some

positive information. In our notations a slightly modified version of this theorem

reads as

Theorem 2.6. Let f ∈ C2+α(Ω), ∂Ω ∈ C4+α, 0 < α < 1. Assume that

f > 0 in Ω, km−1[∂Ω] > 0. Then the Dirichlet problem

(2.7) Tm(uxx) = f, u|∂Ω = const, 1 ≤ m ≤ n,

admits a solution u ∈ C4+α(Ω). Moreover, if in (2.7) m = 2k− 1, u is a unique

solution in C2(Ω). In the case m = 2k, there are two solutions u = ±u0 + const
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in C2(Ω) where u0 satisfies the problem

Tm(uxx) = f, u|∂Ω = 0.

Further development is restricted to the following functional sets, supported

by Theorem 2.6:

(2.8)
◦
Km(Ω) = {u ∈

◦
C

2(Ω) : Tm[u] > 0, u ≤ 0}, 1 ≤ m ≤ n,

which are sub-cones of the well-known cones of m-admissible in Ω functions.

They admit many equivalent definitions (see for instance [17]) and are denoted

by different symbols (compare [11], [3], [26]). The constructive definition of

the cone of m-admissible functions was given in the paper [11] and in updated

notations reads as

(2.9) Km(Ω) = {u ∈ C2(Ω) : Tp[u] > 0, p = 1, . . . ,m}, 1 ≤ m ≤ n.

We show that

Km(Ω̄) ∩ {u|∂Ω = 0} =
◦
Km(Ω).

If u ∈ Km(Ω), then uxx cannot be a negative definite matrix in any point of Ω.

So u has no maximums in Ω and the requirement u|∂Ω = 0 provides u ≤ 0 in Ω.

In order to prove the reverse implication we consider a matrix analog of cone

(2.9). Denote by Sym(n) the space of symmetric n× n-matrices:

(2.10) Km = {S ∈ Sym(n) : Tp(S) > 0, p = 1, . . . ,m}, 1 ≤ m ≤ n.

Let S0 be a positive definite matrix. It is well known that Km is a connected in

Sym(n) component of the set {S : Tm(S) > 0}, containing S0 (see for instance

[15]–[18]). A function u ∈
◦
Km(Ω) attains minimum (may be not strong) in Ω.

Hence, the connected set {uxx : x ∈ Ω} contains a positive definite matrix and

the requirement Tm(uxx) > 0, x ∈ Ω, implies uxx ∈ Km, x ∈ Ω, i.e. u ∈ Km(Ω).

The matching of definitions (2.8) and (2.9) demonstrates once again the

nonlocal nature of m-admissible functions.

3. On variational problems I

It is natural to associate with forms (2.3) the following integrals:

(3.1)

∫
Ω

h(x)ωp,n−p[v], Ω ⊂ Rn, v = (v1, . . . , vn), p = 1, . . . , n,

and speak about some volumes generated by v if h(x) > 0, x ∈ Ω. If v = ux,

h = −u, integrals (3.1) may be written in the following form (see (1.3)):

Hm[u] := −
∫

Ω

uSm[D2u] dx.

The functional Hn[u] was introduced in the paper [5], while the paper [29] covers

all 0 < m ≤ n and functionals Hm[u], m = 1, . . . , n. Therein these functionals

were named Hessian integrals. Later on the ideas from this paper were developed
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further by many authors. For instance, in [6] Hessian integrals were applied to

study some analogs of problems from the theory of semi-linear elliptic equations.

Some properties of Hessian integrals discovered in the paper [27] are of particular

interest in the context of our further proceeding.

We consider Hessian integrals from a different point of view and to begin

with write them in our notations:

(3.2) Ip[u] :=

∫
Ω

(−u)ωp,n−p[ux] =

∫
Ω

(−u)Tp[u] dx, u ∈
◦
Kp(Ω),

p = 0, . . . , n. Our goal is to compare these functionals for different p and we set

up the following isoperimetric problem: find u, which minimizes Im[u] in
◦
Km[Ω]

under condition Il[u] = 1, 0 ≤ l < m ≤ n. In other words, we are looking for u

such that

(3.3) Im[u] ≤ Im[u], u, u ∈
◦
Km(Ω) ∩ {Il[u] = 1}, 0 ≤ l < m ≤ n.

