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Abstract. In this paper, Morse theory is used to establish the existence
of multiple solutions for an impulsive boundary value problem posed on the
half-line.

1. Introduction

The aim of this paper is to study the following impulsive boundary value

problem:

(1.1)

⎧⎪⎪⎨⎪⎪⎩
−(p(t)u′(t))′ = q(t)f(t, u(t)), t �= tj , j ∈ {1, 2, . . .}, t > 0,

u(0) = u(+∞) = 0,

∆(p(tj)u
′(tj)) = h(tj)Ij(u(tj)), j ∈ {1, 2, . . .},

where f ∈C1([0,+∞)× R,R), 1/p∈L1((0,+∞), (0,+∞)), q∈L1((0,+∞),R+),

q > 0 almost everywhere, and such that

M1 =

∫ +∞

0

(∫ +∞

t

ds

p(s)

)
dt<∞ and M2 =

∫ +∞

0

q(t)

(∫ +∞

t

ds

p(s)

)
dt<∞.
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Ij ∈ C1(R,R), j = {1, 2, . . .} are the impulse functions and t0 = 0 < t1 < . . . <

tj < . . . < tm → +∞, as m → +∞, are infinite impulse points. We let

�(p(tj)u
′(tj)) = p(t+j )u

′(t+j )− p(t−j )u
′(t−j ),

where u′(t+j ) = lim
t
>→tj

u′(t) and u′(t−j ) = lim
t
<→tj

u′(t) stand for the right and the

left limits of u′ at tj , respectively. Finally, h : R+ → R is a function such that
∞∑
j=1

|h(tj)| < ∞.

Many problems modeling perturbed phenomena in nonlinear dynamics which

are subject to jump discontinuities in velocity can be represented by impulsive

boundary value problems (see, e.g., [3] and the references therein). In the last

couple of years, various mathematical results based on topological methods (fixed

point theorems, Leray–Schauder degree, . . . ) have been obtained in connection

with such problems (see, e.g., [15]). Variational approaches have also been shown

to be efficient tools in discussing the question of the solvability; we quote the

minimization principle and the mountain pass theorem by Ambrosetti and Ra-

binowitz (as developed in [1], [2], [18]). Among works from the recent literature,

we refer to [10] and also to the paper [8] which has discussed a problem with

linear differential operator, a nonlocal condition at the origin, and a Neumann

condition at positive infinity for a problem posed on the half-line. In [4], some

existence results of a single solution are obtained for problem (1.1). The aim of

this work is to investigate the existence of multiple solutions to problem (1.1).

We first prove the existence of three distinct solutions, one of which is trivial, un-

der sub-linear growth conditions upon the nonlinearity f . Our second existence

result provides existence of infinitely many solutions under conditions including

super-linear nonlinearities. Each existence result is illustrated by means of an

example of application. The proofs of our main existence results are based on

Morse theory. For this purpose, some basic notions and important results are

recalled hereafter. For more details, we refer the reader to [5]–[7], [13], [14], [17].

Let H be a Hilbert space and J ∈ C1(H,R) a functional. For a topolog-

ical pair (A,B), we denote by Hk(A,B) the k-th singular relative homology

group with coefficients in a ring F with characteristic zero (see [14]) and by

βk = dimHk(A,B) the k-th Betti number. In algebraic topology, the k-th Betti

number denotes the rank of the k-th homology group. Intuitively, the first Betti

number of a space counts the maximum number of cuts that can be made with-

out dividing the space into two pieces. Each Betti number is a natural number

or +∞. They are topological invariants. Finally βk(a, b) = dimHk(J
b, Ja) is

the k-th Betti number with respect to the interval (a, b).

Let p be an isolated critical point of J , i.e., J ′(p) = 0 and let U be a neigh-

bourhood of p such that J has only p as a critical point in U . The critical groups
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of J at p are defined by

Ck(J, p) = Hk(J
c ∩ U, Jc ∩ U \ {p}), for all k ∈ N,

where Jc = {u ∈ H, J(u) ≤ c} is the c-sublevel set and c = J(p) ∈ R. Let

Kc = {u ∈ H, J ′(u) = 0, J(u) = c} be the set of critical points at level c. In

the case where J ′′(p) exists with p a critical point of J , the Morse index of p is

defined as the supremum of dimensions of the vector subspaces of H on which

J ′′(p) is negative definite (it can be equal to ∞) (see [7, Definition 5.1.12]). We

say that p is nondegenerate if the Hessian J ′′(p) is invertible.

Definition 1.1. Let J ∈ C1(H,R) and c ∈ R. The functional J satisfies

the Palais–Smale condition at level c (shortly PSc) if any sequence (un)n∈N ⊂ H
such that

(1.2) J(un) → c, J ′(un) → 0

has a convergent subsequence. J satisfies the Palais–Smale condition (PS in

brief) if it satisfies the Palais–Smale condition at every level c ∈ R.

Definition 1.2. Let −∞ < a < b < +∞ be regular values and assume that

J has only isolated critical values c1 < c2 < . . . in (a, b) with a finite number of

critical points at each level and satisfies PSc, for all c ∈ [a, b]. Then the Morse

type numbers of J with respect to the interval (a, b) are defined by

Mk(a, b) =
∑
i

dimHk(J
ai+1 , Jai) (k ∈ N),

where a = a1 < c1 < . . . < cl < al = b. They are independent of the ai by the

second deformation lemma and are related to the critical groups by the formula

Mk(a, b) =

l∑
i=1

∑
u∈Kci

dimCk(J, u) (k ∈ N).

The following result will be crucial in proving the first existence result of the

paper.

Lemma 1.3 ([7, Theorem 5.1.35]). Assume that J ∈ C2(H,R) is bounded

from below, satisfies the PS condition, and has a nondegenerate, non-minimum

critical point p with finite Morse index. Then J has at least three distinct critical

points.

Our second existence result is based on the following lemma.

