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EXISTENCE AND ASYMPTOTIC BEHAVIOUR

OF GROUND STATE SOLUTION

FOR QUASILINEAR SCHRÖDINGER–POISSON SYSTEMS IN R3

Ling Ding — Lin Li — Yi-Jie Meng — Chang-Ling Zhuang

Abstract. In this paper, we are concerned with existence and asymptotic

behavior of ground state in the whole space R3 for quasilinear Schrödinger–
Poisson systems{

−∆u+ u+K(x)φ(x)u = a(x)f(u), x ∈ R3,

−div[(1 + ε4|∇φ|2)∇φ] = K(x)u2, x ∈ R3,

when the nonlinearity coefficient ε > 0 goes to zero, where f(t) is asympto-

tically linear with respect to t at infinity. Under appropriate assump-

tions on K, a and f , we establish existence of a ground state solution
(uε, φε,K(uε)) of the above system. Furthermore, for all ε sufficiently small,

we show that (uε, φε,K(uε)) converges to (u0, φ0,K(u0)) which is the solu-

tion of the corresponding system for ε = 0.

1. Introduction and main results

Consider the following quasilinear Schrödinger–Poisson systems

(1.1)

−∆u+ u+K(x)φ(x)u = a(x)f(u), x ∈ R3,

−div[(1 + ε4|∇φ|2)∇φ] = K(x)u2, x ∈ R3,
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where K ∈ L2(R3), K ≥ ( 6≡) 0, a is a positive bounded function, and f ∈
C(R,R+). When ε = 0, this Schrödinger–Poisson system arises in an interesting

physical model which describes the interaction of a charged particle with elec-

tromagnetic field (see [3] and the references therein). When ε 6= 0, system (1.1)

firstly arises this form like
i∂tu = −1

2
∆u+ (V + φ(x))u, x ∈ R3,

−div[ε(∇φ)∇φ] = |u|2 − n∗, x ∈ R3,

u(x, 0) = u(x), x ∈ R3,

which corresponds to a quantum mechanical model where the quantum effects

are important, as in the case of microstructures (see for example Markowich,

Ringhofer and Schmeiser [22]). The charge density n(x, t) derives from the

Schrödinger wave function u(x, t) by n(x, t) = |u(x, t)|2, while n∗ and V repre-

sent respectively a dopant-density and a real effective potential which are time-

independent. More details dealing with the phenomenon may be found in [17],

[18] and references therein. After that, in [1], [16], that the field dependent

dielectric constant in Poisson equation has the form

ε(∇φ) = ε0 + ε1|∇ϕ|2, ε0, ε1 > 0.

Existence and uniqueness of global strong solutions and existence results of so-

lutions of the form u(x, t) = eiωtu(x)(ω, u(x) ∈ R) are obtained under suitable

conditions, respectively. Moreover, in [4], authors obtained that the existence

of standing waves (actually ground states) solutions for the Schrödinger–Poisson

system with ε0 = 1 and ε1 = ε4 of

(1.2)

−
1

2
∆u+ (V + φ(x))u = 0, x ∈ R3,

−div[(1 + ε4|∇φ|2)∇φ] = |u|2 − n∗, x ∈ R3

and with their asymptotic behavior when the nonlinearity coefficient in the Pois-

son equation ε goes to zero with suitable potential V .

From the mathematical view, if the Schrödinger equation with only one non-

linear nonlocal term φ(x)u in system (1.2) is replaced by the other different

version of Schrödinger equations which have other nonlinear terms besides the

nonlinear nonlocal term, we want to know that whether ground state solutions

exist and if exists whether they converge to ones of the corresponding system for

ε = 0. In this paper, we shall answer these questions about system (1.1).

When φ ≡ 0, system (1.1) becomes into a single equation

(1.3) −∆u+ u = a(x)f(u).
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Problem (1.3) has been studied extensively in the last decade, see [9]–[27] and so

on. In these mentioned papers, the condition: f(t)/t is nondecreasing in t > 0

is usually assumed to prove that a (PS) sequence is bounded.

When φ(x) 6≡ 0 and ε ≡ 0, Cerami and Vaira in [6] studied system (1.1)

with f(t) = |t|p−1u(p ∈ (3, 5)) and obtained the existence of positive ground

state solutions by minimizing the corresponding energy functional restricted to

the Nehari manifold when K and a satisfy different assumptions, respectively.

Sun, Chen and Nieto in [28] also studied system (1.1) with general f which is

asymptotically linear at infinity and obtain the existence of a positive ground

state solution under suitable assumptions about K and a by Mountain Pass

Theorem. Furthermore, there are abundant results with respect to Schrödinger–

Poisson system, see [10]–[31] and so on.

When φ(x) 6≡ 0 and ε 6≡ 0, there are some results with respect to Schrödinger–

Possion systems depending on a parameter ε, see [12], [11], [25], [26], [15] and

the references therein. In [12], [11], [25], [26], the perturbation parameter ε

appears in the first Schrödinger equation of system, the domain is a flat domain

or a Riemannian manifold in R3 and concentration of solutions were mainly

studied. In [15], the perturbation parameter ε appears in the exponent of the

nonlinearity (f(t) = t6−ε) and multiplicity positive solutions are obtained. But

there are few results for system (1.1) with φ(x) 6≡ 0 where the perturbation

parameter ε 6≡ 0 appears in the second equation. So, we want to fill this gap. To

our best knowledge, this is the first paper which consider this type of problem.

Before stating our main results, we give some notations. For any 1 ≤ q ≤
+∞, we denote by ‖ · ‖q the usual norm of the Lebesgue space Lq(R3). Define

the function space

H1(R3) := {u ∈ L2(R3) : ∇u ∈ L2(R3)}

with the standard product and norm

(u, v) =

∫
R3

(∇u · ∇v + uv) dx, ‖u‖ :=

(∫
R3

(|∇u|2 + |u|2) dx

)1/2

.

Define the function space

D1,2(R3) := {u ∈ L6(R3) : ∇u ∈ L2(R3)}

with the usual norm ‖u‖D1,2 := ‖∇u‖2. Define

D1,4(R3) := {u ∈ C0(R3) : ∇u ∈ L4(R3)}

with the usual norm ‖u‖D1,4 := ‖∇u‖4. And the space D1,2 ∩ D1,4(R3) is

equipped with the natural norm ‖u‖D1,2∩D1,4 = ‖∇u‖2 + ‖∇u‖4. Recall that

Sobolev’s inequalities with the best constant S and S∗ are

‖v‖26 ≤ S‖∇v‖22, ‖v‖26 ≤ S∗‖v‖2.
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Here are the main results of this paper.

Theorem 1.1. Suppose that the following conditions hold:

(f1) f ∈ C(R,R+), f(0) = 0, and f(t) ≡ 0 for t < 0.

(f2) lim
t→0

f(t)/t = 0.

(f3) lim
t→+∞

f(t)/t = l < +∞.
(A1) a(x) is a positive continuous function and there exists R0 > 0 such that

sup{f(t)/t : t > 0} < inf{1/a(x) : |x| ≥ R0}.

