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PERIODIC ORBITS FOR MULTIVALUED MAPS
WITH CONTINUOUS MARGINS OF INTERVALS

JIEHUA MAI — TAIXIANG SUN

ABSTRACT. Let I be a bounded connected subset of R containing more than
one point, and £(I) be the family of all nonempty connected subsets of I.
Each map from I to £(I) is called a multivalued map. A multivalued map
F: 1 — L(I) is called a multivalued map with continuous margins if both
the left endpoint and the right endpoint functions of F' are continuous. We
show that the well-known Sharkovskii theorem for interval maps also holds
for every multivalued map with continuous margins F: I — L(I), that is,
if F' has an n-periodic orbit and n > m (in the Sharkovskil ordering), then
F' also has an m-periodic orbit.

1. Introduction

Let X be a set and N = {1,2,...}. An infinite sequence (z1,xa,...) of
elements in X is said to be periodic if there is n € N such that

(1.1) Titn = x; forall i € N.
In this case, we also write (x1,...,2,)° for (21,2, ...), where we put the small
circle o at the top-right corner of the finite sequence (x1,...,x,), which means

that we repeat this finite sequence infinitely many times. The least n such that
(1.1) holds is called the period of (z1,z2,...). Note that if we cannot clearly
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mention the period of the infinite sequence (z1, ..., 2,)°, then it may be a proper
factor of n. A periodic sequence of period n is also called an n-periodic sequence.

Denote by 2X — {()} the family of all nonempty subsets of X. Each map from
X to 2% —{(} is called a multivalued map on X. An infinite sequence (1, 72, .. .)
of elements in X is called an orbit of F: X — 2X — {0} if x;,, € F(x;) for
all i € N. The sequence (z1,xa,...) is called a periodic orbit of F if it is both
a periodic sequence and an orbit of F. If O = (21, za,...) = (21,...,2,)° is an n-
periodic orbit of F, then, for any ¢ € N, the finite sequence (x;, Zit+1, ..., Titn—1)
with length n is called a periodic segment of the orbit O. If F': X — 2% —{(} is
a multivalued map and F' contains only one element for each x € X, then F is
a single-valued map from X to X. Note that if f: X — X is a single-valued map,
then any period segment of a periodic orbit of f contains no repeating element,
and if F: X — 2%X — {()} is a multivalued map, then a period segment of some
periodic orbit of F' may contain repeating elements. This is a difference between
single-valued maps and multivalued maps. Since there may appear repeating
elements in a period segment when we study periodic orbits of multivalued maps,
it will meet some additional trouble.

Let I be a bounded connected subset of R containing more than one point,
that is, I is a closed interval, or an open interval, or a half-open interval. Denote
by I the closure of I in R and by L£(I) the family of all nonempty connected
subsets of I. Each map from I to L£(I) is called a connected-multivalued map
on I. Obviously, for any connected-multivalued map F: I — L(I), there exists
a unique pair of functions a: I — I and : I — I, called the left endpoint func-
tion and the right endpoint function of I, respectively, satisfying the following
two conditions:

(i) a(z) < B(z) for any z € I;

(ii) (a(z),B(z)) C F(x) C [afx), B(x)] for any z € I.
If a(z) = B(a), then F(z) = [a(x), B()] = {a(x)}.

A connected-multivalued map F': I — L(I) is said to be a multivalued map
with continuous margins if both the left endpoint and the right endpoint func-
tions of F' are continuous.

In 1964, Sharkovskii found the following order relation in N:

3-5>7>...>3-2>5-2>7-2>...>3-22-5.22-7.22» .
o=32k e pok e riok o 0t 930 92 9
and proved the following theorem.

THEOREM 1.1 (Sharkovskii’s theorem, see [17]). Let J be a connected subset
of R and f: J — J be a single-valued continuous map. For any m,n € N with
n = m, if f has an n-periodic orbit, then f has an m-periodic orbit.
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Note that the above Sharkovskii’s order is well-ordered. If n > m in this
order, then we also write m < n.

In [1], Alseda and Llibre showed that Theorem 1.1 holds for triangular maps
on a rectangle. In [12], Minc and Transue showed that Sharkovskii’s theorem
also holds for continuous maps on hereditarily decomposable chainable continua.
In [5], Andres et al. also obtained a full analogy of Sharkovskii’s theorem for
lower-semicontinuous maps (i.e. for every closed subset V' C R, the set {z € R :
F(z) C V} is closed) with nonempty, connected and compact values.

