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COMPUTATIONAL TOPOLOGY OF EQUIPARTITIONS

BY HYPERPLANES

Rade T. Živaljević

Abstract. We compute a primary cohomological obstruction to the exis-

tence of an equipartition for j mass distributions in Rd by two hyperplanes

in the case 2d−3j = 1. The central new result is that such an equipartition
always exists if d = 6 · 2k + 2 and j = 4 · 2k + 1 which for k = 0 reduces to

the main result of the paper P. Mani-Levitska et al., Topology and combi-

natorics of partitions of masses by hyperplanes, Adv. Math. 207 (2006),
266–296. The theorem follows from a Borsuk–Ulam type result claiming

the non-existence of a D8-equivariant map f : Sd × Sd → S(W⊕j) for an

associated real D8-module W . This is an example of a genuine combina-
torial geometric result which involves Z/4-torsion in an essential way and

cannot be obtained by the application of either Stiefel–Whitney classes

or cohomological index theories with Z/2 or Z coefficients. The method
opens a possibility of developing an “effective primary obstruction theory”

based on G-manifold complexes, with applications in geometric combina-

torics, discrete and computational geometry, and computational algebraic
topology.

1. Introduction

1.1. Computational topology. Algebraic topology as a tool “useful for

solving discrete geometric problems of relevance to computing and the analysis

of algorithms” was in [30] isolated as one of important themes of the emerging
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‘applied and computational topology’. Since the appearance of the review [30],

the field as a whole has undergone a rapid development, the progress has been

made in many open problems, and the configuration space/test map paradigm

[30, Section 14.1] has maintained its status as one of central schemes for applying

equivariant topological methods to combinatorics and discrete geometry.

Our objective is twofold: (a) to report a progress (Theorems 2.1 and 2.2) on

the ‘equipartitions of masses by hyperplanes’ problem, which has been after [20]

one of benchmark problems for applying topological methods in computational

geometry, (b) to explore a new scheme for developing ‘effective primary obstruc-

tion theory’ based on G-manifold complexes (see Section B.5 in Appendix II for

an outline).

1.2. The equipartition problem. An old problem in combinatorial ge-

ometry is to determine when j measurable sets in Rd admit an equipartition by

a collection of h hyperplanes; if this is possible we say that the triple (d, j, h) is

admissible. In this generality the problem was formulated by Grünbaum in [8]

but the problem clearly stems from the classical results of Banach and Stein-

haus [24] and Stone and Tukey [25] on the “ham sandwich theorem”.

Among the highlights of the theory of hyperplane partitions of measur-

able sets (measures) are Hadwiger’s equipartition of a single mass distribu-

tion in R3 by three hyperplanes [11], results of Ramos [20] who proved that

(5, 1, 4), (9, 3, 3), (9, 5, 2) are admissible triples, and a result of Mani-Levitska

et al. [17] who established a 2-equipartition for 5 measures in R8. More recent is

the proof of the existence of a 4-equipartition in R4 for measures that admit some

additional symmetries (Živaljević [31]) and a result of Matschke [19] describing

a general reduction procedure for admissible triples.

For an account of known results, history of the problem, and an exposition

of equivariant topological methods used for its solution, the reader is referred

to [17]. The landmark paper of E. Ramos [20] is a valuable source of information

and a link with earlier results on the discrete and computational geometry of

half-space range queries (D. Dobkin, H. Edelsbrunner, M. Paterson, A. Yao,

F. Yao). The chapter “Topological Methods” in CRC Handbook of Discrete and

Computational Geometry [30], provides an overview of the general configuration

space/test map-scheme for applying equivariant topological methods on problems

of geometric combinatorics and discrete and computational geometry.