(A2) There exists a constant β ∈ (0, 1) such that

(1− β)l > µ∗ := inf

{∫
R3

(|∇u|2 + u2) dx : u ∈ H1(R3,R+),∫
R3

a(x)F (u) dx ≥ l

2
,

∫
R3

K(x)φε,Ku
2 dx <

4

3
βl

}
,

where F (t) =
∫ t

0
f(s) ds.

(K1) K ∈ L2(R3), K ≥ (6≡)0 for all x ∈ R3.

Then system (1.1) possesses a ground state solution (uε, φε,K(uε)) in H1(R3) for

all ε > 0.

Remark 1.2. When ε ≡ 0, system (1.1) has been studied in [28] and pos-

sesses a ground state solution in H1(R3) under the same conditions of Theo-

rem 1.1. In this case, solvability of such Schrödinger–Poisson systems begins the

unique positive solution of the linear Poisson equation in D1,2(R3) denoted by

φ0,K(u) which is the Newtonian potential of K(x)u2 and has the explicit formula

φ0,K(u(x)) =
1

4π

∫
R3

K(y)u2(y)

|x− y|
dy.

Clearly, this solution has some good properties. But when ε > 0, we will solve

a quasilinear Poisson equation

−div[(1 + ε4|∇φ|2)∇φ] = K(x)|u|2

which has a unique weak nonnegative solution φε,K(u) in the space D1,2 ∩
D1,4(R3) in the following Lemma 2.2. Moreover, Theorem 1.1 generalizes The-

orem 1.1 in [28] where the author only studied the special situation, that is,

ε = 0. Functions K, a, f satisfying Theorem 1.1 can be constructed by the same

method as Remark 1.1 in [4].

Furthermore, we want to know the asymptotic behavior uε when ε→ 0. We

have the following result.

Theorem 1.3. If (uε, φε,K(uε)) denotes the ground state solution of system

(1.1) obtained by Theorem 1.1, then uε is bounded in H1(R3) and any limit point
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of (uε, φε,K(uε)) when ε → 0 is a solution (u0, φ0,K(u0)) of system (1.1) with

ε ≡ 0.

In order to obtain our results, we have to overcome various difficulties. First,

the competing effect of the quasilinear non-local term in the functional of system

(1.1) gives rise to some difficulties. Second, since the embedding of H1(R3) into

Lp(R3), p ∈ [2, 6], is not compact, condition (A1) is crucial to obtain the bound-

edness of Cerami sequence. Furthermore, in order to recover the compactness,

we establish a compactness result
∫
|x|≥R(|∇un|2 + |un|2) dx ≤ ε′ similar to the

one in [28] but different from the one in [6]. In fact, this difficulty can be avoided,

when autonomous problems are considered, restricting the corresponding func-

tional to the subspace of H1(R3) consisting of radially symmetric functions, or,

when one is looking for semi-classical states, by using perturbation methods or

a reduction to a finite dimension by the projections method. Third, it is not dif-

ficult to find that every (PS) sequence is bounded when 3 < p < 5 in [6] because

a variant of global Ambrosetti–Rabinowitz condition is satisfied when 3 < p < 5

(see [10]). However, for the asymptotically linear case, we have to find another

method to verify the boundedness of (PS) sequence.

This paper is organized as follows. In Section 2, some important preliminaries

are listed out. In Sections 3 and 4, we manage to give proofs of Theorems 1.1

and 1.3. In the following discussion, we denote various positive constants as C

or Ci (i = 0, 1, . . .) for convenience.

2. Preliminaries

System (1.1) has a variational structure. Its corresponding functional

Jε : H1(R3)× (D1,2 ∩D1,4(R3))→ R

defined by

Jε(u, φ) =
1

2
‖u‖2 +

1

2

∫
R3

K(x)φu2 dx

− 1

4

∫
R3

|∇φ|2 dx− ε4

8

∫
R3

|∇φ|4 dx−
∫
R3

a(x)F (u) dx.

Evidently, from conditions of Theorem 1.1, the action functional Jε ∈ C1(H1(R3)

×(D1,2 ∩ D1,4(R3)),R) and the partial derivatives in (u, φ) are given, for ζ ∈
H1(R3) and η ∈ D1,2 ∩D1,4(R3), we have〈

∂Jε
∂u

(u, φ), ζ

〉
=

∫
R3

(∇u · ∇ζ + uζ +K(x)φuζ − a(x)f(u)ζ) dx,〈
∂Jε
∂φ

(u, φ), η

〉
= −1

2

∫
R3

(∇φ · ∇η + ε4|∇φ|2∇φ · ∇η −K(x)u2η) dx.

Thus, we have the following result:
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Proposition 2.1. The pair (u, φ) is a weak solution of the system (1.1) if

and only if it is a critical point of Jε in H1(R3)× (D1,2 ∩D1,4(R3)).

Lemma 2.2. Assume that (K1) holds. For any u ∈ H1(R3) and all ε > 0,

there is a unique nonnegative weak solution φε,K(u) ∈ D1,2 ∩D1,4(R3) for

(2.1) −div[(1 + ε4|∇φ|2)∇φ] = K(x)u2, x ∈ R3.

Furthermore, for any ψ ∈ D1,2 ∩D1,4(R3) we have∫
R3

(1 + ε4|∇φε,K(u)|2)∇φε,K · ∇ψ dx =

∫
R3

K(x)u2ψ dx.

Proof. Equation (2.1) is the special case of one of Lemma 3.1 in [4], so we

write its proof for completeness.

For any u ∈ H1(R3) \ {0} and K ∈ L2(R3), by the Hölder inequality and

Sobolev inequality, we have∫
R3

(K(x)u2)6/5 dx ≤ ‖K(x)‖6/52 ‖u‖
12/5
6 ≤ (S∗)6/5‖K(x)‖6/52 ‖u‖12/5.

Therefore, K(x)u2 ∈ L6/5. The corresponding functional of (2.1) is

J̃ε(φ) =
1

2

∫
R3

|∇φ|2 dx+
ε4

4

∫
R3

|∇φ|4 dx−
∫
R3

K(x)u2φdx

for φ ∈ D1,2 ∩ D1,4(R3). Therefore, by the Hölder inequality and Sobolev in-

equality, we get

J̃ε(φ) ≥ 1

2

∫
R3

|∇φ|2 dx+
ε4

4

∫
R3

|∇φ|4 dx− ‖K(x)u2‖6/5‖φ‖6

≥ 1

2
‖∇φ‖22 +

ε4

4
‖∇φ‖44 − S1/2‖K(x)u2‖6/5‖∇φ‖2 → +∞

as ‖φ‖D1,2∩D1,4 → +∞. That is, the functional J̃ε(φ) is coercive. So, J̃ε has

a bounded minimizing sequence {φn} such that

J̃ε(φn)→ inf
D1,2∩D1,4(R3)

J̃ε(φ)

whenever n→∞. Let

Gε(φn) =
1

2

∫
R3

|∇φn|2 dx+
ε4

4

∫
R3

|∇φn|4 dx and L(φn) =

∫
R3

K(x)u2φn dx.

Clearly, Gε is a strictly convex functional and L is a linear functional. So,

J̃ε(φn) = Gε(φn)−L(φn) is a strictly convex functional. Furthermore, J̃ε is C1.