Recently, there has been a lot of work on the dynamics of multivalued maps
(see [11], [13]-[16]). In [3], Andres et al. studied the periodic orbits of a class of
multivalued maps and obtained the following theorem.

THEOREM 1.2. Let C(R) be the family of all nonempty compact connected
subsets of R and F: R — C(R) be upper-semicontinuous (i.e. for every open
V CR, the set {x € R: F(x) C V'} is open). If F has an n-periodic orbit for
some odd integer n, but F' has no l-periodic orbit for any | = n, then for any
n > m, F' has an m-periodic orbit, except m = 4.

Further, Andres and Pastor [9] (also see [10]) obtained the following theorem.

THEOREM 1.3. Let F': R — C(R) be upper-semicontinuous. For any m,n €
N with n = m, if F has an n-periodic orbit, then F' has an m-periodic orbit with
at most two exceptions.

For some other papers in the area, see also [2], [4], [6]-[8] and the references
therein. In this paper, we study connected-multivalued maps on the bounded
connected set I. Our main result is the following theorem.

THEOREM 1.4. Let I be a bounded connected subset of R and F: I — L(I)
be a multivalued map with continuous margins. For any m,n € N with n > m,
if F' has an n-periodic orbit, then F' has an m-periodic orbit.

REMARK 1.5. In [2]-[10], the set of every value of upper-semicontinuous and
lower-semicontinuous maps is nonempty, it is a connected and compact set. But
for multivalued maps with continuous margins of intervals studied in this paper,
the set of every value need not be compact.

REMARK 1.6. In [3], the authors constructed upper-semicontinuous maps
F:R — C(R) and G: R — C(R) such that F' has a 3-periodic orbit but has no
2-periodic orbit and G has a 5-periodic orbit but has no 4-periodic orbit. While
for multivalued maps with continuous margins of intervals studied in this paper,
Sharkovskii’s theorem holds, without exception.
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EXAMPLE 1.7. Define a connected-multivalued map F': [0,1] — £([0,1]) by

[0,0] if z =0,
[0,v/27) if z € (0,v2/2),

F(z) = ¢[0,1] if v =+/2/2,
0,2+ V2)(1-2) ifze(vV2/2,0),
[0,0] if v =1,

x € [0,1]. Then, according to our definition, F' is a multivalued map with
continuous margins. But according to the definitions in [2]-[4], [6]-[10], F is
not upper-semicontinuous since the set {z € [0,1] : F(z) C [0,9)} = [0,y/v2] U
[1 —y/(2++2),1] is closed for any y € (0,1]. What means that continuity of
margins does not necessarily implies upper-semicontinity of the multivalued map
with continuous margins under consideration.

2. Periodic orbits for multivalued maps

Let X be a set. Let F and G be maps from X to 2% — {}}}. Define the
composite map G o F: X — 2% — {(} by

(2.1) GoF(z)=|J{Gy) :y € F()},

x € X. Denote by FO the identity map on X, F! = F, and F*"*! = F o F" for
each n € N. For n > 0, F" is called the n-th iterate of F'.

REMARK 2.1. We see from the definition that for any n > 2 and any x € X,
F"(x) = {y € X : there exists {z;}I*, C X
such that xg =z, x, =y, 2; € F(x;_1) for 1 <i < n}.
Let S = (z1,z2,...) be an infinite sequence. For any k,i € N, the sequence
(T4, Thoyis Tokis T3hois - - +)
is called the i-th k-subsequence of S. Obviously, if the sequence S is an orbit of
F: X — 2% — {0}, then any k-subsequence of S is an orbit of F*.

The following lemma is well-known, but we still give a simplified proof.

LEMMA 2.2. Suppose that (x1,x2,...) is an infinite sequence. Let n,m € N
and k = ged(n, m) be the greatest common factor of n and m. If x;1,, = x; and
Tiym = x; for alli € N, then x;y, = x; for all i € N.

PROOF. As k = ged(n,m), there exist p, ¢ € N such that pn —gm = k. Then
we have T; = Titpn = Titpn—qm = Ti+k for any ¢ € N, O

COROLLARY 2.3. If (z1,xa,...) is a periodic sequence, which can be written
as (1,...,2n)°, then the period of this sequence is a factor of n.
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DEFINITION 2.4. Two positive integers k and n are said to have the same
prime factor if for any prime number p, p is a factor of k£ if and only if p is a
factor of n.