Lemma 1.4 ([6, Theorem 4.3]). Assume that J ∈ C1(H,R) satisfies the PS

condition and let a < b be two regular values of J . Suppose that J has at most

finitely many critical points on J−1[a, b] and the dimension of the critical group

for every critical point is finite. Then the following inequality holds:

Mk −Mk−1 + . . .+ (−1)kM0 ≥ βk − βk−1 + . . .+ (−1)kβ0, k = 0, 1, . . .
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In addition ∞∑
k=0

(−1)kMk =
∞∑
k=0

(−1)kβk,

whenever the left-hand series of the equality converges.

However, in order to compute Mk and βk, some classical properties of the

Leray–Schauder degree are required.

Lemma 1.5 ([7, Theorem 5.1.32]). Assume that J ∈ C2(H,R) satisfies the

PS condition, J ′ = I − A, where I is the identity operator, and A : H → H is

compact. If p is an isolated critical point of J , then there exists a neighbourhood

U of p such that p is the unique critical point of J in U and

deg(I −A,U, θ) =

∞∑
k=0

(−1)k dimCk(J, p),

where deg(I −A,U, θ) stands for the Leray–Schauder topological degree with re-

spect to the zero element θ ∈ H.

Remark 1.6. (a) The proof of Lemma 1.3 appeals to [7, Corollary 4.8.4]

which only needs J to be of C1-class and also uses the additivity of Euler-

Poincaré characteristic which holds whenever the Morse index is defined, i.e.

when J ′′ exists at p (see the proof in [7, p. 343]). The condition that J ′′(p)
exists is then sufficient for application of Lemma 1.3.

(b) Lemma 1.5 equally holds when merely J ′′(p) exists, a requirement for the

Morse index to be defined (see the proof in [7, p. 341]).

The following result is known as Borsuk’s theorem:

Lemma 1.7 [9, Theorem 9.4]. Let X be a Banach space and Ω ⊂ X a sym-

metric bounded open set including θ, the origin. If K : Ω → X is an odd compact

map with θ /∈ (I −K)(∂Ω), then the degree deg(I −K,Ω, θ) is odd.

The following technical lemma will be useful; it is classical in operator theory

(see [19, Lemma 2]).

Lemma 1.8. Suppose that X is a reflexive Banach space with dual space X∗

and T ∈ L(X,X∗) with T ∗ = T , where L(X,X∗) is the set of all continuous

linear operators from X to X∗ and T ∗ is the dual operator of T . Assume that

there exists a constant C > 0 such that ||Tx|| ≥ C||x||, for all x ∈ X. Then T−1

exists and T−1 ∈ L(X∗, X).

2. Main existence results

Consider the Hilbert space:

H1
0,p = {u ∈ AC([0,+∞),R) : u(0) = u(+∞) = 0,

√
pu′ ∈ L2(0,+∞)}
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with the scalar product

(u, v) =

∫ +∞

0

p(t)u′(t)v′(t) dt+
∫ +∞

0

u(t)v(t) dt

and the corresponding norm (see Lemma 2.1):

||u||H1
0,p

=

√∫ +∞

0

p(t)u′(t)2 dt+
∫ +∞

0

u(t)2 dt.

Let the space C0 =
{
u ∈ C([0,+∞),R) : lim

t→+∞ u(t) = 0
}

be endowed with the

norm ||u||∞ = sup
t≥0

|u(t)|. Concerning these spaces, we have

Lemma 2.1 ([4]). On H1
0,p, the quantity ||u|| =

√∫ +∞
0 p(t)u′(t)2 dt defines

a norm which is equivalent to the H1
0,p-norm.

Lemma 2.2 ([4]).

(a) H1
0,p is continuously embedded in C0, more precisely for every u ∈ H1

0,p,

one has ||u||∞ ≤ d||u||, where d =
( ∫ +∞

0
1/p(s) ds

)1/2
.

(b) The embedding H1
0,p ↪→ C0 is compact.

Consider the Hilbert space

L2
q = {u : (0,+∞) → R measurable such that

√
qu ∈ L2(0,+∞)}

equipped with the norm

||u||L2
q
=

√∫ +∞

0

q(t)u2(t) dt.

Since ||u||2L2
q
≤ ||u||2∞||q||L1 , we have

Proposition 2.3. C0 is continuously embedded in L2
q.

Corollary 2.4. H1
0,p is compactly embedded in L2

q.

We are now interested in the first eigenvalue λ1(q) of the linear problem:

(2.1)

⎧⎨⎩−(p(t)u′(t))′ = λq(t)u(t), t > 0,

u(0) = u(+∞) = 0,

namely

λ1(q) = inf
u∈H1

0,p\{0}
||u||2
||u||2L2

q

.

Remark 2.5. Notice that no impulse functions are involved in the linear

problem (2.1). The reason is that only the characterization and the positiv-

ity of λ1(q) are needed (see the proof of Theorem 2.9, Step 1). Likewise the

characterization of the associated eigenfunction ϕ1 will be used in the proof of

Theorem 2.9, Step 3.
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We have

Lemma 2.6. λ1(q) is positive and is achieved for some positive function ϕ1

in H1
0,p \ {0}.
Proof. For u ∈ H1

0,p, let I1(u) = ||u||2, I2(u) = ||u||2L2
q
, and define the

quotient functional Q : H1
0,p \ {0} → R by

Q(u) =
I1(u)

I2(u)
.

Then λ1(q) = inf
u∈H1

0,p\{0}
Q(u).

Step 1. Using the Poincaré inequality, we have that λ1(q) ≥ 1/M2 > 0.

Indeed

|u(t)|2 =

∣∣∣∣ ∫ +∞

t

u′(s) ds
∣∣∣∣2 =

∣∣∣∣ ∫ +∞

t

√
p(s)u′(s)

1√
p(s)

ds

∣∣∣∣2
≤
(∫ +∞

t

p(s)u′2(s) ds
)(∫ +∞

t

ds

p(s)

)
≤
(∫ +∞

0

p(s)u′2(s) ds
)(∫ +∞

t

ds

p(s)

)
.