The correctness of setting (3.3) confirms

Lemma 3.1. Let u ∈ C2(Ω) ∩
◦
C1(Ω). Assume Ip[u] = 1. Then the first

variation of the functional (3.2) is nonzero on u.

Proof. Indeed, let ũ = u+th, where h is an arbitrary function from C2(Ω)∩
◦
C1(Ω), t ∈ R. Then

d

dt
Ip[ũ] = −

∫
Ω

(hTp[ũ] + ũT ijp [ũ]hij) dx, T ijp [ũ] =
∂Tp[ũ]

∂ũij
, 1 ≤ i, j ≤ n.

It follows from integration by parts and (2.2) that

(3.4)
d

dt
Ip[ũ] = −(p+ 1)

∫
Ω

hTp[ũ] dx.

Assume that

δIp[u] =
d

dt
Ip[ũ]|t=0 = 0.

Then relation (3.4) is equivalent to Tp[u] ≡ 0. But it contradicts the assumption

Ip[u] = 1, what validates Lemma 3.1. �

Notice that the correctness of problem (3.3) is a consequence of identity

(2.2), i.e. of the skew symmetry of m-Hessian operators. Next, we discuss the

link between the isoperimetric problem (3.3) and Hessian quotients (1.5).

Theorem 3.2. Let 0 ≤ l < m ≤ n. Assume there is w ∈
◦
Km[Ω] such that

(3.5) Tm,l[w] :=
Tm[w]

Tl[w]
= 1.

Then there exists u satisfying (3.3) and

(3.6) Im[u] ≥ Im[u] = I(l−m)/(l+1)
m [w], u ∈

◦
Km(Ω) ∩ {Il[u] = 1}.
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Proof. Problem (3.3) is a classical isoperimetric variational problem. Due

to Lemma 3.1 there exists a Lagrange multiplier λ such that a minimizer to the

functional ∫
Ω

−u(Tm[u]− λTl[u]) dx, u ∈
◦
Km(Ω),

solves problem (3.3). Hence, we are looking for solutions to the following Euler–

Lagrange equation:

(3.7) (m+ 1)Tm[u]− (l + 1)λTl[u] = 0,

what follows from (3.4). Since only functions u ∈
◦
Km(Ω) are of interest, a mul-

tiplier λ has to be positive. Denote

µm−l =
l + 1

m+ 1
λ.

Then equation (3.7) turns into Tm,l[u] = µm−l. The function u = µw, where w

is a solution to (3.5), satisfies condition in (3.3), and hence solves problem (3.3).

Moreover, we have the sharp estimate:

Im[w] = Il[w] =
1

µl+1
Il[u] =

1

µl+1
⇒ µ = I−1/(l+1)[w],

Im[u] ≥ Im[u] = µm+1Im[w] = I(l−m)/(l+1)
m [w], u ∈

◦
Km(Ω) ∩ {Im[u] = 1}. �

An auxiliary Dirichlet problem (3.5) appeared in the paper [27] as a crucial

tool to derive Poincaré-type inequalities for functionals Im[u], 1 ≤ m ≤ n, inter-

preted in a weak sense. For u ∈ C2(Ω) these inequalities spring up as a simple

consequence of (3.6) and we write out their equivalents in

Corollary 3.3. Let 0 ≤ l ≤ m ≤ n and w satisfy equation (3.5). Then

(3.8)

(
Im[u]

Im[w]

)1/(m+1)

≥
(
Il[u]

Il[w]

)1/(l+1)

, u ∈
◦
Km(Ω).

Proof. Indeed, defined by the line u = I
1/(l+1)
l [u]ũ, the function ũ belongs

to
◦
Km(Ω) ∩ {Il[u] = 1}. It follows from (3.6) that

(3.9) I1/(m+1)
m [u] = I

1/(l+1)
l [u]I1/(m+1)

m [ũ]

≥ I1/(l+1)
l [u]I(l−m)/((l+1)(m+1))

m [w] = I
1/(l+1)
l [u]I1/(m+1)−1/(l+1)

m [w].�

Notice that inequality (3.8) is a symmetrized form of restricted to u ∈
◦
Km(Ω)

inequality (1.13) from [27]. Also a solution wµ ∈
◦
Km(Ω) to equation Tm,l[w] = µ2

with an arbitrary µ ∈ R+ may be taken in capacity of w in relation (3.8).