Definition 1.1. Suppose that M = {µ1, . . . , µj} is a collection of j con-

tinuous mass distributions (measures) defined in Rd, meaning that each µj is

a finite, positive, σ-additive Borel measure, absolutely continuous with respect

to Lebesgue measure. If H = {Hi}ki=1 is a collection of k hyperplanes in Rd

in general position, the connected components of the complement Rd \
⋃
H are

called (open) k-orthants. The definition can be clearly extended to the case of
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degenerate collections H, when some of the k-orthants are allowed to be empty.

A collection H is an equipartition, or more precisely a k-equipartition for M if

µi(O) = µi(O) =
1

2k
µi(Rd)

for each of the measures µi ∈M and for each k-orthant O associated to H.

A triple (d, j, k) is called admissible if for each collection M of j continuous

measures on Rd there exists an equipartition of M by k hyperplanes. It is not

difficult to see that if (d, j, k) is admissible than (d+ 1, j, k) is also admissible (1)

which motivates the following general problem.

Problem 1.2. The general measure equipartition problem is to determine

or estimate the function

∆(j, k) := min{d | (d, j, k) is admissible}

or equivalently to find the minimum dimension d such that for each collection

M of j continuous measures on Rd, there exists an equipartition of M by k

hyperplanes.

2. New results

Theorem 2.1 is our central new result about equipartitions of masses by

two hyperplanes. For k = 0 it reduces to the result that the triple (8, 5, 2) is

admissible, which is the main result of [17]. The reader is referred to references

[20], [17], [19] for an analysis explaining the special role of equipartition problems

associated to the triples of the form (d, j, 2) where 2d − 3j = 1. We emphasize

that the admissibility of all triples listed in Theorem 2.1 cannot be established

either by the parity count results of Ramos [20], or by the use of both Stiefel-

Whitney characteristic classes and the ideal-valued cohomology index theory

with Z/2-coefficients.

Theorem 2.1. Each collection of j = 4 · 2k + 1 measures in Rd where d =

6 · 2k + 2 admits an equipartition by two hyperplanes. In light of the lower bound

∆(j, 2) ≥ 3j/2, established by Ramos in [20], this result implies that for each

integer k ≥ 0,

(2.1) ∆(4 · 2k + 1, 2) = 6 · 2k + 2.

Theorem 2.1 is deduced from the following Borsuk–Ulam type result about

maps equivariant with respect to the dihedral group actions.

Theorem 2.2. There does not exist a D8-equivariant map

(2.2) f : Sd × Sd → S(W⊕j)

(1) More general reduction results for admissible triples can be found in [19] and [20].
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where D8 is the dihedral group of order eight, d = 6 · 2k + 2, j = 4 · 2k + 1 for

some integer k ≥ 0, and W is the representation space of the real 3-dimensional

D8-representation described in Section 4.2. Moreover, a first obstruction to the

existence of (2.2) lies in the (special) equivariant cohomology group H2d−1
D8

(Sd ×
Sd,Z) ∼= Z/4, described in Section B (see Definition B.3 and Remark B.8) and

evaluated in Sections 7 and 8, where Z = H2d−2(S(W⊕j);Z) and 2d − 3j = 1.

The obstruction vanishes unless

d = 6 · 2k + 2 and j = 4 · 2k + 1

when it turns out to be equal to 2X where X is a generator of the group Z/4.

The reader is referred to Section 10 for an outline and overall strategy of

proofs of Theorems 2.1 and 2.2. A broader perspective on the method applied in

the proof of Theorem 2.2, emphasizing its relevance for computational obstruc-

tion theory, is offered in Section B (Subsection B.5).

Caveat: We emphasize that the special equivariant cohomology groups

H∗G(X;M), used in Theorem 2.2, are in general different from the usual equivari-

ant cohomology groups of a G-CW complex X (as described in [3]). Nevertheless

in many cases they are easier to compute and still may contain non-zero classes

which can detect a non-trivial obstruction for the existence of an equivariant

map. For their definition and main properties the reader is referred to Section B.