The following lemma is trivial.

LEMMA 2.5. Suppose that integers k and n have the same prime factor. Then:

(a) k=1 1if and only if n = 1.

(b) If k > 1, then there exist prime numbers pi,...,pm with m > 1 and
positive integers A1, ..., Am, b1, - -, bm Such that

m

k= ﬁpf‘ and n= Hpé”.
i=1 i=1

LEMMA 2.6. Let k,n € N. Then there exists a unique sequence (ki, ka2, n1,n2)
of positive integers such that

(a) k = kiks and n =ning,

(b) k1 and ny have the same prime factor,

(¢) ged(ke,n) =1 and ged(ng, k) = 1.

PROOF. Let ko = max{\ : X is a factor of k and ged(A\,n) = 1} and ny =
max{y : p is a factor of n and ged(p, k) = 1}. Put ky = k/ke and ny = n/na.
Then the sequence (k1, ko, n1,n2) satisfies three conditions in Lemma 2.6. More-
over, it is easy to show that the sequence (k1, k2, m1,n9) satisfying these three
conditions is unique, so the process can be omitted. O

The main result in this section is the following lemma.

LEMMA 2.7. Suppose that S = (x1,x2,...) = (1,...,Tnk)° s a periodic
sequence with n > 1 and k > 1, and Sy = (21, k41, Tokt1, -+ T(n—1)k+1)° 18
a k-subsequence of S. Let (ki,ka,n1,n2) be the same as in Lemma 2.6. If the
period of Sy, is n, then there is a factor \ of ko such that the period of S is ki An.

PRrROOF. Let m be the period of the sequence S. According to Corollary 2.3,
m is a factor of kn. Then ged(m,kn) = m. Write ng = ged(m,nz). Then
ning is a factor of n = niny. As ged(ne, knq) = 1, we have m = ged(m, kn) =
ged(m, kning) = ged(m, knq)-ged(m, ne) = ged(m, kny)-ns. Hence m is a factor
of knying, which implies

(2.2) Titknyns = ¢; forallieN.

On the other hand, if nins < n, then x;yxn,n, = ; does not hold for some
je{l,k+1,2k+1,...,(n— 1)k + 1} since the period of the sequence Sy is n.
This will contradict to (2.2). Thus we must have ning = n, which means that
ng = ng = ged(m, ng). Hence we obtain:

CLAIM 1. m = nor for some r € N.
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Let k3 = ged(m, kiny). As ged(king, kang) = 1, we have
m = ged(m, kn) = ged(m, king - kang)
= ged(m, kiny) - ged(m, kang) = k3 - ged(m, kang).

Let ks =lcm(kq,ks) be the least common multiple of k; and k3. Then m is
a factor of k4kons, and hence

(2.3) i = Tithykon, Tor alli e N,

On the other hand, if k3 is a proper factor of kynq, then k; > 1, ny > 1, and
from the condition (b) of Lemma 2.6, we see that k4 is also a proper factor of
kin1, which implies that kikong is a proper factor of nk = kinikons. Thus
there is a proper factor n4 of n such that kskono = kny. However, £j4pn, = x;
does not hold for some j € {1,k + 1,2k +1,...,(n — 1)k 4 1} since the period
of the sequence Sy is n. This will contradict to (2.3). Thus we must have
ks = ged(m, kiny) = kiny and hence we obtain
CLAIM 2. m = kynyr for some r € N.

As ged(kini,n2) = 1, by Claims 1 and 2, we see that m = kyninor = kynr for
some r € N. Hence there exists a factor A of ko such that m = k1 n since m is
a factor of kn = k1kanins. O

Conversely, we have

LEMMA 2.8. Let k,n and (k1, ko, n1,n2) be the same as in Lemma 2.6. Then,
for any factor \ of ko, there exists a kiAn-periodic sequence S = (x1,xa,...) =
(T1,...,Tkn)° such that the period of the k-subsequence Sy = (1, Tk41, T2k+1, - - -

x(nfl)k+1; .. ) s n.