Properties of solutions to equation (3.5) from
◦
Km(Ω) are of our special in-

terest and the first one we present is a consequence of sharp inequalities (3.6).
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Theorem 3.4. Let 0 ≤ l ≤ p < m. Assume that, for every p, there is

a solution wm,p ∈
◦
Km(Ω) to equations Tm,p[wm,p] = 1. Then

(3.10) Im−lm [wm,l] ≥ I(l+1)(m−p)/(p+1)
m [wm,p]I

(m+1)(p−l)/(p+1)
l [wp,l].

Proof. We use inequality (3.8) in the form (3.9):

I1/(m+1)
m [u] ≥ cm,lI1/(l+1)

l [u], cm,l = I1/(m+1)−1/(l+1)
m [wm,l], u ∈

◦
Km(Ω).

A constant cm,l is sharp, because the above inequality turns into equality, when

u = wm,l. Using inequality (3.9) twice, we derive

I1/(m+1)
m [u] ≥ cm,pcp,lI1/(l+1)

l [u], u ∈
◦
Km(Ω),

where a constant cm,pcp,l is not sharp. Hence, cm,l ≥ cm,pcp,l, what coincides

with relation (3.10). �

4. Some properties of Hessian quotients

To make Theorem 3.2 credible it is necessary to confirm solvability of problem

(3.5) and we present some extraction from general theory. The existence of

admissible solutions to the Dirichlet problem for the Hessian quotient equations

was proved in the paper [25, Theorem 1.1, p. 153], and in the author’s notations

it reads as

Theorem 4.1. Let 0 ≤ l < m ≤ n and Ω be a bounded uniformly (m − 1)-

convex domain in Rn, with ∂Ω ∈ C3,1, ϕ ∈ C3,1(∂Ω) and let ψ be a positive

function in C1,1(Ω). Then the Dirichlet problem,

(4.1) F (D2u) = Sm,l(λ[D2u]) = ψ in Ω, u = ϕ on ∂Ω,

is uniquely solvable for admissible u ∈ C3,α(Ω) for any 0 < α < 1.

It is more than 20 years since this amazing theorem has been proved and

now we suggest to slightly update its formulation. Namely,

(i) the basis of Theorem 4.1 is a construction of a priori estimates of solutions

at the boundary and the requirement “uniformly (m − 1)-convex domain” is

equivalent to the inequality km−1[∂Ω] > 0, what means that the hyper-surface

∂Ω is (m− 1)-convex. The definition of km−1-curvature of the hyper-surface ∂Ω

and reasons for such substitute may be found in [13], [16];

(ii) in our argument we do not allude to the eigenvalues λ[D2u] and write

equation in (4.1) as Tm,l[u] = ψ (see (1.3), (1.5)), what allows to differentiate

our equations, when necessary, without preliminary passes;

(iii) the assertion of Theorem 4.1 is equivalent to “there exists a unique in

Km(Ω) solution u to problem (4.1) and u ∈ C3+α(Ω) for any 0 < α < 1”.
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Notice that if ϕ = 0, the unique solution from Theorem 4.1 belongs to
◦
Km(Ω)

(see description of the cones (2.8), (2.9)), what means that it is unique in

(4.2)
◦
C

2
−(Ω) := {u ∈

◦
C

2(Ω) : u ≤ 0}.

More precisely, the following consequence of Theorem 2.5 and properties of cones

(2.8)–(2.10) are valid.

Lemma 4.2. Let 0 ≤ l < m ≤ n, ∂Ω ∈ C2. There are two possibilities:

(a) if there exists x0 ∈ ∂Ω such that km−1[∂Ω](x0) = 0, then

{u ∈
◦
C

2(Ω) : Tm,l[u] > 0} = ∅;

(b) if x0 from (a) does not exist, then

{u ∈
◦
C

2
−(Ω) : Tm,l[u] > 0} =

◦
Km(Ω).