Remark 2.3. The fact that the obstruction 2X ∈ Z/4 is divisible by 2 is

precisely the reason why Theorem 2.2 is not accessible by the methods based on

Z/2-coefficients (parity count [20], Stiefel-Whitney classes, D8-equivariant index

theory with Z/2-coefficients). As the elaborate spectral sequences calculations

[1] demonstrate, the methods of D8-equivariant index theory with Z-coefficients

are not sufficient either. This may be somewhat accidental since, as shown in [6]

and [4], the Z/4-torsion is often present in related cohomology calculations.

Remark 2.4. In light of the reduction procedure of Matschke [19], who

proved the inequality ∆(j, k) ≤ ∆(j + 1, k) − 1, it is interesting to test if The-

orem 2.1 generates some new admissible triples aside from those implied by the

inequality (2.1). The answer is no, since the inequality ∆(2k+1, 2) ≤ 3 · 2k was

established already by Ramos in [20].

Remark 2.5. In the cases when (by Theorem 2.2) the first obstruction van-

ishes, it is still possible that the secondary obstruction for the existence of the

map (2.2) is non-zero. Both the calculation of the secondary obstruction and

the detection of new admissible triples (d, j, h) is an interesting open problem.
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3. Related results and background information

Results about partitions of measures by hyperplanes have found numerous

applications. The survey [30], which appeared in 2004, is a good source of infor-

mation about the results obtained before its publication. However new applica-

tions have emerged in the meantime so we include a brief review of some of the

most interesting recent developments illustrating the relevance and importance

of hyperplane partitions for different areas of mathematics.

3.1. Polyhedral partitions of measures. Equipartitions of measures by

k-orthants (Definition 1.1) are a special case of equipartitions into polyhedral

regions.

Very interesting polyhedral partitions are introduced by Gromov in [7]. His

spaces of partitions [7, Section 5] are defined as the configuration spaces of la-

belled binary trees Td of height d, with 2d − 1 internal nodes Nd and 2d ex-

ternal nodes Ld (leaves of the tree Td). More explicitly a labelled binary tree

(Td, {Hν}ν∈Nd
) has an oriented hyperplane Hν associated to each of the inter-

nal nodes ν ∈ Nd of Td. The left (respectively right) outgoing edge, emanating

from ν ∈ Nd is associated the positive half-space H+
ν (respectively the negative

half-space H−ν ) determined by Hν .

Each of the leaves λ ∈ Ld is the end point of the unique maximal path πλ in

the tree Td. Each of the maximal paths πλ is associated a polyhedral region Qλ
defined as the intersection of all half-spaces associated to edges of the path πλ.

The associated partition {Qλ}λ∈Ld
depends continuously on the chosen labels

(hyperplanes) and defines an element of the associated ‘space of partitions’.

These and related configuration spaces were used in [7] for the proof a gen-

eral Borsuk–Ulam type theorem (c•-Corollary 5.3 on page 188) and utilized by

Gromov for his proof of the Waist of the Sphere Theorem.

Very interesting ‘Voronoi polyhedral partitions’ of measures were recently

introduced in [12]. Far reaching results about polyhedral equipartitions of mea-

sures were along these lines obtained by Soberon [22], Karasev [13], and Aronov

and Hubard [12].

3.2. Polynomial measure partitions theorems. Theorem 2.1, being

a relative of the Ham Sandwich Theorem, has some standard consequences and

extensions. One of them is the Polynomial Ham Sandwich Theorem [25], which

has recently found striking applications to some old problems of discrete and

computational geometry, see [10], [23] and the references in these papers. These

breakthroughs have generated a lot of interest and enthusiasm, see the reviews

of J. Matoušek [18], M. Sharir [21] and T. Tao [26].

Theorem 2.1, as well as other results about hyperplane measure partitions,

have immediate polynomial versions. They can be obtained by the usual Veronese
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map Rd ↪→ RD, or some of its variations. It remains to be seen if some of these

polynomial measure partition results can be used as a natural tool which can

replace the standard polynomial ham sandwich theorem in some applications.