Hence

q(t)u(t)2 ≤
(∫ +∞

0

p(s)u′2(s) ds
)(

q(t)

∫ +∞

t

ds

p(s)

)
,

i.e. ||u||2L2
q
≤ M2||u||2, which implies ||u||2/||u||2L2

q
≥ 1/M2 > 0. Passing to the

infimum yields

λ1(q) = inf
u∈H1

0,p\{0}
||u||2
||u||2L2

q

≥ 1

M2
> 0.

Step 2. Let (un) be a minimizing sequence. Since (|un|) is a minimizing

sequence for Q, we may suppose that un(t) ≥ 0, for t ∈ [0,+∞). Moreover, the

functional Q satisfies Q(αu) = Q(u), for every α ∈ R; by setting ũn = un/||u||L2
q
,

for every n, we can assume that ‖un‖L2
q
= 1. Then (I1(un)) must be bounded

independently of n. In fact,

lim
n→+∞Q(un) = inf

u∈H1
0,p\{0}

Q(u) = λ1(q).

So the sequence (Q(un)) is bounded. From this and since Q(un) = ||un||2, we
deduce that (un) is bounded in H1

0,p. By Lemma 2.2(b) and the reflexivity

and separability of H1
0,p, there exists a subsequence (unk

) of (un) such that, as

k → +∞,

unk
⇀ u in , H1

0,p, unk
→ u in C0,

so unk
(t) → u(t), for all t ∈ [0,+∞). By Corollary 2.4, (unk

) converges in norm

to u in L2
q; thus ||u||L2

q
= 1 and u(t) ≥ 0, for t ∈ [0,+∞). Finally, the weak
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lower semi-continuity of the norm guarantees that

Q(u) = I1(u) ≤ lim inf
k

I1(unk
) = lim inf

k
Q(unk

) = λ1(q),

so u ∈ H1
0,p \ {0} and Q(u) = λ1(q). �

Now, we define what we mean by a solution of problem (1.1).

Definition 2.7. We say that u is a weak solution of problem (1.1) if∫ +∞

0

p(t)u′(t)v′(t) dt+
∞∑
j=1

h(tj)Ij(u(tj))v(tj) =

∫ +∞

0

q(t)f(t, u(t))v(t) dt,

for all v ∈ H1
0,p, the limits p(t+j )u

′(t+j ) and p(t−j )u
′(t−j ), j = 1, 2, . . . exist and

the impulsive conditions in problem (1.1) hold.

Remark 2.8. If u were in H1
0,p with u′′ ∈ L2, then u would be of C1-class and

so no impulsive conditions exist for u′. If u ∈ H1
0,p, then u is absolutely continu-

ous and
√
pu′ ∈ L2. In this case �(p(tj)u

′(tj)) = p(t+j )u
′(t+j )− p(t−j )u

′(t−j ) = 0

does not necessarily hold and the derivative
√
pu′ may present some discontinu-

ities, leading to the impulsive effects.

In [16] (see also [8], [20] and references therein), the definition of a classical

solution is also introduced with u ∈ H2(tj , tj+1), which is natural, and u satisfies

the first equation of the considered impulsive boundary value problem, namely

−u′′(t) + λu(t) = σ(t), for almost every t ∈ [0, T ]. Unfortunately this cannot

hold almost everywhere on [0, T ] for otherwise u ∈ H1 and σ ∈ L2(0, T ) imply

u ∈ H2(0, T ) and as a consequence u′ has no discontinuity at the impulsive point

tj , as the authors of [16] have previously noticed. In fact, the equation should

be understood only in the distributional sense, i.e.

−u′′(t) + λu(t) = σ(t) +

n∑
j=1

∆u′(tj)δj , t ∈ [0, T ],

where δj is the Dirac mass distribution defined by〈 n∑
j=1

∆u′(tj)δj , ϕ
〉

=

n∑
j=1

∆u′(tj)ϕ(tj), for all ϕ ∈ D(0, T );

here 〈 · , · 〉 = 〈 · , · 〉D,D′ stands for the distribution pairing. Of course, we have

that −u′′(t) + λu(t) = σ(t), for all t ∈ (tj , tj+1) and, for j ∈ {1, . . . , n}, t �= tj

merely means t ∈ (tj , tj+1), j ∈ {1, . . . , n}. This justifies the above definition of

weak solution.

We are now ready to state our first existence result.

Theorem 2.9. Assume that the following conditions hold:

(H1) f(t, 0) = 0, for t ∈ [0,+∞),
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(H2) there exist α, β ∈ R
+ with α < λ1(q) such that

|f(t, u)| ≤ α|u|+ β, for all (t, u) ∈ [0,+∞)× R,

(H3) there exists ε0 > 0 such that |f ′
u(t, 0)| ≤ λ1(q) − ε0, for all positive t,

where f ′
u(t, u) denotes the first-order derivative of f in the second argu-

ment u,

(H4) there exist δ > 0, C1 ∈ R, and η ∈ [0, 1) such that

f(t, u) ≥ C1u
η, for all t ≥ 0, u ∈ [0, δ],

(H5) I ′j(0) = 0, j ∈ {1, 2, . . .},
(H6) there exist k > 0 and σ ∈ (η, 1) such that |Ij(s)| ≤ k|s|σ, for all s ∈ R,

j ∈ {1, 2, . . .}.
Then problem (1.1) has at least three distinct weak solutions in H1

0,p, one of them

is the trivial solution.

The functional J : H1
0,p → R associated with problem (1.1) is defined by

(2.2) J(u) =
1

2
||u||2 +

∞∑
j=1

h(tj)

∫ u(tj)

0

Ij(s) ds−
∫ +∞

0

q(t)F (t, u(t)) dt,

where F (t, u) =
∫ u

0 f(t, v) dv. Let the operator A be defined by

(2.3) Au(t) =

∫ +∞

0

G(t, s)q(s)f(s, u(s)) ds −
+∞∑
j=1

G(t, tj)h(tj)Ij(u(tj)),

whereG is the Green’s function of the problem −(p(t)u′(t))′=u(0)=u(+∞) = 0,

namely

G(t, s) =
1

||1/p||L1

⎧⎨⎩ϕ1(t)ϕ2(s), t ≤ s,

ϕ1(s)ϕ2(t), s ≤ t,

with fundamental system of solutions

ϕ1(t) =

∫ t

0

ds

p(s)
and ϕ2(t) =

∫ +∞

t

ds

p(s)
.