It follows from Theorem 4.1, Lemma 4.2 that the cone
◦
Km(Ω) is a natural

set of solvability of the problem

(4.3) Tm,l[u] = ψ > 0, u|∂Ω = 0

and the requirement of (m−1)-convexity of ∂Ω is necessary. Notice that the half-

space (4.2) was introduced to avoid pecularity of even values of the number m+l.

Similarly to situation in Theorem 2.6, in this case the inequality Tm,l[u] > 0 leads

to two cones in
◦
C2(Ω).

A correct setting of the Dirichlet problem (4.1) assumes that the operator F

is elliptic on the set of admissible functions, what was proved in the paper [24]

by combinatorical methods. We offer somewhat different approach and consider

ellipticity of F as a consequence of positive monotonicity of operators Tm,l[u] in

Km(Ω).

To begin with we consider a set of functions {Tp = Tp(S)}n1 in the matrix

cone (2.10) and denote

(4.4) T ijp (S) :=
∂Tp
∂sij

(S), 1 ≤ i, j ≤ n.

Notice that

Tm−1;i(S) :=
∂Tm
∂sii

(S)

is the (m − 1)-trace of the matrix S with deleted i-th row and column. It is

known that

(4.5) Tm−1;i(S) > 0, S ∈ Km, m = 1, . . . , n.

In this course we associate with the quotient operator Tm,l[u] a functional quo-

tient

(4.6) Tm,l(S) :=
Tm(S)

Tl(S)
, 0 ≤ l < m ≤ n, S ∈ Sym(n),
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and prove its monotonicity in the matrix cone Km.

Denote by Sym+(n) ⊂ Sym(n) the set of positive definite matrices.

Theorem 4.3. Let S0 ∈ Sym+(n), 0 ≤ l < m ≤ n. Assume that S0 6= 0.

Then

(4.7) Tm,l(S + S0) > Tm,l(S), S ∈ Km.

Proof. The proof consists of three steps.

Step1. We fix a matrix S ∈ Km, an index 1 ≤ i ≤ n and associate with them

an auxiliary matrix:

S(t; i) = (skl + tδkiδli)
n
1 , t ∈ R.

When l = 0, Tm,0 = Tm and due to (4.5) we have

Tm(S(t; i)) = Tm(S) + tTm−1;i(S) > Tm(S), t > 0.

Let

t := − Tm(S)

Tm−1;i(S)
.

Then Tm(S(t; i)) = 0. Moreover, S(t, i) ∈ Km for all t > t because the cone Km

is a connected component of the set {S : Tm(S) > 0}.
For the case l > 0 we introduce an auxiliary function:

(4.8) y(t) = Tm,l(S(t; i)), t ∈ R.

Due to the Maclaurin inequality (see for instance [11], [15])

(4.9)

(
Tl(S)

Cln

)1/l

≥
(
Tm(S)

Cmn

)1/m

, S ∈ Km,

we have the estimate

y(t) ≤ c(m,n)(Tm(S(t; i)))1−l/m, t > t.

Hence, y(t)→ 0 when t→ t.

Step 2. The differentiating the function (4.8) we obtain

y′(t) =
Tl−1;i(S)

Tl(S(t; i))

(
Tm−1;i(S)

Tl−1;i(S)
− y(t)

)
,(4.10)

y′′(t) = −2
Tl−1;i(S)

Tl(S(t; i))
y′(t).(4.11)

Integrating the ODE in (4.11) we derive

y′(t) = y′(t0)
T 2
l (S(t0; i))

T 2
l (S(t; i))

.
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Consider the initial value y′(t0). It follows from Step 1 and (4.5) that there exists

t0 such that t < t0 < 0 and y′(t0) > 0. Hence y′(t) > 0 for t ≥ t0 and we have

arrived at the inequality

Tm,l(S) < Tm,l(S(t; i)) <
Tm−1;i(S)

Tl−1;i(S)
= lim
t→+∞

Tm,l(S(t; i)), t > 0, i = 1, . . . , n.