PrOOF. Let m = kiAn. Then m is a factor of kn. Take an m-periodic
sequence S = (z1,22,...) = (z1,...,Zm)° such that zi,...,x,, are pairwise
different elements. Noting that z;y,, = x; for all i € N, we can also write
S = (x1,...,%kn)° For 0 < i < j < n-—1, we have (j —i)ko/n & N since
ged(ke,n) = 1, which implies that (j —i)k/(kiAn) = (j —i)ke/(An) € N, and

hence jk + 1 # ik + 1 (mod kiAn). Thus x1,Tri1, Zoks1, .- T(n_1)k41 are
pairwise different elements, and hence the period of S is n. (]

LEMMA 2.9. Suppose that S = (x1,22,...) = (x1,...,Zkn)° s a kn-periodic
sequence with k > 2 and n > 2. Let S; = (T4, Troyis Taktiy - - T(n—1)kti) s fOr

each i € N, be the i-th k-subsequence of S. Then:
(a) There exists i € {1,...,k} such that the period of S; is a factor of n
greater than 1.
(b) If there exist a prime number p and X\ € N such that n = p*, then there
exists i € {1,...,k} such that the period of S; is n.
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PROOF. Since the length of the finite sequence (v, Ty i, Taktis- - - T(n—1)k+i)
is n, by Corollary 2.3, the period of S; must be a factor of n.

(a) is obvious, since, otherwise, if for each i € {1,...,k}, the period of S;
is 1, then the period of S will be a factor of k, which contradicts the condition
of the lemma that period of S is kn.

(b) is also obvious, since, otherwise, if for each i € {1,...,k}, the period of
S; is a proper factor of n = p*, then the period of S will be a proper factor of
kn, which also contradicts the condition of the lemma. O

REMARK 2.10. In Lemma 2.9, if n is not an integral power of some prime
number, then it is possible that the period of any k-subsequence of S is a proper
factor of n. For example, let k = 2, n = 6, and let x1,z2,y1, Y2, y3 be pairwise
different elements. Then the period of any 2-subsequence of the 12-periodic
sequence S = (z1, Y1, T2, Y2, T1, Y3, T2, Y1, L1, Y2, T2, y3)° is a proper factor of 6.

From Lemma 2.7 we get

COROLLARY 2.11. Suppose that X is a set and F: X — 2% — {0} is a mul-
tivalued map. Let k,n and (kyi, ks, n1,n2) be the same as in Lemma 2.6. If F*
has an n-periodic orbit, then F itself has a periodic orbit, of which the period is

a factor of kn and is an integral multiple of kin.

PROOF. Let Oy = (21, Tr11,T2k+15- - - T(n—1)k4+1)° De an n-periodic orbit of
F*. By Remark 2.1, Oy, can be extended to be a periodic orbit

o
0= (xl,...,xk,xk+1,...,a:gk,ajgk+1,...,x(n,l)k+1,...,xnk)

of F. By Lemma 2.7, the period of O is ki An for some factor A\ of k. O
From Lemma 2.9 we get the following corollary at once.

COROLLARY 2.12. Let F: X — 2X — {0} be a multivalued map. Suppose
that F' has a kn-periodic orbit O = (x1,22,...) = (T1,...,Tkn)° with k > 2 and
n > 2. Then:

(a) The k-th iterate F* has a periodic orbit, whose period is a factor of n

greater than 1.

(b) If there exist a prime number p and X\ € N such that n = p*, then F¥*

has an n-periodic orbit.

3. Multivalued maps with continuous margins of intervals

Let I be a bounded connected subset of R. Recall that each map F': I — L(I)
is called a connected-multivalued map on I, and F is a multivalued map with
continuous margins if both the left endpoint a: I — I and the right endpoint
functions B: I — I of F are continuous.
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LEMMA 3.1. Let F: I — L(I) and G: I — L(I) be multivalued maps with
continuous margins. Then the composite function G o F also is a multivalued
map with continuous margins from I to L(I).

PROOF. Let a1, 1 and as, B2 be the left endpoint and right endpoint func-
tions of F' and G, respectively. Define ais: I — I and f3: I — I by

az(z) = inf{as(y) :y € F(z)} and Bs(x) =sup{B2(y) : y € F(z)},

x € I. For any u,v € R, denote by (u, v) the smallest connected subset containing
u and v in R. Then we have

(az(@), B3(x)) C G o F(x) C [az(2), B3(2)]

since F(z) is connected and ao is continuous. It is easy to see that for any
z,w € I, |ag(w) — ag(z)| < max{Si, Sa2}, where

S1 = sup{aa(u) — az(v) : {u,v} C {1 (x),aq(w)) N I},

S = supfaa(u) — as(v) : {u, v} C (i (x), B (w)) N I
Noting that aq,; and «as are continuous, we derive that az(w) — ag(z) as
w — x. Thus az is continuous. In a similar fashion, we can show that (33 is also

continuous. Hence G o F' is a multivalued map with continuous margins from I
to L(I). O

DEFINITION 3.2. Let F: X —2X— {0} be a multivalued map, and f: X =X
be a single-valued map. We say that F' contains f or f is contained by F if
f(z) € F(z) for any z € X. If f is contained by F', then we write f &€ F.