So, by Mazur’s theorem (see, e.g. Theorem V.1.2 in [32]), J̃ε is weakly lower

semi-continuous on D1,2 ∩ D1,4(R3). It follows from the least action principle

(see, e.g. Theorem 1.1 in [23]) that J̃ε has a minimum on D1,2 ∩D1,4(R3).
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We claim that the minimum point of J̃ε is unique. Otherwise, suppose that

φε,K,1(u) and φε,K,2(u) are both minimum points of J̃ε. That is,

J̃(φε,K,1(u)) = J̃(φε,K,2(u)) = inf
D1,2∩D1,4(R3)

J̃ε(φ).

Because J̃ε is strictly convex, for each α ∈ (0, 1), we obtain

J̃ε(αφε,K,1(u) + (1− α)φε,K,2(u))

< αJ̃ε(φε,K,1(u)) + (1− α)J̃ε(φε,K,2(u)) = inf
D1,2∩D1,4(R3)

J̃ε(φ).

This is a contradiction. So, J̃ε has a unique minimum, then equation (2.1) has

a unique weak solution φε,K(u).

Next, we shall prove that the solution φε,K(u) of equation (2.1) is nonneg-

ative. Denote by φ±ε,K(u) := max{±φε,K(u), 0} the positive (negative) part of

φε,K(u). Since K(x)u2 ≥ 0 and φε,K(u) is a solution of equation (2.1), we deduce

−div[(1 + ε4|∇φε,K(u)|2)∇φε,K(u)] ≥ 0, x ∈ R3.

Multiplying this equation by φ−ε,K(u) with φ−ε,K(u) = max{−φε,K(u), 0} and

integrating on R3 by parts, we obtain

−
∫
R3

(|∇φ−ε,K(u)|2 + ε4|∇φ−ε,K(u)|4) ≥ 0.

This yields that ‖φ−ε,K(u)‖D1,2∩D1,4(R3) = 0, so, φ−ε,K(u) = 0. Therefore, we ob-

tain φε,K(u) = φ+
ε,K(u)−φ−ε,K(u) = φ+

ε,K(u) ≥ 0. Thus, φε,K(u) is a nonnegative

weak solution of (2.1).

From the above discussion, J̃ε achieves its minimum at a unique nonnegative

φε,K(u) ∈ D1,2 ∩D1,4(R3) and therefore

〈J̃ε
′
(φε,K(u)), ψ〉 = 0 for all ψ ∈ D1,2 ∩D1,4(R3). �

By Lemma 2.2, there exists a unique function 0 ≤ φε,K(u) ∈ D1,2∩D1,4(R3)

such that

(2.2) −div[(1 + ε4|∇φε,K(u)|2)∇φε,K(u)] = K(x)u2.

Substitute the solution φε,K(u) in the first (Schrödinger) equation of the system

(1.1), then get the corresponding functional Eε : H1(R3)→ R defined by Eε(u) =

Jε(u, φε,K(u)). After multiplying (2.2) by φε,K(u) and integration by parts, we

obtain

(2.3)

∫
R3

(1 + ε4|∇φε,K(u)|2)|∇φε,K(u)|2 dx =

∫
R3

K(x)u2φε,K(u) dx.

Therefore, the reduced functional takes the form

Eε(u) =
1

2
‖u‖2 + Iε(u)−

∫
R3

a(x)F (u) dx,
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where

Iε(u) =
1

4

∫
R3

|∇φε,K(u)|2 dx+
3ε4

8

∫
R3

|∇φε,K(u)|4 dx.

Clearly, Iε(u) ≥ 0 and
∫
R3 K(x)u2φε,K(u) dx ≥ 0. Now, we give the following

definition:

Definition 2.3. (u, φε,K(u)) with u ∈ H1(R3) is a ground state solution

of system (1.1), we mean that (u, φε,K(u)) is a solution of system (1.1) which

has the least energy among all solutions of system (1.1), that is, E′ε(u) = 0 and

Eε(u) = inf{Eε(v) : v ∈ H1(R3) \ {0} and E′ε(v) = 0}.

Moreover, we have

Lemma 2.4. For any ε > 0 the functional u 7→ Iε(u) is C1 on H1(R3) and

its Fréchet-derivative satisfies

〈I ′ε(u), ψ〉 =

∫
R3

K(x)φε,K(u)uψ dx, for all u, ψ ∈ H1(R3).

By suitably modifying the proof of Proposition 4.1 in [4], this lemma can be

proved. Here we omit its proof.

By (2.3), the Hölder’s inequality and Sobolev’s inequalities, we have∫
R3

|∇φε,K(u)|2 dx+ ε4

∫
R3

|∇φε,K(u)|4 dx =

∫
R3

K(x)u2φε,K(u) dx

≤ ‖φε,K(u)‖6‖K‖2‖u‖26 ≤ S1/2S∗‖K‖2‖∇φε,K(u)‖2‖u‖2.

This yields

(2.4) ‖∇φε,K(u)‖2 ≤ S1/2S∗‖K‖2‖u‖2 := C0‖u‖2

and

(2.5) ‖∇φε,K(u)‖22 + ε4‖∇φε,K(u)‖44
≤ S1/2S∗‖K‖2‖∇φε,K(u)‖2‖u‖2 ≤ S(S∗)2‖K‖22‖u‖4.

From (2.5), we obtain

(2.6) ε4‖∇φε,K(u)‖44 ≤ S(S∗)2‖K‖22‖u‖4 := C1‖u‖4.

Combining (2.4), (2.6) and (f1), Eε is well defined. Furthermore, together with

Lemma 2.4, Eε is a C1 functional with derivative given, for all v ∈ H1(R3), by

(2.7) 〈E′ε(u), v〉 =

∫
R3

(∇u · ∇v + uv +K(x)φε,K(u)uv − a(x)f(u)v) dx.

Now, we can apply Theorem 2.3 of [7] to the functional Eε and obtain

Proposition 2.5. The following statements are equivalent:

(a) (u, φ) ∈ H1(R3) × (D1,2 ∩D1,4(R3)) is a critical point of Jε (i.e. (u, φ)

is a solution of the system (1.1));
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(b) u is a critical point of Eε and φ = φε,K(u).

Furthermore, in order to obtain our results, we also need the following lemma.

Lemma 2.6 ([4, Lemma 3.2]). For all ε > 0 and fε, f ∈ L6/5(R3), let φε(fε) ∈
D1,2 ∩D1,4(R3) be a unique solution of −div[(1 + ε4|∇φ|2)∇φ] = fε in R3 and

φ0(f) ∈ D1,2(R3) be a unique solution of −∆φ = f in R3. Then:

(a) if fε ⇀ f weakly in L6/5(R3) then φε(fε) ⇀ φ0(f) in D1,2(R3) as ε→ 0;

(b) if fε → f strongly in L6/5(R3), then:

φε(fε) → φ0(f) strongly in D1,2(R3),

εφε(fε) → 0 strongly in D1,4(R3)

as ε→ 0.