Step 3. Consider first a diagonal matrix S0
d ∈ Sym+(n), S0

d 6= 0. Inequality

(4.7) with S0 = S0
d follows from Step 2. Since p-traces are orthogonal invariant

(see (1.2)), inequality (4.7) is also true for an arbitrary nonzero matrix S0 ∈
Sym+(n). �

Inequality

(4.12) (T ijm,l(S)ξ, ξ) > 0, S ∈ Km, ξ ∈ Rn, |ξ| = 1,

is a straightforward consequence of monotonicity (4.7). An operator version of

(4.12) reads as

(4.13) (T ijm − Tm,lT
ij
l )[u]ξiξj > 0, T ijp [u] =

∂Tp(uxx)

∂uij
, u ∈ Km(Ω),

which means that operator quotients Tm,l[u] are elliptic onto Km(Ω). So, equa-

tion (3.5) is uniquely solvable in K0
m(Ω) due to Theorem 4.1 and the following

consequence is of the principal interest in our paper.

Theorem 4.4. Let Ω be a bounded domain in Rn, ∂Ω ∈ C4+α, 0 < α < 1.

Assume km−1[∂Ω] > 0. Then there exists a unique in C2
−0(Ω) solution w to the

problem

(4.14) Tm,l[w] = 1, w|∂Ω = 0, 0 ≤ l < m ≤ n.

Moreover, w ∈ Km(Ω) ∩ C4+α(Ω) and it satisfies the inequality

(4.15) (T ijm − T
ij
l )[w]ξiξj > 0, |ξ| = 1.

Notice that the existence part of Theorem 4.4 is identical with Theorem 1.1,

while inequality (4.15) coincides with ellipticity condition (4.13) with u = w.

Remark 4.5. Quotients operators Tm,l[u] are not divergence free, when

l ≥ 1. It means that skew symmetry does not matter for solvability of the Dirich-

let problem for Hessian equations. However, equation (4.14) may be written as

(Tm − Tl)[w] = 0 in Km(Ω). Due to identities (2.2) the latter is equivalent to

∂

∂xi
Aij [w]wj = 0, Aij [w] =

(
1

m
T ijm −

1

l
T ijl

)
[w].

For the fixed 1 < m ≤ n we consider now the set of solutions {wm,l, l =

0 . . . ,m−1} from Theorem 4.4. It is natural to expect some connections between

these functions. At the moment we know the following result.
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Lemma 4.6. Under conditions of Theorem 4.4 the inequalities

(4.16) Tp[wm,l] > 1, wm,l < wm,0, x ∈ Ω,

hold true for all 1 ≤ l, p ≤ m− 1.

Proof. To prove the left-hand side of (4.16) we apply a strong version of

the Maclaurin inequality (4.9):

(4.17) T 1/m
m [w] < T

1/l
l [w], 1 ≤ l ≤ m− 1, w ∈ Km(Ω).

Let w = wm,l. By definition Tm,l[wm,l] = 1 and due to (4.17) we have

(4.18) 1 =
Tm[wm,l]

Tl[wm,l]
< T (m−l)/m

m [wm,l] < T (m−l)/p
p [wm,l].

The second part of (4.16) is a consequence of the well-known comparison theorem

for m-Hessian operators. Indeed, it follows from (4.18) that Tm[wm,l] > 1. On

the other hand, Tm[wm,0] = 1 by definition. Via the comparison principle the

inequality for m-Hessian operators guarantees the reverse inequality for functions

from
◦
Km(Ω), i.e. the second inequality in (4.16). �

5. On variational problems II

Theorems 3.2 and 4.4 yield

Theorem 5.1. Let Ω be a bounded domain in Rn, ∂Ω ∈ C4+α, 0 ≤ l < m ≤ n.

Assume km−1[∂Ω] > 0. Then there is a sharp constant c = c(l,m,km−1[∂Ω]) > 0

such that

(5.1) Jm,l[u] :=

(∫
Ω

−uTm[u] dx

)1/(m+1)

(∫
Ω

−uTl[u] dx

)1/(l+1)
≥ c, u ∈

◦
Km(Ω).

Indeed, due to the assumption km−1[∂Ω] > 0 there exists a unique in C2(Ω)

solution w = wl,m ∈
◦
Km(Ω) to problem (4.14). Therefore inequality (5.1) with

c = Jm,l[wl,m] is a replica of (3.8).

Notice that inequalities (5.1) are equivalent to the Poincaré-type inequalities

from the paper [27]. If the principal goal of our paper had been to give a straight-

forward proof of those, it would be reasonable to set up a classical variational

problem of minimization of the functional Jm,l[u] over the cone
◦
Km(Ω). In order

to produce some new analogs of the classic Poincaré inequality we outline this

approach.