The following is one of the key lemmas in this paper.

LEMMA 3.3. Let F: I — L(I) be a multivalued map with continuous margins
and n € N. Then for any pairwise different points x1,...,x, in I and any given
yi € F(x;), 1 < i <, there exists a continuous map f: [ — I such that fEF
and f(x;) =y; for every 1 <i <n.

PROOF. Let a and 8 be the left endpoint and right endpoint functions of F',
respectively. For any i € {1,...,n}, obviously, there is a real number ¢; € [0, 1]
such that y; = t;a(x;) + (1 —¢;)B(x;). Take a continuous function ¢: I — [0,1]
such that

(3.1) t(z;) =t; for i€ {1,...,n},

(3.2) t(x) € (0,1) forany z €I —{x1,..., 20}
Define f: I — I by

(3.3) flx)=t(x) a(z)+ (1 —tx))-B(x) forany z el
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Then f is continuous. By (3.1) and (3.3), we have f(z;) =y; for i € {1,...,n}.
By (3.2) and (3.3), we get

f(z) € (a(x),B(x)) C F(x) forany z €l —{xy,...,2,}.
Thus fEF. O
From Lemma 3.3 we obtain the following corollary at once.

COROLLARY 3.4. Let F: I — L(I) be a multivalued map with continuous

margins, and O = (x1,xa,...) = (x1,...,2,)° be an n-periodic orbit of F, where
n € N. If xq,...,z, are pairwise different, then F contains a continuous map
fi+ I — I such that O = (x1,...,2,)° is also an n-periodic orbit of f, and hence,

for any m € N with n = m, f and F have an m-periodic orbit.

If (x1,22,...) = (z1,22)° is a 2-periodic sequence, then we must have z; #
9. Therefore, from Corollary 3.4 we get

COROLLARY 3.5. If a multivalued map with continuous margins F: I — L(I)
has a 2-periodic orbit, then F has a 1-periodic orbit.

COROLLARY 3.6. Let F: I — L(I) be a multivalued map with continuous
margins. If F' has a 3-periodic orbit (x1,x2,...) = (x1,22,23)°, then F has an
m-periodic orbit for any m € N.

Proor. By Corollary 3.4, we can consider only the case that x; = z; for
some 1 <14 < j < 3, that is, there exists k € {1,2,3} such that z = xx1 #
Zgt2. From this we see that F' has a l-periodic orbit (z%)°, a 2-periodic orbit
(g, Tk+2)°, and an m-periodic orbit (g, Zgt+2,Y1,.-.,Ym—2)° for any m > 3,
where y1 = ... = Ym—_2 = T- U

COROLLARY 3.7. Let F: I — L(I) be a multivalued map with continuous
margins. If F' has a 4-periodic orbit (x1,x2,...) = (x1,22,x3,24)°, then F has
a 2-periodic orbit.

Proor. By Corollary 3.4, we can consider only the case that z; = x; for
some 1 <i<j<bwithi<4andj<i+2. Ifj=1i+1, then F has a 3-periodic
orbit (241,242, %;j43)°, and hence has a 2-periodic orbit. If j =i+ 2, then at
least one of the two orbits (z;, z;+1)° and (x;,x;4+1)° is a 2-periodic orbit. O

LEMMA 3.8. Let F: I — L(I) be a multivalued map with continuous margins.
If F has a 2*-periodic orbit, then F has a 2*~-periodic orbit.

PrOOF. It follows from Corollaries 3.5 and 3.7 that Lemma 3.8 holds for
the case that A € {1,2}. In what follows we can assume that A > 3. By (b) of
Corollary 2.12, we see that F' 2% has a 4-periodic orbit. This combining with
Corollary 3.7 implies that F2"7 has a 2-periodic orbit. Using Corollary 2.11
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in the case that k = k; = 2*72 and n = 2, we see that F has a 2*~!-periodic
orbit. (]

Now we give the main result of this paper and its proof.