3. Proof of Theorem 1.1

Now we prove that system (1.1) has a mountain pass type solution. For

this purpose, we use a variant version of Mountain Pass Theorem [14], which

allows us to find a so-called Cerami type (PS) sequence (Cerami sequence, in

short). The properties of this kind of (PS) sequence are very helpful in showing

its boundedness in the asymptotically linear case. The following lemmas show

that Eε has the so-called mountain pass geometry.

Lemma 3.1. Suppose that (f1)–(f3), (A1) and (K1) hold. Then there exist

ρ > 0 and α > 0 such that Eε(u)|‖u‖=ρ ≥ α > 0.

Proof. For any ε̃ > 0, it follows from (f1)–(f3) that there exists Cε̃ > 0

such that

(3.1) |f(t)| ≤ ε̃|t|+ Cε̃|t|5 for all t ∈ R.

Therefore, we have

(3.2) |F (t)| ≤ 1

2
ε̃|t|2 +

Cε̃
6
|t|6 for all t ∈ R.

Furthermore, by (f1)–(f3) and (A1), there exists C2 > 0 such that

(3.3) a(x) ≤ C2 for all x ∈ R3.

According to (3.2), (3.3) and the Sobolev inequality, we duduce∣∣∣∣ ∫
R3

a(x)F (u) dx

∣∣∣∣ ≤ ε̃C2

2

∫
R3

|u|2 dx+
C2Cε̃

6

∫
R3

|u|6 dx ≤ ε̃C2

2
‖u‖2+C3‖u‖6

for some C3 > 0. Together with Iε(u) ≥ 0, one has

Eε(u) =
1

2
‖u‖2 + Iε(u)−

∫
R3

a(x)F (u) dx(3.4)

≥ 1

2
‖u‖2 − ε̃C2

2
‖u‖2 − C3‖u‖6 ≥ ‖u‖

(
1− ε̃C2

2
‖u‖ − C3‖u‖5

)
.
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Taking ε̃ ∈ (0, 1/2C2). From (3.4), letting ‖u‖ = ρ > 0 small enough, there

exists α > 0 such that I(u)|‖u‖=ρ ≥ α > 0. �

Lemma 3.2. Suppose that (f1)–(f3), (A1)–(A2) and (K1) hold. Then there

exists v ∈ H1(R3) with ‖v‖ > ρ, ρ is given by Lemma 3.1, such that Eε(v) < 0

for all ε > 0.

Proof. By (A2), in view of the definition of µ∗ and (1− β)l > µ∗, there is

a nonnegative function v ∈ H1(R3) such that∫
R3

a(x)F (v) dx ≥ l

2
,

∫
R3

K(x)φε,K(v)v2 dx <
4

3
βl,

and µ∗ ≤ ‖v‖2 < (1− β)l. From (2.3) and the definition of Iε, we obtain

Iε(v) ≤ 3

8

∫
R3

K(x)φε,K(v)v2 dx <
1

2
βl.

Therefore, we have

Eε(v) =
1

2
‖v‖2 + Iε(v)−

∫
R3

a(x)F (v) dx

≤ 1

2
‖v‖2 +

βl

2
− l

2
=

1

2
(‖v‖2 − (1− β)l) < 0.

Choosing ρ > 0 small enough in Lemma 3.1 such that ‖v‖ > ρ, then this lemma

is proved. �

From Lemmas 3.1 and 3.2 and Mountain Pass Lemma in [14], there is a se-

quence {un} ⊂ H1(R3) such that

(3.5) ‖E′ε(un)‖H−1(1 + ‖un‖)→ 0 and Eε(un)→ c as n→∞,

where H−1 denotes the dual space of H1(R3). In the following, we shall prove

that sequence {un} has a convergence subsequence.

Lemma 3.3. Suppose that (f1)–(f3), (A1) and (K1) hold. Then {un} defined

in (3.5) is bounded in H1(R3).

Proof. By contradiction, let ‖un‖ := αn → ∞. Define wn = un‖un‖−1 =

α−1
n un. Clearly, ‖wn‖ = 1 and {wn} is bounded in H1(R3) and there is a w ∈
H1(R3) such that, up to a sequence(still denoted by {wn}),

wn ⇀ w weakly in H1(R3),

wn → w a.e. in R3,

wn → w strongly in L2
loc(R3),

as n→∞.
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Firstly, we claim that w is nontrivial, that is w 6≡ 0. Otherwise, if w ≡ 0,

the Sobolev embedding implies that wn → 0 strongly in L2
loc(BR0

), R0 is given

by (A1). Define

f̃(t) =


f(t)

t
for t 6= 0,

0 for t = 0.

Together with (f1)–(f3) with l < +∞, there exists C4 > 0 such that

(3.6) f̃(t) ≤ C4 for all t ∈ R.

Then, for all n ∈ N , we have

0 ≤
∫
|x|<R0

a(x)f̃(un)w2
ndx ≤ C4|a|∞

∫
|x|<R0

w2
n dx→ 0.

This yields

(3.7) lim
n→∞

∫
|x|<R0

a(x)f̃(un)w2
n dx = 0.

Furthermore, by (A1), there exists a constant θ ∈ (0, 1) such that

(3.8) sup{f(t)/t : t > 0} ≤ θ inf{1/a(x) : |x| ≥ R0}.

Then, for all n ∈ N , we have∫
|x|≥R0

a(x)f̃(un)w2
n dx ≤ θ

∫
|x|≥R0

w2
n dx(3.9)

<θ

∫
|x|≥R0

(|∇wn|2 + w2
n) dx < θ‖w‖2 = θ < 1.

Combining (3.7) and (3.9), we obtain

(3.10) lim sup
n→∞

∫
R3

a(x)f̃(un)w2
n dx < 1.

By (3.5), we get

0 ≤ |〈E′ε(un), un〉| ≤ ‖E′ε(un)‖H−1‖un‖ ≤ ‖E′ε(un)‖H−1(1 + ‖un‖)→ 0

as n→∞. Together with αn →∞ as n→∞, it follows that α−2
n 〈E′ε(un), un〉 =

o(1). So, by (2.7) and (2.3), we have

o(1) = ‖wn‖2 + α−2
n

∫
R3

K(x)φε,K(un)u2
n dx−

∫
R3

a(x)
f(un)

un
w2
n dx

= ‖wn‖2 + α−2
n

∫
R3

(1 + ε4|∇φε,K(un)|2)|∇φε,K(un)|2 dx

−
∫
R3

a(x)
f(un)

un
w2
n dx

≥ 1−
∫
R3

a(x)
f(un)

un
w2
n dx,
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where, and in what follows, o(1) denotes a quantity which goes to zero as n→∞.

Therefore, we deduce that∫
R3

a(x)
f(un)

un
w2
n dx+ o(1) ≥ 1,

which contradicts (3.10). So, w 6≡ 0. By (3.5) and the definition of Eε, we get

o(1) + α−2
n c =α−2

n Eε(un)(3.11)

=
1

2
‖wn‖2 + α−2

n Iε(un)−
∫
R3

a(x)
F (un)

u2
n

w2
n dx

=
1

2
+ α−2

n Iε(un)−
∫
R3

a(x)
F (un)

u2
n

w2
n dx.

Define

F̃ (t) =


F (t)

t2
for t 6= 0,

0 for t = 0.