4. Preliminaries, definitions, notation

4.1. Manifold complexes.

Definition 4.1. A space X is called a manifold pre-complex if it is either

a compact topological manifold (with or without boundary) or if it is obtained by

gluing a compact topological manifold with boundary to a manifold pre-complex

via a continuous map of the boundary.

This definition appeared in [14] (Chapter 9) where manifold pre-complexes

are referred to as nice spaces. One can mutatis mutandis modify the Defini-

tion 4.1 by allowing different kinds of “manifolds”. For example X is a pseudo-

manifold pre-complex (orientable manifold pre-complex, complex manifold pre-

complex, etc.), if the constituent “manifolds” are pseudomanifolds (orientable

manifolds, complex manifolds, etc.).

A manifold pre-complex should be seen as a straightforward generalization

of a (finite) CW -complex. However a CW -complex has a natural filtration (and

an associated rank function) so for this reason we slightly modify the definition

and introduce manifold complexes.

Definition 4.2. A space X with a finite filtration

(4.1) X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn

is called a manifold complex (orientable manifold complex, etc.) if

(a) X0 is a finite set of points (0-dimensional manifold);

(b) For each k ≤ n, Xk = Xk−1
⋃
φ

Yk where Yk is a compact k-dimensional

manifold with boundary and φ : ∂Yk → Xk−1 is a continuous map.

As a variation on a theme we introduce manifold complexes with an action

of a finite group G.

Definition 4.3. Let G be a finite group. A G-space X which is also a mani-

fold complex in the sense of Definition 4.2 is called a G-manifold complex if G

preserves the filtration (4.1).

4.2. Dihedral group D8. For basic notation and standard facts about

group actions the reader is referred to [3]. A representation space V for a given

G-representation ρ : G → GL(V ) is also referred to as a (real or complex) G-

module. S(V ) is the unit sphere in an orthogonal (or unitary) G-representation

space V . X ∗Y is the join of two spaces X and Y , and a standard fact is that if U
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and V are two orthogonal G-modules, S(U⊕V ) and S(U)∗S(V ) are isomorphic

as G-spaces.

D8 is the dihedral group of order 8. Λ = Z [D8] is the integral group ring of

D8 and Λx denotes the free, one-dimensional Λ-module generated by x. In this

paper x is often a fundamental class of an orientable D8-pseudomanifold with

boundary.

As the group of symmetries of the square Q = {(x, y) ∈ R2 | 0 ≤ |x|, |y| ≤ 1}
the dihedral group D8 has three distinguished involutions α, β and γ where

(4.2) α(x, y) = (−x, y), β(x, y) = (x,−y), γ(x, y) = (y, x).

A standard presentation of D8 is

D8 = 〈α, β, γ | α2 = β2 = γ2 = 1, αβ = βα, αγ = γβ, βγ = γα〉.

The real two-dimensional representation ρ : D8 → O(2) arising from the ac-

tion on the square is denoted by U . Let W := U ⊕ λ where λ is the one-

dimensional (real) D8-representation, such that

(4.3) α · z = −z, β · z = −z, γ · z = z.

Interpreting D8 as a Sylow 2-subgroup of the symmetric group S4 we see that

the D8-module W is isomorphic to the restriction of the reduced permutation

representation of S4 to the dihedral group.

Figure 1. D8-module W as a permutation representation

More explicitly, as shown in Figure 1, the permutations associated to the

basic involutions α, β and γ are:

(4.4) α =

(
0 1 2 3

1 0 3 2

)
, β =

(
0 1 2 3

3 2 1 0

)
, γ =

(
0 1 2 3

0 3 2 1

)
.
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5. The topology of the equipartition problem

The problem of deciding if for a given collection {µ1, . . . , µj} of measures

in Rd there exists an equipartition by an ordered pair (H0, H1) of (oriented)

hyperplanes, can be reduced to a topological problem via the usual Configuration

Space/Test Map Scheme, see [30, Section 14.1] or [17, Section 2.3]. Here is a brief

outline of this construction.