It is easy to note that, by (H2) and (H6), the functional J and the perator A are

well defined. Next, we study the compactness of A.

Lemma 2.10. Under assumptions (H2) and (H6), we have:

(a) A self-maps the Sobolev space H1
0,p.

(b) A is compact.

Proof. (a) Given u ∈ H1
0,p, we show that Au ∈ H1

0,p; the proof will be

performed in three steps:

Step 1. Au ∈ AC([0,+∞)).

(i) The continuity of Au follows from that of the Green’s function, assump-

tions (H2), (H6) and the Lebesgue dominated convergence theorem.
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(ii) (Au)′ ∈ L1(0,+∞). We have

|(Au)′(t)| =
∣∣∣∣ ∫ +∞

0

G′
t(t, s)q(s)f(s, u(s)) ds−

+∞∑
j=1

G′
t(t, tj)h(tj)Ij(u(tj))

∣∣∣∣(2.4)

≤
∫ +∞

0

|G′
t(t, s)|q(s)|f(s, u(s))| ds

+

+∞∑
j=1

|G′
t(t, tj)||h(tj)|‖Ij(u(tj))|

≤ 1

p(t)

∫ +∞

0

q(s)|f(s, u(s))| ds+ 1

p(t)

+∞∑
j=1

|h(tj)||Ij(u(tj))|.

This together with (H2) and (H6) guarantee that
∫ +∞
0 |(Au)′(t)| dt < ∞.

Step 2. G(0, s) = 0, for all s ≥ 0 and lim
t→+∞G(t, s) = 0, for all s ≥ 0; hence

Au(0) = Au(+∞) = 0.

Step 3.
√
p(Au)′ ∈ L2(0,+∞). From the inequality (2.4), we obtain that

p(t)|(Au)′(t)|2 ≤ 1

p(t)

(∫ +∞

0

q(s)|f(s, u(s))| ds
)2

+
1

p(t)

( +∞∑
j=1

|h(tj)|‖Iju(tj)|
)2

+
2

p(t)

(∫ +∞

0

q(s)|f(s, u(s))| ds
)( ∞∑

j=1

|h(tj)||Ij(u(tj)|
)
,

and then (H2) and (H6) imply that
∫ +∞
0

p(t)|(Au)′(t)|2dt < +∞.

(b) Let (un) be a bounded sequence in the reflexive separable space H1
0,p.

Then there exists a subsequence (unk
) such that unk

⇀ u in H1
0,p, as k → +∞.

We will prove that the sequence (Aunk
) is convergent. We have the estimates:

||Aunk
−Au|| = sup

||v||≤1

|(Aunk
−Au, v)|

= sup
||v||≤1

∣∣∣∣ ∫ ∞

0

p(t)(Aunk
−Au)′(t)v′(t) dt

∣∣∣∣
= sup

||v||≤1

∣∣∣∣ ∫ +∞

0

−(p(t)(Aunk
−Au)′(t))′v(t) dt

+

+∞∑
j=1

h(tj)[Ij(unk
(tj))− Ij(u(tj))]v(tj)

∣∣∣∣
= sup

||v||≤1

∣∣∣∣ ∫ +∞

0

[−(p(t)(Aunk
)′(t))′ − (−p(t)(Au)′(t))′]v(t) dt

+

+∞∑
j=1

h(tj)[Ij(unk
(tj))− Ij(u(tj))]v(tj)

∣∣∣∣
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= sup
||v||≤1

∣∣∣∣ ∫ +∞

0

q(t)[f(t, unk
(t))− f(t, u(t))]v(t) dt

+

+∞∑
j=1

h(tj)[Ij(unk
(tj))− Ij(u(tj))]v(tj)

∣∣∣∣
≤ sup

||v||≤1

[ ∫ +∞

0

||v||∞q(t)|f(t, unk
(t))− f(t, u(t))| dt

+

+∞∑
j=1

||v||∞|h(tj)||Ij(unk
(tj))− Ij(u(tj))|

]

≤ d sup
||v||≤1

[ ∫ +∞

0

||v||q(t)|f(t, unk
(t))− f(t, u(t))| dt

+
+∞∑
j=1

||v|||h(tj)||Ij(unk
(tj))− Ij(u(tj))|

]

≤ d

∫ ∞

0

q(t)|f(t, unk
(t))− f(t, u(t))| dt

+ d

+∞∑
j=1

|h(tj)||Ij(unk
(tj))− Ij(u(tj))|.

Using Lemma 2.2(b), (H2), (H6), and the Lebesgue dominated convergence the-

orem, we obtain that ||Aunk
−Au|| → 0, as k → +∞. The same estimates show

that ||Aun − Au|| → 0 whenever ‖un − u‖ → 0, as n → +∞. The compactness

of A is then proved. In the same way, one can show that A is continuous. �

The properties of the first and second derivatives of J are now studied.

Lemma 2.11. We have:

(a) Under assumptions (H2) and (H6), J is continuously differentiable and

satisfies

(J ′(u), v) =
∫ +∞

0

p(t)u′(t)v′(t) dt

+

∞∑
j=1

h(tj)Ij(u(tj))v(tj)−
∫ +∞

0

q(t)f(t, u(t))v(t) dt,

for all u, v ∈ H1
0,p and J ′ = I −A.

(b) Under assumptions (H3) and (H5), J
′′(θ) exists, is continuous, and, for

all v, w ∈ H1
0,p, satisfies

(J ′′(θ)v, w) =
∫ +∞

0

p(t)v′(t)w′(t) dt
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+

∞∑
j=1

h(tj)I
′
j(0)v(tj)w(tj)−

∫ +∞

0

q(t)f ′
u(t, 0)v(t)w(t) dt.

Proof. (a) We only check that J ′ is well defined and J ′ = I −A. From the

Cauchy–Schwarz inequality, (H2), and (H6), we obtain for all u, v ∈ H1
0,p that:

|(J ′(u), v)| ≤
(
1 + kdσ+1

+∞∑
j=1

|h(tj)|+ (d2α+ β)||q||L1

)
||u|| ||v|| < ∞.