By (f1)–(f3) with l < +∞ and (3.11), there exists C5 > 1/2 such that F̃ (t) ≤
C5/C2 for all t ∈ R. So, together with (3.3), we obtain

(3.12)

∫
R3

a(x)F̃ (un)w2
n dx ≤ C5

∫
R3

w2
n dx ≤ C5‖wn‖2 = C5.

Combining (3.11) and (3.12), we deduce

(3.13) α−2
n Iε(un) ≤ C5 −

1

2
+ o(1).

From Lemma 2.2, we know that φε,K(un) is the unique solution of the equation

−div[(1 + ε4|∇φ|2)∇φ] = K(x)u2
n.

That is, the following equality holds:

(3.14) −div[(1 + ε4|∇φε,K(un)|2)∇φε,K(un)] = K(x)u2
n.

Multiplying (3.14) by φε,K(un) and integrating by parts, we find that

J̃ε(φε,K(un)) = −1

2

∫
R3

|∇φε,K(un)|2 dx− 3ε4

4

∫
R3

|∇φε,K(un)|4 dx = −2Iε(un).

Together with (3.13), we get

(3.15) −1

2
α−2
n J̃ε(φε,K(un)) = α−2

n Iε(un) ≤ C5 −
1

2
+ o(1).

From Lemma 2.2, φε,K(wn) satisfies

(3.16)

∫
R3

K(x)φε,K(wn)w2
n dx

=

∫
R3

|∇φε,K(wn)|2 dx+ ε4

∫
R3

|∇φε,K(wn)|4 dx.
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Since φε,K(un) is the minimizer of J̃ε on D1,2 ∩ D1,4(R3) and (3.16), we may

write

J̃ε(φε,K(un)) ≤ J̃ε(α2/3
n φε,K(wn))

=
α

4/3
n

2

∫
R3

|∇φε,K(wn)|2 dx+
α

8/3
n ε4

4

∫
R3

|∇φε,K(wn)|4 dx

− α2/3
n

∫
R3

K(x)u2
nφε,K(wn) dx

=
α

4/3
n

2

∫
R3

|∇φε,K(wn)|2 dx+
α

8/3
n ε4

4

∫
R3

|∇φε,K(wn)|4 dx

− α8/3
n

∫
R3

K(x)w2
nφε,K(wn) dx

=

(
α

4/3
n

2
− α8/3

n

)∫
R3

|∇φε,K(wn)|2 dx− 3α
8/3
n ε4

4

∫
R3

|∇φε,K(wn)|4 dx

≤ − 3α
8/3
n

4

(∫
R3

|∇φε,K(wn)|2 dx+ ε4

∫
R3

|∇φε,K(wn)|4 dx
)
,

because α
4/3
n /2−α8/3

n ≤ −3α
8/3
n /4 for n large enough since αn → +∞ as n→∞.

Together with (3.15), we obtain∫
R3

|∇φε,K(wn)|2 dx+ ε4

∫
R3

|∇φε,K(wn)|4 dx

≤ −4

3
α−8/3
n J̃ε(φε,K(un)) ≤ 8α

−2/3
n

3

(
C5 −

1

2
+ o(1)

)
.

So, we have

(3.17)

∫
R3

|∇φε,K(wn)|2 dx+ ε4

∫
R3

|∇φε,K(wn)|4 dx→ 0 as n→∞.

By (3.16) and (3.17), we have

(3.18)

∫
R3

K(x)φε,K(wn)w2
n dx→ 0 as n→∞.

We can easily verify that

(3.19)

∫
R3

K(x)φε,K(wn)w2
n dx→

∫
R3

K(x)φε,K(w)w2 dx as n→∞.

Indeed, in view of the Sobolev embedding theorems and (3) of Lemma 2.1 in [6],

wn ⇀ w weakly in H1(R3), we obtain

(3.20)

(a) wn ⇀ w weakly in L6(R3),

(b) w2
n → w2 strongly in L3

loc(R3),

(c) φε,K(wn) ⇀ φε,K(w) weakly in D1,2(R3),

(d) φε,K(wn) → φε,K(w) strongly in L6
loc(R3).



254 L. Ding — L. Li — Y.-J. Meng — C.-L. Zhuang

For any choice of ε > 0 and ρ > 0, the relation

(3.21) ‖wn − w‖6,Bρ(0) < ε

holds for large n. Using (c) of (3.20), for large n, we have

(3.22)

∣∣∣∣ ∫
R3

K(x)(φε,K(wn)− φε,K(w))w2 dx

∣∣∣∣ = o(1).

Because wn is bounded in H1(R3) and the continuity of the Sobolev embedding

of D1,2(R3) in L6(R3), then φε,K(wn) is bounded in D1,2(R3) and in L6(R3).

Moreover, K ∈ L2(R3) implies that Kw2
n and Kw2 belong to L6/5(R3) and that

to any ε > 0 there exists ρ = ρ(ε) such that

(3.23) ‖K‖2,R3\Bρ(0) < ε, for all ρ ≥ ρ

By (3.22), (3.21) and (3.23), we obtain∣∣∣∣ ∫
R3

K(x)φε,K(wn)w2
n dx−

∫
R3

K(x)φε,K(w)w2 dx

∣∣∣∣
=

∣∣∣∣ ∫
R3

K(x)φε,K(wn)(w2
n − w2) dx−

∫
R3

K(x)(φε,K(w)− φε,K(wn))w2 dx

∣∣∣∣
≤
∫
R3

|K(x)φε,K(wn)(w2
n − w2)| dx+

∫
R3

|K(x)(φε,K(wn)− φε,K(w))w2| dx

≤‖φε,K(wn)‖6
(∫

R3

|K(x)(w2
n − w2)|6/5 dx

)5/6

+ ε

≤C6

(∫
R3\Bρ(0)

|K(x)(w2
n − w2)|6/5 dx+

∫
Bρ(0)

|K(x)(w2
n − w2)|6/5 dx

)5/6

+ ε

≤C6

(
‖K‖6/52,R3\Bρ(0)‖w

2
n − w2‖6/53 + ‖K‖6/52 ‖w2

n − w2‖6/53,Bρ(0)

)5/6
+ ε ≤ C7ε.

This proves (3.19). So, by (3.18) and (3.19), we obtain∫
R3

K(x)φε,K(w)w2 dx = 0,

which implies that w ≡ 0. That is a contradiction. Therefore, {un} is bounded

in H1(R3). �

Lemma 3.4. Suppose that (f1)–(f3), (A1) and (K1) hold. Then for any ε′ > 0,

there exist R(ε′) > R0 and n(ε′) > 0 such that {un} defined in (3.5) satisfies∫
|x|≥R

(|∇un|2 + |un|2) dx ≤ ε′

for n > n(ε′) and R ≥ R(ε′).

Proof. Let ξR : R3 → [0, 1] be a smooth function such that

(3.24) ξR(x) =

0 if 0 ≤ |x| ≤ R/2,
1 if |x| ≥ R.
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Moreover, there exists a constant C8 independent of R such that

(3.25) |∇ξR(x)| ≤ C8/R for all x ∈ R3.