Theorem 5.2. Assume conditions of Theorem 5.1 are satisfied and let u be

from the Sobolev space
◦
W 2

1(Ω), w be a solution to problem (4.14). Then

(5.2)
m− l
Im[w]

(∫
Ω

uTm[w] dx

)2

+

∫
Ω

T ijl [w]uiuj dx ≤
∫

Ω

T ijm [w]uiuj dx.
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Proof. Let w̃ = w + th, t ∈ R, h ∈
◦
C2(Ω). Similarly to (3.4) we derive

(5.3)
d2

dt2
Ip[w] ≡ (p+ 1)

∫
Ω

T ijp [w̃]hihj dx, p = 1, . . . , n.

It follows from (5.1) that w minimizes Jm,l[u] over
◦
Km(Ω) and hence δJm,l[w] = 0,

δ2Jm,l[w] ≥ 0. Keeping in mind that Tm[w] = Tl[w], Im[w] = Il[w], we compute

via (3.4), (5.3) the second variation of the functional Jm,l[w̃]:

(5.4) δ2Jm,l[w] =
Jm,l[w]

Im[w]

(
l −m
Im[w]

(∫
Ω

hTm[w] dx

)2

+

∫
Ω

(T ijm − T
ij
l )[w]hihj dx

)
.

Since the case t = 0 is of interest, we may without loss of generality assume

that w̃ ∈
◦
Km(Ω) for an arbitrary h ∈ C2(Ω) ∩

◦
C1
m(Ω). Therefore, relation (5.4)

and a choice of w provide δ2Jm,l[w] ≥ 0, hence inequality (5.2) is valid for an

arbitrary function u = h ∈ C2(Ω). The case of u ∈
◦
W 2

1(Ω) may be derived by

approximation. �

Letting l = 1, m = n in Theorem 5.2 one sees exactly Theorem 1.2. The case

l = 0 in Theorem 5.2 is of special interest and we extract it as

Corollary 5.3. Let u ∈
◦
W 2

1(Ω) be an arbitrary function, wm ∈ C2(Ω)

a solution to the problem Tm[wm] = 1, wm|∂Ω = 0, wm ≤ 0. Then the inequalities

(5.5) m

(∫
Ω

u dx

)2

≤
∫

Ω

−wm dx
∫

Ω

T ijm [wm]uiuj dx, m = 1, . . . , n,

are true.

Notice that Corollary 5.3 implicitly contains the requirement of (m − 1)-

convexity of ∂Ω.

Inequality (5.5) with m = 1 and under requirement ∆u > 0 in a weak

sense was attributed to Poincaré in the paper [27]. Theorem 5.2 along with

Corollary 5.3 is valid for an arbitrary function u from
◦
W 2

1(Ω) and speaking

formally inequality (5.5) with m = 1 is more general than its analog from [27].

All inequalities (5.2) are sharp and the set (5.5) might be considered as a set

of depending on the p-convexity of ∂Ω analogs to the classical Poincaré inequality.

Remark 5.4. There are two questions concerning our inequalities:

(a) Assume that kn−1[∂Ω] > 0 in Corollary 5.3. Then we have a set of

functions {wm}n1 and relevant sharp inequalities (5.5). Is it possible to compare

them for different values of m?

(b) Let m > 1 be fixed and assumptions of Theorem 5.2 be satisfied. Then

we have a collection of functions {wl,m}m−1
0 . Are they comparable?
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Eventually we rewrite general inequality (5.2) in the invariant under dilation

form. Denote

〈u, v〉p =

∫
Ω

T ijp [w]uivj dx, p = 1, . . . , n,

and let w be a solution to the problem Tm,l[w] = µ, w|∂Ω = 0, u ∈
◦
W 2

1(Ω) .

Then the inequality

(5.6) (m− l) 〈u,w〉l
〈w,w〉l

〈u,w〉m
〈w,w〉m

≤ m 〈u, u〉m
〈w,w〉m

− l 〈u, u〉l
〈w,w〉l

is equivalent to (5.2), whatever µ ∈ R+ is. It follows from (5.6) that the constant

c in (5.1) is invariant under dilation.
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