Moreover, it can be easily checked that (see Remark 2.8)

−(p(t)(Au)′(t))′ = q(t)f(t, u(t)) +

∞∑
j=1

δt=tjh(tj)Ij(u(tj)), t ≥ 0.

Hence −(p(t)(Au)′(t))′ = q(t)f(t, u(t)), t �= tj , j ∈ {1, 2, . . .} and as a conse-

quence

(J ′(u), v) = (u, v)H1
0,p

+

∞∑
j=1

h(tj)Ij(u(tj))v(tj)−
∫ +∞

0

−(p(t)(Au)′(t))′v(t) dt

=(u, v)H1
0,p

+

∞∑
j=1

h(tj)Ij(u(tj))v(tj)

−
∫ +∞

0

p(t)(Au)′(t)v′(t) dt−
∞∑
j=1

h(tj)Ij(u(tj))v(tj)

= (u, v)H1
0,p

− (Au, v)H1
0,p

= (u−Au, v)H1
0,p

,

as claimed.

(b) Under assumptions (H3) and (H5), (J ′′(θ)v, w) is well defined for all

v, w ∈ H1
0,p(0,+∞). Indeed, using (H3), (H5), and again the Cauchy–Schwarz

inequality, we obtain for all v, w ∈ H1
0,p that

|(J ′′(θ)v, w)| =
∣∣∣∣ ∫ +∞

0

p(t)v′(t)w′(t) dt+
∞∑
j=1

h(tj)I
′
j(0)v(tj)w(tj)

−
∫ +∞

0

q(t)f ′
u(t, 0)v(t)w(t) dt

∣∣∣∣
≤ |(v, w)| +

∫ +∞

0

q(t)|f ′
u(t, 0)||v(t)| |w(t)| dt

≤ (1 + d2||q||L1(λ1(q)− ε0))||v|| ||w|| < +∞.

Finally, the continuity of J ′′(θ) is easily proved using the Lebesgue dominated

convergence theorem. �

Lemma 2.11 tells us that critical points of J , i.e. weak solutions of problem

(1.1), are precisely fixed points of A.

We are now in position to prove Theorem 2.9.
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Proof of Theorem 2.9. We have to prove that J has at least three distinct

critical points in H1
0,p. To this end, it is sufficient to show that J satisfies the

hypotheses of Lemma 1.3 (see also Remark 1.6). The proof is split into five steps.

Step 1. There exists a constant C > 0 such that

||J ′′(θ)v|| ≥ C||v||2, for all v ∈ H1
0,p.

We proceed as in [11, Lemma 3.2]). From the Cauchy–Schwarz inequality, we

have

||J ′′(θ)v||||v|| ≥ (J ′′(θ)v, v), for all v ∈ H1
0,p.

Using (H3) and (H5), we get

(J ′′(θ)v, v) = ||v||2 −
∫ +∞

0

q(t)f ′
u(t, 0)(v(t))

2 dt(2.5)

≥ ||v||2 −
∫ +∞

0

(λ1(q)− ε0)q(t)(v(t))
2 dt

≥ ||v||2 − (λ1(q) − ε0)

∫ +∞

0

q(t)(v(t))2 dt

= ||v||2 − λ1(q)− ε0
λ1(q)

λ1(q)||v||2L2
q

≥
(
1− λ1(q)− ε0

λ1(q)

)
||v||2 =

ε0
λ1(q)

||v||2,

for all v ∈ H1
0,p, proving our claim.

Step 2. J is bounded from below on H1
0,p. Indeed, (H2) implies that

(2.6) F (t, u) ≤ α

2
u2 + β|u|, for all (t, u) ∈ [0,+∞)× R,

where F (t, u) =
∫ u

0 f(t, v) dv. Then from (2.6), (H6), and Lemmas 2.2, 2.4, we

have the estimates, for all u ∈ H1
0,p,

J(u) =
1

2
||u||2 +

∞∑
j=1

h(tj)

∫ u(tj)

0

Ij(s)ds−
∫ +∞

0

q(t)F (t, u(t)) dt(2.7)

≥ 1

2
||u||2 −

k
∞∑
j=1

|h(tj)|

σ + 1
|u(tj)|σ+1

− α

2

∫ +∞

0

q(t)|u(t)|2 dt− β

∫ +∞

0

q(t)|u(t)| dt

≥ 1

2
||u||2 −

k

∞∑
j=1

|h(tj)|

σ + 1
||u||σ+1

∞

− α

2λ1(q)
λ1(q)||u||2L2

q
− β||q||L1 ||u||∞
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≥
(
1

2
− α

2λ1(q)

)
||u||2 − dβ||q||L1 ||u|| −

kdσ+1
∞∑
j=1

|h(tj)|

σ + 1
||u||σ+1,

and our claim follows.

Step 3. θ is not a global minimum. Let ϕ1 the eigenfunction associated with

the eigenvalue λ1(q) and let ξ be such that 0 < ξ ≤ δ/||ϕ1||∞. From (H4) and

(H6), we derive the estimates:

J(ξϕ1) =
1

2
ξ2||ϕ1||2 +

+∞∑
j=1

h(tj)

∫ ξϕ1(tj)

0

Ij(s) ds−
∫ +∞

0

q(t)F (t, ξϕ1(t)) dt

≤ 1

2
ξ2||ϕ1||2 + ξσ+1

k

+∞∑
j=1

|h(tj)|

σ + 1
(ϕ1(tj))

σ+1 − 1

η + 1

∫ +∞

0

C1q(t)(ξϕ1(t))
η+1 dt

≤ 1

2
ξ2||ϕ1||2 + ξσ+1

k

+∞∑
j=1

|h(tj)|

σ + 1
||ϕ1||σ+1

∞ − ξη+1C1

η + 1

∫ +∞

0

q(t)(ϕ1(t))
η+1 dt

≤ 1

2
||ϕ1||2ξ2 +

kdσ+1
+∞∑
j=1

|h(tj)|

σ + 1
||ϕ1||σ+1ξσ+1 − C1

η + 1
||ϕ1||η+1

Lη+1
q

ξη+1,

where

‖ϕ1‖Lη+1
q

=

(∫ ∞

0

q(t)|ϕ1(t)|η+1 dt

)1/(η+1)

≤ k̃‖ϕ1‖L2
q
< +∞,

for some positive constant k̃. Indeed, all norms are equivalent in the one-

dimensional space spanned by ϕ1 (see [12, p. 86]). Now, since 0 ≤ η < 1 and

η < σ, then for sufficiently small ξ, the leading term of the right-hand polynomial

is ξη+1. Hence there is some ξ0 such that J(ξϕ1) < 0 = J(θ), for 0 < ξ ≤ ξ0.