Then, for all n ∈ N and R ≥ R0, by (3.24), (3.25) and the Hölder inequality, we

have∫
R3

|∇(unξR)|2 dx

≤
∫
R3

|∇un|2|ξR|2 dx+

∫
R3

|un|2|∇ξR|2 dx+ 2

∫
R3

|un||ξR||∇un||∇ξR| dx

≤
∫
R/2<|x|<R

|∇un|2 dx+

∫
|x|≥R

|∇un|2 dx+
C2

8

R2

∫
R3

|un|2 dx

+ 2

(∫
R3

|∇un|2|ξ2
R| dx

)1/2(∫
R3

|un|2|∇ξR|2 dx
)1/2

≤
∫
R/2<|x|<R

|∇un|2 dx+

∫
|x|≥R

|∇un|2 dx+
C2

8

R2

∫
R3

|un|2 dx

+ 2

(∫
R/2<|x|<R

|∇un|2 dx+

∫
|x|≥R

|∇un|2 dx
)1/2(

C2
8

R2

∫
R3

|un|2 dx
)1/2

≤
(

2 +
C2

8

R2
+

2
√

2C8

R

)
‖un‖2 ≤

(
2 +

C2
8

R2
0

+
2
√

2C8

R0

)
‖un‖2.

This implies that

(3.26) ‖unξR‖ ≤ C9‖un‖

for all n ∈ N and R ≥ R0, where C9 = (3 + C2
8/R

2
0 + 2

√
2C8/R0)1/2. From

Lemma 3.3, we know that {un} is bounded in H1(R3). Together with (3.5), we

obtain that E′ε(un)→ 0 in H−1(R3). Moreover, by (3.26), for ε′ > 0, there exists

n(ε′) > 0 such that

〈E′ε(un), ξRun〉 ≤ C9‖E′ε(un)‖H−1(R3)‖un‖ ≤ ε′/4

for n > n(ε′) and R > R0. Note that

〈E′ε(un), ξRun〉 =

∫
R3

(|∇un|2 + |un|2)ξR dx+

∫
R3

un∇un · ∇ξR dx

+

∫
R3

K(x)φε,K(un)u2
nξRdx−

∫
R3

a(x)f(un)unξR dx ≤
ε′

4
.

Together with Lemma 2.2, (K1) and the definition of ξR, we have∫
R3

[(|∇un|2 + |un|2)ξR + un∇un · ∇ξR] dx(3.27)

≤
∫
R3

a(x)f(un)unξR dx−
∫
R3

K(x)φε,K(un)u2
nξR dx+

ε′

4

≤
∫
R3

a(x)f(un)unξR dx+
ε′

4
.
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By (3.8) and (A1), we have

a(x)f(un)un ≤ θu2
n for θ ∈ (0, 1) and |x| ≥ R0.

This yields

(3.28)

∫
R3

a(x)f(un)unξR dx ≤ θ
∫
R3

u2
nξR dx

for all n ∈ N and |x| ≥ R0. For any ε′ > 0, there exists R(ε′) ≥ R0 such that

(3.29)
1

R2
≤ 4ε′2

C2
8

for all R > R(ε′).

By the Young inequality, (3.25) and (3.29), for all n ∈ N and R > R(ε′), we

obtain ∫
R3

|un∇un · ∇ξR| dx =

∫
R3

√
2ε′|∇un|

1√
2ε′
|un||∇ξR| dx(3.30)

≤ ε′
∫
R3

|∇un|2 dx+
1

4ε′

∫
|x|≤R

|un|2
C2

8

R2
dx

≤ ε′
∫
R3

|∇un|2 dx+ ε′
∫
|x|≤R

|un|2 dx ≤ ε′‖un‖2.

Combining (3.27), (3.28) and (3.30), there exists C6 > 0 such that

(1− θ)
∫
R3

(|∇un|2 + |un|2)ξR dx

≤
∫
R3

(|∇un|2 + (1− θ)|un|2)ξR dx ≤
ε′

4
+ ε′‖un‖2 ≤ C10ε

′

for all R > R(ε′). Noting that C10 is independent of ε′. So, for any ε > 0, we

can choose R(ε′) > R0 and n(ε′) > 0 such that∫
|x|≥R

(|∇un|2 + |un|2) dx ≤ ε′

holds. �

Lemma 3.5. Suppose that (f1)–(f3), (A1), (A2) and (K1) hold. Then the

sequence {un} in (3.5) has a convergent subsequence. Moreover, Eε possesses

a nonzero critical point u in H1(R3) and Eε(u) > 0.

Proof. By Lemma 3.3, the sequence {un} in (3.5) is bounded in H1(R3).

We may assume that, up to a subsequence un ⇀ u weakly in H1(R3) for some

u ∈ H1(R3). Now, we shall show that ‖un‖ → ‖u‖ as n→∞. By (3.5), we have

(3.31) 〈E′ε(un), un〉

=

∫
R3

(|∇un|2 + u2
n +K(x)φε,K(un)u2

n − a(x)f(un)un) dx = o(1),

and
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(3.32) 〈E′ε(un), u〉

=

∫
R3

(∇un · ∇u+ unu+K(x)φε,K(un)unu− a(x)f(un)u) dx = o(1).

Since un ⇀ u weakly in H1(R3), we obtain

(3.33)

∫
R3

(∇un · ∇u+ unu) dx =

∫
R3

(|∇u|2 + |u|2) dx+ o(1).

Moreover, by the Hölder inequality, (3.8), Lemma 3.4 and un → u strongly in

L2
loc(R3), for any ε′ > 0 and n large enough, one has∫
|x|≥R(ε′)

a(x)f(un)un dx−
∫
|x|≥R(ε′)

a(x)f(un)u dx

=

∫
|x|≥R(ε′)

a(x)f(un)(un − u) dx ≤
∫
|x|≥R(ε′)

|a(x)f(un)||un − u| dx

≤
(∫
|x|≥R(ε′)

|a2(x)f2(un)| dx
)1/2(∫

|x|≥R(ε′)

|un − u|2 dx
)1/2

≤ θ
(∫
|x|≥R(ε′)

|u2
n| dx

)1/2(∫
|x|≥R(ε′)

|un − u|2 dx
)1/2

≤ θ
(∫
|x|≥R(ε′)

(|∇un|2 + |u2
n|) dx

)1/2(∫
|x|≥R(ε′)

|un − u|2 dx
)1/2

≤C11ε
′.

This and the compactness of embedding H1(R3) ↪→ L2
loc(R3) imply

(3.34)

∫
R3

a(x)f(un)un dx =

∫
R3

a(x)f(un)u dx+ o(1).

Furthermore, because un ⇀ u weakly in H1(R3), we obtain

(a) un ⇀ u weakly in L6(R3),

(b) u2
n → u2 stongly in L3

loc(R3),

(c) φε,K(un) ⇀ φε,K(u) weakly in D1,2(R3),

(d) φε,K(un)→ φε,K(u) stongly in L6
loc(R3).