THEOREM 3.9. Let I be a bounded connected subset of R and F: I — L(I)
be a multivalued map with continuous margins. For any m,n € N with n > m,
if F' has an n-periodic orbit, then F has an m-periodic orbit.

PRrROOF. If z1,...,x, are pairwise different points, then by Corollary 3.4, we
see that Theorem 3.9 holds. We can add the following hypothesis:

(Hy) There exist 1 < ¢ < j < i+ n— 2 such that x; = z; # ;41 and j — ¢
is the least, that is, if there exist 1 < i < j/ < ¢ +n — 2 such that
xy = xj # Tjrq1, then j/ — i > j —i. Further, we may assume that
Tjp1 > Ty

By Lemmas 3.6 and 3.8, we can add the following hypothesis:

(Hy) For any A € N, 3 = n = 2*, and it has been proved that, for any ng € N
with 3 > ng = n and for any multivalued map with continuous margins
G: 1 — L(I), if G has an ng-periodic orbit, then for any m € N with
ng = m, G has an m-periodic orbit.

There are three cases to be considered.

Case 1. n > 3 is odd and j —i > 2.

In this case, by (Hi), O1 = (z,...,2;-1)° and Oz = (zj,...,2i4n—1)° are
also periodic orbits of F', whose periods are greater than 1 and are factors of j —1
and ¢ + n — j, respectively. Hence, since one of the integers j —¢ and i +n — j

is odd, F' has an ng-periodic orbit for some odd ng with 3 > ng = n. Therefore,
by (Hz), for any m € N with n > m, F' has an m-periodic orbit.

Case 2. n >3 isodd and j —i = 1.

There are two subcases.

Subcase 2.1. Thereis k € {3,...,n—1} such that z;; = x;. In this subcase,
01 = (LL'Z‘, . ,l'iJrk,l)o and 02 = ($i+1, . ,.TiJrk,l)O
whose periods are greater than 1 and are factors of k and k — 1, respectively.

are periodic orbits of F,

Since one of the integers k and k — 1 is odd, similar to Case 1, for any m € N
with n > m, F has an m-periodic orbit.

Subcase 2.2. ;4\ # x; for any A € {2,...,n — 1}. In this subcase, there is
ke{2,...,n—1} such that 2,151 < x; and z;y) > z; for A € {2,...,k}. Let
Zo={A:2€{2,....k} and x;4n > xiyr}. Then k € Zy. Let ¢ = min Zy. If
q > 2, then x; < Tiyq—1 < Titr < Tiyq. By Lemma 3.3, F' contains a continuous
map f: I — I such that f(z;) = i, f(®itg—1) = Tirqg > Tipx and f(zigr) =
Titk—1 < x1. Thus f is turbulent since f([z;, Titq—1])Nf ([Titq—1, Tk]) D [®i, Tk ).
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It is well-known that a turbulent interval map, f (and hence F'), has an m-
periodic orbit for any m € N.

If ¢ = 2, then 2,1 € (%;,2,12] C F(x;). By Lemma 3.3, F contains a contin-
uous map f: I — I such that f(z;) = ©it2 > xipr > @ and f(2ik) = Tigpr1 <
x;, which implies that there is a point y € (x;, x;1%] such that f(y) = z;, and
hence F' has a 3-periodic orbit (z;,x;,y)°. By Lemma 3.6, F' has an m-periodic
orbit for any m € N.

Case 3. n =2*(2u + 1) for some \, u € N.

In this case, from (a) of Corollary 2.12 we see that F?" has a periodic orbit
which period is a factor of 21+ 1 greater than 1. By Lemma 3.8, we may assume
that n = m = 2.

If n = m = 3-2 1 then there is yuo € N such that m = 2*(2u + 2ug + 1).
By hypothesis (Hs), F?" has a (214 + 20 + 1)-periodic orbit. By Corollary 2.11,
there is a factor ks of 2* such that F has a ka(2p + 2o + 1)-periodic orbit O,,.
If ky = 2%, O,, itself is an m-periodic orbit of F. If ky is a proper factor of 2*,
then 3 > ko(2u + 210 + 1) > n, and from (Hy) we see that F' has an m-periodic
orbit.

If 3.2 M1 = m = 2* then there is my € N such that m = 2* - 2my. By
hypothesis (Hs), F2" has a 2myg-periodic orbit. Using Corollary 2.11 to the case
that k = k; = 2, we see that F' has an m-periodic orbit. O
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