Step 4. J satisfies the PS condition. Suppose that (un) ⊂ H1
0,p and there

exists M > 0 such that |J(un)| ≤ M and J ′(un) = un−Aun → θ in H1
0,p, as n →

+∞. From (2.7), we know that (un) is bounded in H1
0,p. By the compactness

of A : H1
0,p → H1

0,p (Lemma 2.10), there exists a subsequence (Aunk
) such that

A(unk
) → w, as k → +∞. Then ||unk

−w|| ≤ ||unk
−Aunk

||+ ||Aunk
−w|| and

since unk
−Aunk

→ θ in H1
0,p, as k → +∞, we obtain that (un) has a convergent

subsequence (unk
) such that unk

→ w, as k → +∞. Therefore J satisfies the PS

condition on H1
0,p.

Step 5. (a) θ is a critical point. From (H1) and (H5), θ is a critical point of

J and J(θ) = 0.

(b) θ is nondegenerate. From Step 1 and Lemma 1.8, J ′′(θ) is invertible, so
θ is nondegenerate.
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(c) The Morse index is finite. From (2.5), J ′′(θ) is positive defined throughout

the space H1
0,p; then the Morse index of J at θ is equal to 0; so it is finite and

j = 0 < +∞.

Conclusion. To sum up, we have proved that θ is a nondegenerate, non global

minimum critical point and its Morse index is finite. By Lemma 1.3, we conclude

that J has at least three distinct critical points. Therefore problem (1.1) has at

least three distinct weak solutions in H1
0,p. �

Example 2.12. The following impulsive boundary value problem has at least

three distinct weak solutions in H1
0,p, including the trivial solution:

(2.8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−(etu′(t))′ = λ1e

−tu(t) + sinu(t)

4
, t �= tj , j ∈ {1, 2, . . .}, t > 0,

u(0) = u(+∞) = 0,

∆(etju′(tj)) =
1

1 + t2j

u(tj)
2

1 + u(tj)2
, j ∈ {1, 2, . . .},

where λ1 is the first eigenvalue of the linear problem:

(2.9)

⎧⎨⎩−(etu′(t))′ = λe−tu(t), t > 0,

u(0) = u(+∞) = 0.

Indeed, we have:

(H1) f(t, 0) = 0, for t ∈ [0,+∞),

(H2) for α = λ1/2 and β = 0, we have |f(t, u)| ≤ α|u|+ β,

(H3) there exists ε0 ∈ (0, λ1/2) such that f ′
u(t, 0) = λ1/2 ≤ λ1 − ε0,

(H4) for C1 = λ1/16, η = 1/3, we have f(t, u) ≥ C1u
η, whenever u > 0 is

small enough,

(H5) I ′j(u) = 2u/(1 + u2)2 and so I ′j(0) = 0,

(H6) for k = 1, σ = 1/2, we have |Ij(u)| ≤ k|u|σ.
Regarding λ1, the first eigenvalue of the linear problem (2.9), it has been com-

puted for different values of a parameter R for a problem posed on an interval

(0, R); it approaches 271.76159 for R = 60 and then stabilized. The obtained

values are depicted in the graph and table (see Figure 1).

Our second existence result of multiple solutions is now presented when h is

positive.

Theorem 2.13. Assume that the following conditions hold:

(L1) there exist ν > 2 and C3 > 0 such that

νF (t, u) ≤ uf(t, u) + νC3, for all t ≥ 0, u ∈ R,

(L2) there exist C4, C5 ∈ R (C4 > 0) such that

F (t, u) ≥ C4|u|ν − C5, for all t ≥ 0, u ∈ R,
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R λ1(R) R λ1(R)

1 261.43004 35 271.75596

5 271.34599 40 271.75796

10 271.65983 45 271.75933

15 271.71798 50 271.76031

20 271.73833 55 271.76104

25 271.74775 60 271.76159

30 271.75287

Figure 1. Problem (2.9): λ1 in terms of R.

(L3) f(t, u) is odd in u, i.e., f(t,−u) = −f(t, u), for all t ≥ 0, u ∈ R,

(L4) there exists a positive continuous function g with

|f(t, u)| ≤ g(u), for all t ≥ 0, u ∈ R,

(L5) Ij( · ) is odd (j ∈ {1, 2, . . .}),
(L6) there exist µ < ν such that

µ

∫ u

0

Ij(s) ds ≥ uIj(u) > 0, for all u ∈ R \ {0}, j ∈ {1, 2, . . .}.

Then problem (1.1) has infinitely many weak solutions in H1
0,p.

Proof. We have to prove that J has infinitely many critical points in H1
0,p.

The proof is split into two steps.