For any choice of ε′ > 0 and ρ > 0, the relation

(3.35) ‖un − u‖6,Bρ(0) < ε′

holds for large n. Because un is bounded in H1(R3) and the continuity of the

Sobolev embedding of D1,2(R3) in L6(R3), then φε,K(un) is bounded in D1,2(R3)

and in L6(R3). Moreover, K ∈ L2(R3) implies that Ku2
n and Ku2 belong to

L6/5(R3) and that to any ε′ > 0 there exists ρ̃ = ρ̃(ε′) such that

(3.36) ‖K‖2,R3\Bρ(0) < ε′, for all ρ ≥ ρ̃.
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By the Hölder inequality, (3.35) and (3.36), we obtain∫
R3

K(x)φε,K(un)u2
n dx−

∫
R3

K(x)φε,K(un)unu dx

≤
∫
R3

|K(x)φε,K(un)un(un − u)| dx

≤‖φε,K(un)‖6
(∫

R3

|K(x)un(un − u)|6/5 dx
)5/6

= ‖φε,K(un)‖6
(∫

R3\Bρ(0)

|K(x)un(un − u)|6/5 dx

+

∫
Bρ(0)

|K(x)un(un − u)|6/5 dx
)5/6

≤C12

(
‖K‖6/52,R3\Bρ(0)‖un(un − u)‖6/53

+ ‖K‖6/52

[ ∫
Bρ(0)

|un|6 dx
]1/5[ ∫

Bρ(0)

|un − u|6 dx
]1/5)5/6

≤C12

(
ε′6/5‖un(un − u)‖6/53 + ‖K‖6/52 ‖un‖

5/6
6,Bρ(0)‖un − u‖

5/6
6,Bρ(0)

)5/6

≤C12

(
ε′6/5‖un(un − u)‖6/53 + ε′6/5‖K‖6/52 ‖un‖

5/6
6,Bρ(0)

)5/6

≤ C13ε
′.

This yields

(3.37)

∫
R3

K(x)φε,K(un)u2
n dx =

∫
R3

K(x)φε,K(un)unu dx+ o(1).

By (3.31)–(3.34) and (3.37), we have

〈E′ε(un), un − u〉 =

∫
R3

(|∇un|2 + u2
n) dx−

∫
R3

(|∇u|2 + |u|2) dx = o(1).

This yields that ‖un‖ → ‖u‖ as n → ∞ and u is a nonzero critical point of Eε
in H1(R3) and Eε(u) > 0 by Mountain Pass Theorem in [14]. �

Proof of Theorem 1.1. Set the Nehari manifold

Nε = {uε ∈ H1(R3) \ {0} : 〈E′ε(uε), uε〉 = 0}.

By Lemma 3.5, we know that Nε is not empty. For any uε ∈ Nε, by Lemma 2.2

and (K1), we have

o(1) = 〈E′ε(uε), uε〉 = ‖uε‖2 +

∫
R3

K(x)φε,K(uε)u
2
ε dx−

∫
R3

a(x)f(uε)uε dx

≥ ‖uε‖2 −
∫
R3

a(x)f(uε)uε dx.

Now, choose ε̃ such that 0 < ε̃ < min{1, C−1
2 } where C2 is as in (3.3). By (3.1),

(3.3) and the Sobolev inequality, we deduce
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R3

a(x)f(uε)uε dx

∣∣∣∣ ≤ ε̃C2

∫
R3

|uε|2 dx+ C2Cε

∫
R3

|uε|6 dx

≤ ε̃C2‖uε‖2 + C2Cε(S
∗)3‖uε‖6.

Therefore, for every uε ∈ N , we have

(3.38) o(1) ≥ ‖uε‖2 − ε̃C2‖uε‖2 − C2Cε(S
∗)3‖uε‖6.

We recall that uε 6= 0 whenever uε ∈ Nε and (3.38) implies

‖uε‖ ≥ 4

√
1− ε̃C2

C2Cε(S∗)3
> 0, for all uε ∈ Nε.

Hence any limit point of a sequence in the Nehari manifold is different from zero.

Now, we shall prove that Eε is bounded from below on Nε, that is, there

exists M > 0 such that Eε(uε) ≥ −M for all uε ∈ Nε. Otherwise, there exists

{un} ⊂ Nε such that

(3.39) Eε(un) < −n for all n ∈ N.

From (3.4), we have Eε(un) ≥ ‖un‖2/4 − C3‖un‖6. This and (3.39) imply that

‖un‖ → +∞. Let wn = un‖un‖−1, there is w ∈ H1(R3) such that
wn ⇀ w weakly in H1(R3),

wn → w a.e. in R3,

wn → w strongly in L2
loc(R3),

as n→∞. Note that E′ε(un) = 0 for un ∈ Nε, as in the proof of Lemma 3.3, we

obtain that ‖un‖ → +∞ is impossible. Then, Eε is bounded from below on Nε.

So, we may define c = inf{Eε(uε), uε ∈ Nε}, and c ≥ −M . Let {un} ⊂ Nε
be such that Eε(un) → c as n → ∞. Following almost the same procedures as

proofs of Lemmas 3.3–3.5, we can show that {un} is bounded in H1(R3) and it

has a convergence subsequence which strongly converges to uε ∈ H1(R3) \ {0}.
Then Eε(uε) = c and E′ε(uε) = 0. Therefore, (uε, φε,K(uε)) is a ground state

solution of system (1.1). �

4. Proof of Theorem 1.3

Here we shall study the behavior of the solution (uε, φε,K(uε)) obtained via

Theorem 1.1.

Proof of Theorem 1.3. From Lemma 2.6, with fε = f = K(x)u2 for all

ε > 0, we can easily check that when ε→ 0 we have

(4.1) Eε(u)→ E0(u) for all u ∈ H1(R3).

From Lemma 3.2, we know that there exists v ∈ H1(R3) such that E0(v) < 0 =

E0(0). By (4.1), we deduce that there exists ε∗ > 0 small enough such that
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Eε(v) < E0(0) for ε ∈ (0, ε∗). Since Eε attains its minimum on H1(R3) at uε,

we obtain that

(4.2) Eε(uε) ≤ Eε(v) < E0(0) for all u ∈ H1(R3).

First of all, we claim that {uε} is bounded in H1(R3). Indeed, by (4.2),

there exists c̃ ∈ R independent of ε such that Eε(uε) ≤ c̃. Now to prove {uε}
is bounded in H1(R3), assume by contradiction that there exists a subsequence,

denoted by {uε}, satisfying Eε(uε) ≤ c̃ and ‖uε‖ → ∞.

Set ‖uε‖ := αε → ∞. Define wε = uε‖uε‖−1 = α−1
ε uε. Clearly, {wε} is

bounded and ‖wε‖ = 1 in H1(R3). An argument similar to the one used in the

proof of Lemma 3.3, we can obtain contradiction, so {uε} is bounded in H1(R3).

Therefore there exists u0 such that, up to a subsequence, we have
uε ⇀ u0 weakly in H1(R3),

uε → u0 a.e. in R3,

uε → u0 strongly in Lploc(R3)(p ∈ [2, 6]),

as ε → 0. Since (uε, φε,K(uε)) is the ground state solution of system (1.1), by

Proposition 2.5 and (2.7), for ψ ∈ C∞c (Ω) and a compact Ω such that suppψ ⊂ Ω,

we obtain

(4.3)

∫
R3

∇uε · ∇ψ dx+

∫
R3

uεψ dx

+

∫
Ω

K(x)φε,K(uε)uεψ dx−
∫

Ω

a(x)f(uε)ψ dx = 0.