Step 1. J satisfies the PS condition. Indeed, suppose that (un) ⊂ H1
0,p and

there exists M > 0 such that |J(un)| ≤ M and J ′(un) = un −Aun → θ in H1
0,p,
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as n → +∞. Using (L1) and (L6), we get the estimates:

νJ(un) − (J ′(un), un)

=
ν

2
||un||2 + ν

∞∑
j=1

h(tj)

∫ un(tj)

0

Ij(s) ds−
∫ +∞

0

νq(t)F (t, u(t)) dt

− ||un||2 −
∞∑
j=1

h(tj)Ij(un(tj))un(tj) +

∫ +∞

0

q(t)f(t, un(t))un(t) dt

≥
(
ν

2
− 1

)
||un||2 + ν

+∞∑
j=1

h(tj)

∫ un(tj)

0

Ij(s) ds

−
∫ +∞

0

[q(t)f(t, un(t))un(t) + νC3q(t)] dt

−
∞∑
j=1

h(tj)Ij(un(tj))un(tj) +

∫ +∞

0

q(t)un(t)f(t, un(t)) dt

≥
(
ν

2
− 1

)
||un||2 + ν

∞∑
j=1

h(tj)

∫ un(tj)

0

Ij(s) ds

− µ

∞∑
j=1

h(tj)

∫ un(tj)

0

Ij(s)ds− νC3||q||L1

≥
(
ν

2
− 1

)
||un||2 + ν

∞∑
j=1

h(tj)

∫ un(tj)

0

Ij(s) ds

− ν
∞∑
j=1

h(tj)

∫ un(tj)

0

Ij(s) ds− νC3||q||L1

=

(
ν

2
− 1

)
||un||2 − νC3||q||L1 .

Hence

J(un) ≥
(
ν

2
− 1

)
||un||2 + 1

ν
(J ′(un), un)− C3||q||L1

≥
(
ν

2
− 1

)
||un||2 − 1

ν
||J ′(un)||||un|| − C3||q||L1 .

Since J ′(un) → 0, as n → +∞, there exists n0 ∈ N such that

M ≥ J(un) ≥
(
ν

2
− 1

)
||un||2 − ||un|| − C3||q||L1 , for n > n0

which implies that (un) is bounded. Since A : H1
0,p → H1

0,p is compact (see

Lemma 2.10), (un) has a convergent subsequence in H1
0,p, and then J satisfies

the PS condition on H1
0,p (we proceed as in the proof of Theorem 2.9, Step 4).

From (L3) and (L5), we can see that J is an even functional and A is an odd

operator.
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Step 2. We argue as in the proof of [11, Theorem 1.3]. By contradiction, as-

sume that J has at most a finite number of critical points {v1,−v1, . . . , vm,−vm}.
Let a, b two real numbers such that a < 0 and b > 0 with

a < min{J(v1), . . . , J(vm),−C3||q||L1},(2.10)

b > max{J(v1), . . . , J(vm)}.(2.11)

(L6) implies that

(2.12)

∫ u

0

Ij(s) ds ≤ |u|µ, for all u ∈ R.

Given u ∈ H1
0,p, Assumption (L2) and (2.12) guarantee that

J(u) =
1

2
||u||2 +

+∞∑
j=1

h(tj)

∫ u(tj)

0

Ij(s) ds−
∫ +∞

0

q(t)F (t, u(t)) dt

≤ 1

2
||u||2 +

∞∑
j=1

h(tj)

∫ u(tj)

0

Ij(s) ds−
∫ +∞

0

q(t)(C4|u(t)|ν − C5) dt

≤ 1

2
||u||2 +

∞∑
j=1

h(tj)|u(tj)|µ − C4

∫ +∞

0

q(t)|u(t)|ν dt+
∫ ∞

0

C5q(t) dt

≤ 1

2
||u||2 +

∞∑
j=1

h(tj)||u||µ∞ − C4

∫ +∞

0

q(t)|u(t)|ν dt+ C5||q||L1

≤ 1

2
||u||2 + dµ

∞∑
j=1

h(tj)||u||µ − C4

∫ +∞

0

q(t)|u(t)|ν dt+ C5||q||L1 .

As a consequence

J(u) ≤ 1

2
||u||2 + dµ

∞∑
j=1

h(tj)||u||µ − C4

∫ +∞

0

q(t)|u(t)|ν dt+ C5||q||L1 .

Consider the unit sphere S∞ = {u ∈ H1
0,p : ||u|| = 1} in H1

0,p. For u ∈ S∞ and

τ > 0, we have

J(τu) ≤ 1

2
τ2 + dµ

∞∑
j=1

h(tj)τ
µ − τνC4

∫ +∞

0

q(t)|u(t)|ν dt+ C5||q||L1 .

In addition lim
τ→+∞J(τu) = −∞. Since a < 0 = J(θ), then there exist τ = γ(u)

and δ > 0 such that

(2.13) γ(u) ≥ δ and J(γ(u)u) = a.

Now, we show the uniqueness of the function γ satisfying (2.13) (see [7, Lem-

ma 5.1.38]). Indeed, for u ∈ S∞ and τ > 0, the assumptions (L1), (L6) together
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with ν > 2 imply that

d

dτ
(J(τu)) = (J ′(τu), u)

= (τu, u) +

+∞∑
j=1

h(tj)Ij(τu(tj))u(tj)−
∫ +∞

0

q(t)f(t, τu(t))u(t) dt

≤ τ +
1

τ

+∞∑
j=1

h(tj)Ij(τu(tj))τu(tj)− ν

τ

∫ +∞

0

q(t)F (t, τu(t)) dt

+
νC3

τ

∫ +∞

0

q(t) dt

≤ ν

τ

(
1

2
τ2 +

µ

ν

∞∑
j=0

h(tj)

∫ τu(tj)

0

Ij(s) ds−
∫ +∞

0

q(t)F (t, τu(t)) dt

)

+
νC3||q||L1

τ

≤ ν

τ

(
1

2
τ2 +

∞∑
j=1

h(tj)

∫ τu(tj)

0

Ij(s) ds−
∫ +∞

0

q(t)F (t, τu(t)) dt

)

+
νC3||q||L1

τ

=
ν

τ
(J(τu)) +

νC3||q||L1

τ
=

ν

τ
(J(τu) + C3||q||L1).

From (2.13) and (2.10) we obtain that

d

dτ
J(τu)|τ=γ(u) ≤ ν

τ
(J(γ(u)u) + C3||q||L1) =

ν

τ
(a+ C3||q||L1) < 0.

Thus, for u ∈ H1
0,p, the continuous function h(τ) = J(τu) is strictly decreasing

in the neighbourhood of τ = γ(u). From (2.13), we have that γ(u) is unique.