Since uε ⇀ u0 weakly in H1(R3), then

(4.4)

∫
R3

∇uε · ∇ψ dx+

∫
R3

uεψ dx→
∫
R3

∇u0 · ∇ψ dx+

∫
R3

u0ψ dx

as ε→ 0+.

Next, we shall prove that K(x)u2
ε ⇀ K(x)u2

0 weakly in L6/5(R3). In fact, let

ξ ∈ L6(R3) = (L6/5(R3))′, then K(x)ξ ∈ L3/2(R3). Consider the subset of R3,

Aλ := {x||K(x)ξ| > λ} and a compact subset Ω0 of Aλ suitably chosen later.

By the Hölder inequality, imbedding theorem and uε ⇀ u0 in H1(R3), we write∫
R3

K(x)(uε − u0)2ξ dx =

∫
R3−Aλ

K(x)(uε − u0)2ξ dx(4.5)

+

∫
Aλ−Ω0

K(x)(uε − u0)2ξ dx+

∫
Ω0

K(x)(uε − u0)2ξ dx

≤λ‖uε − u0‖22 + ‖K(x)ξ‖L3/2(Aλ−Ω0)‖uε − u0‖26
+ ‖K(x)ξ‖L3/2(Ω0)‖uε − u0‖2L6(Ω0)

≤λC14 + C15‖K(x)ξ‖L3/2(Aλ−Ω0) + ‖K(x)ξ‖L3/2(Ω0)‖uε − u0‖2L6(Ω0).
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For a given arbitrary δ > 0, we fix first λ such that λC14 < δ/3. Next we

choose a compact subset Ω0 ⊂ Aλ such that C15‖K(x)ξ‖L3/2(Aλ−Ω0) < δ/3 and

subsequence of {uε}, still denoted by {uε}, ‖K(x)ξ‖L3/2(Ω0)‖uε − u0‖2L6(Ω0) <

δ/3. Together with (4.5), we obtain

(4.6)

∫
R3

K(x)(uε − u0)2ξ dx→ 0

as ε→ 0. Since u2
0ξ

2 ∈ L3/2(R3), by the same method, we can prove

(4.7)

∫
R3

u2
0ξ

2(uε − u0)2 dx→ 0

as ε→ 0. By the Hölder inequality, (4.6) and (4.7), we deduce∫
R3

K(x)u2
εξ dx−

∫
R3

K(x)u2
0ξ dx =

∫
R3

K(x)(u2
ε − u2

0)ξ dx

=

∫
R3

K(x)(uε − u0)2ξ dx+ 2

∫
R3

K(x)(uε − u0)u0ξ dx

≤
∫
R3

K(x)(uε − u0)2ξ dx+ 2‖K(x)‖2
(∫

R3

u2
0ξ

2(uε − u0)2 dx

)1/2

→ 0

as ε→ 0. We infer that∫
R3

K(x)u2
εξ dx→

∫
R3

K(x)u2
0ξ dx

as ε→ 0. Therefore K(x)u2
ε ⇀ K(x)u2

0 weakly in L6/5(R3).

Since K(x)u2
ε ⇀ K(x)u2

0 weakly in L6/5(R3), by Lemma 2.6, we obtain

φε,K(uε) ⇀ φ0,K(u0) weakly in L6(R3). So, for all % ∈ L6/5(R3), we have

(4.8)

∫
R3

φε,K(uε)% dx→
∫
R3

φ0,K(u0)% dx.

Furthermore, since uε ⇀ u0 weakly in H1(R3), by the Sobolev imbedding theo-

rem, we have

(4.9) uε → u0 strongly in Lp(Ω)(p ∈ [2, 6]).

Clearly, u0ψ ∈ L6/5(R3). Together with K ∈ L2(R3), by the Hölder inequality,

(4.9) and (4.8), we infer that∫
Ω

K(x)φε,K(uε)uεψ dx−
∫

Ω

K(x)φ0,K(u0)u0ψ dx(4.10)

≤
∫

Ω

|K(x)||φε,K(uε)||uε − u0||ψ| dx

+

∫
Ω

|K(x)||φε,K(uε)− φ0,K(u0)||u0ψ| dx

≤C16‖K(x)‖2‖φε,K(uε)‖6‖uε − u0‖6,Ω

+ C17

∫
R3

|φε,K(uε)− φ0,K(u0)||u0ψ| dx→ 0.
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By (f1)–(f3), (3.6) and (3.3), it is easy to prove that

(4.11) lim
ε→0

∫
Ω

a(x)f(uε)ψ dx =

∫
Ω

a(x)f(u0)ψ dx.

If not, there exists δ0 > 0, for all ε0 > 0, exists ε ∈ (0, ε0) such that∣∣∣∣ ∫
Ω

a(x)f(uε)ψ dx−
∫

Ω

a(x)f(u0)ψ dx

∣∣∣∣ ≥ δ0.
That is, there exists δ0 > 0 and εn ∈ (0, ε0) for εn → 0 such that

(4.12)

∣∣∣∣∫
Ω

a(x)f(uεn)ψ dx−
∫

Ω

a(x)f(u0)ψ dx

∣∣∣∣ ≥ δ0
and subsequence of uεn , still denoted by uεn , is convergent in Lp(Ω) (p ∈ [2, 6]).

By (4.9) and the uniqueness of limit, uεn → u0 strongly in Lp(Ω) (p ∈ [2, 6]).

Thus, we have

lim
n→∞

∫
R3

a(x)(f(uεn)− f(u0))ψ dx = 0.

This contradicts (4.12). So, (4.11) holds.

Consequently, letting ε→ 0 in (4.3) and according to (4.4), (4.10) and (4.11),

u0 satisfies∫
R3

∇u0 ·∇ψ dx+

∫
R3

u0ψ dx+

∫
R3

K(x)φ0,K(u0)u0ψ dx−
∫
R3

a(x)f(u0)ψ dx = 0

for all ψ ∈ C∞c (Ω). We conclude that uε converges weakly in H1(R3) to u0.

Thus, φε,K(uε) ⇀ φ0,K(u0) in D1,2(R3) by Lemma 2.6, where (u0, φ0,K(u0)) is

a solution of system (1.1) with ε = 0. �

Acknowledgments. The authors are very grateful to the anonymous refer-

ees for their knowledgeable reports, which helped us to improve our manuscript.

References

[1] N. Akhmediev, A. Ankiewicz and, J.M. Soto-Crespo, Does the nonlinear Schrödinger

equation correctly describe beam propagation? Optics Lett. 18 (1993), no. 8, 411–413.

[2] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger–Poisson problem,

Commun. Contemp. Math. 10 (2008), no. 3, 391–404.

[3] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger–Maxwell equa-

tions, Topol. Methods Nonlinear Anal. 11 (1998), no. 2, 283–293.

[4] K. Benmlih and O. Kavian, Existence and asymptotic behaviour of standing waves for

quasilinear Schrödinger–Poisson systems in R3, Ann. Inst. H. Poincaré Anal. Non Linéaire
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