Now we prove that γ : S∞ → R is continuous. Let (un) ⊂ S∞, u0 ∈ S∞, and

un → u0 in H1
0,p, as n → ∞. From (L2) and (2.12), we have

a = J(γ(un)un) =
1

2
||γ(un)un||2 +

∞∑
j=1

h(tj)

∫ γ(un)un

0

Ij(s) ds

−
∫ +∞

0

q(t)F (t, γ(un)un(t)) dt

≤ 1

2
(γ(un))

2 + dµ
∞∑
j=1

h(tj)(γ(un))
µ

− C4(γ(un))
ν

∫ +∞

0

q(t)|un(t)|ν dt+ C5||q||L1 .

Hence
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(2.14) a ≤ 1

2
(γ(un))

2 + dµ
∞∑
j=1

h(tj)(γ(un))
µ

− C4(γ(un))
ν

∫ +∞

0

q(t)|un(t)|ν dt+ C5||q||L1 .

Moreover, || ν
√
qun||νLν → || ν

√
qu0||νLν , as n → +∞. As a consequence, there exist

C6 > 0 and n0 ∈ N such that
∫ +∞
0

q(t)|un(t)|ν dt ≥ C6, for n ≥ n0. Therefore,

from (2.14) we have

a ≤ 1

2
(γ(un))

2 + dµ
∞∑
j=1

h(tj)(γ(un))
µ − C4C6(γ(un))

ν + C5||q||L1 , for n ≥ n0.

Then (γ(un)) is bounded, hence it has a least one limiting point. Let w be an

arbitrary limiting point of (γ(un)), i.e. there exists (γ(unk
)) a subsequence of

(γ(un)) such that γ(unk
) → w, as k → ∞. Letting k → ∞ in the equation

J(γ(unk
)unk

) = a yields J(wu0) = a. From the uniqueness of γ(u0), we deduce

that w = γ(u0); this implies that γ(un) → γ(u0) as n → +∞, and then the map

γ : S∞ → R is continuous.

Let 0 < ε < δ be such that Ja ∩ Bε = ∅, i.e. Ja ⊂ H1
0,p \ Bε, where

Bε = {u ∈ H1
0,p : ||u|| < ε}. Define the mapping η : [0, 1]×(H1

0,p\Bε) → H1
0,p\Bε

by

η(s, u) =

⎧⎪⎨⎪⎩(1− s)u+ sγ

(
u

||u||
)(

u

||u||
)
, u ∈ (H1

0,p \Bε) \ Ja,

u, u ∈ Ja.

(See also [7, p. 346], [11, p. 3654], and [21, p. 161]). From the continuity of

γ( · ), η is a continuous mapping which is a strong deformation retraction from

H1
0,p \ Bε to Ja. From (2.11), one can further construct a strong deformation

retraction of H1
0,p in Jb. Then

βk = βk(a, b) = dimHk(J
b, Ja) = dimHk(H

1
0,p, H

1
0,p \Bε).

Since H1
0,p \ Bε is homotopically equivalent to S∞ and S∞ is contractible, we

deduce that H1
0,p \Bε is contractible. Therefore

Hk(H
1
0,p, H

1
0,p \Bε) � 0 and βk = 0, for k = 0, 1, . . .

As a consequence

(2.15)

∞∑
q=0

(−1)kβk(a, b) = 0.

Recall that a space X is called contractible if there exists a point x0 ∈ X such

that IdX ∼ g, where g : X → X is defined by g(x) = x0 for every x ∈ X .
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On the other hand, let r > 0 be small enough such that the open balls B(θ, r),

B(vi, r), and B(−vi, r) (i = 1, . . . ,m) are mutually disjoint. Then

Mk(a, b) =

m∑
i=1

dimCk(J, vi) +

m∑
i=1

dimCk(J,−vi) + dimCk(J, θ), k = 0, 1, . . .

By Lemmas 1.5 and 1.7, we have

∞∑
k=0

(−1)kMk(a, b)(2.16)

=

m∑
i=1

[ ∞∑
k=0

(−1)k dimCk(J, vi) +

∞∑
k=0

(−1)k dimCk(J,−vi)

]

+

∞∑
k=0

(−1)k dimCk(J, θ)

=

m∑
i=1

[deg(I −A,B(vi, r), θ) + deg(I −A,B(−vi, r), θ)]

+ deg(I −A,B(θ, r), θ)

= deg

(
I −A,

m⋃
i=1

(B(vi, r) ∪B(−vi, r)

)
∪B(θ, r), θ)

= an odd number.

(See the end of the proof of [11, Theorem 1.3] and [21, Theorem 1.3]). Finally,

(2.15) and (2.16) imply that∑
k∈N

(−1)kβk(a, b) �=
∑
k∈N

(−1)kMk(a, b),

leading to a contradiction with Lemma 1.4. As a consequence, we conclude that

J has an infinite number of critical points in H1
0,p; therefore problem (1.1) has

infinitely many weak solutions in H1
0,p. �

Remark 2.14. Assumptions (L4) and (L6) are used to prove that the func-

tional J is well defined and the operator A is compact. The proof, which is

similar to that of Lemma 2.10, is omitted.

Example 2.15. The following impulsive boundary value problem has infin-

itely many weak solutions in H1
0,p:

(2.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(etu′(t))′ = e−tu5(t), t �= tj , j ∈ {1, 2, . . .}, t > 0,

u(0) = u(+∞) = 0,

∆(etju′(tj)) =
u(tj)

3

1 + (tj)2
, j ∈ {1, 2, . . .}.
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Indeed, assumptions (L1)–(L6) are satisfied:

(L1) F (t, u) = u6/6 = uf(t, u)/6 and thus 6F (t, u) ≤ uf(t, u) + 6C3, for any

constant C3 > 0,

(L2) F (t, u) = u6/6 ≥ C4|u|6 − C5 for C4 = 1/6 and C5 = 1,

(L3) f(t, u) is odd,

(L4) |f(t, u)| ≤ g(u) where we may take, e.g., g(u) = 1 + |u5|,
(L5) Ij(u) = u3 is odd,

(L6) for µ = 5 < ν = 6, 5
∫ u

0 Ij(s) ds = 5u4/4 ≥ u4.
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