The configuration space, or the space of all candidates for the equipartition, is

the space of all ordered pairs (H0, H1) of oriented hyperplanes. After a suitable

compactification this space can be identified as Sd × Sd. The natural group

of symmetries for the equipartition problem is the dihedral group D8 and the

associated action on Sd × Sd is given by formulas (4.2).

The importance of the representation W stems from the fact that it naturally

arises [17, Section 2.3.3] as the associated Test Space for a single (probabilistic)

measure µ. Indeed for each ordered pair (H0, H1) of oriented hyperplanes there

is an associated collection of hyperorthants O0, O1, O2, O3 (Figure 1(a)). Then

µ(Oν), ν = 0, 1, 2, 3 are naturally interpreted as the barycentric coordinates of

a point v = µ(O0)v0 + µ(O1)v1 + µ(O2)v2 + µ(O3)v3 ∈W (Figure 1(b)) and the

action of D8 on Sd×Sd induces an action on these barycentric coordinates which

is precisely the action on W as a D8-module described in Section 4.2. Assume

that the barycenter of the tetrahedron is the origin, i.e. (1/4)(v0+v1+v2+v3) =

0 ∈W . The map

Fµ : Sd × Sd →W, (H0, H1) 7→ µ(O0)v0 + µ(O1)v1 + µ(O2)v2 + µ(O3)v3

has the property that (H0, H1) is an equipartition for µ if and only if (H0, H1) is

a zero of Fµ. More generally, z := (H0, H1) is an equipartition for the collection

{µ1, . . . , µj} of probability measures if and only if z = (H0, H1) is a common

zero of the associated test maps Fµj ,

Fµ1
(z) = Fµ2

(z) = . . . = Fµj
(z) = 0.

Summarizing we have the following proposition.

Proposition 5.1. A triple (d, j, 2) is admissible if each D8-equivariant map

F : Sd × Sd →W⊕j

has a zero, or equivalently if there does not exist a D8-equivariant map

(5.1) f : Sd × Sd → S(W⊕j).

6. Standard admissible filtration of Sn × Sn

In order to prove the non-existence of an equivariant map (5.1) we apply the

equivariant obstruction theory in the form outlined in Section B. The first step

is a construction of an appropriate filtration on Sn × Sn which is admissible in
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the sense of Definition B.3. Less formally, we turn Sn × Sn into a D8-manifold

complex in the sense of Definition 4.3 by allowing orientable D8-manifolds with

corners and mild singularities.

For i = 1, . . . , n + 1 define πi : S
n × Sn → R2, πi(x, y) := (xi, yi) as the

restriction of the obvious projection map. The maps πi are clearly D8-equivariant

and the images Image(πi) = {(xi, yi) | −1 ≤ xi, yi ≤ +1} =: Qi are squares

which are here referred to as “D8-screens”, Figure 2. The screens Qi admit

a D8-invariant triangulation which is the starting point for the construction of

an admissible filtration on Sn × Sn.

A

B

O

x1

x2
x3

y1 y2 y3

Figure 2. D8-screens for S2 × S2 ⊂ R3 × R3

The filtration can be informally described as follows. The manifold Sn×Sn is

fibered over the first screenQ1 with a generic fiber homeomorphic to Sn−1×Sn−1.

The fiber Sn−1 × Sn−1 itself is fibered over the second screen Q2 with Sn−2 ×
Sn−2 as a generic fiber, etc. This priority order of screens together with their

minimal D8-invariant triangulations are used to define a version of “lexicographic

filtration” of Sn × Sn. For the intended application of the obstruction theory

methods from Section B it will be sufficient to give a precise description only for

the first three terms of this filtration.

The π1-preimage X := π−11 (∆OAB) of the triangle ∆OAB ⊂ Q1 is (the closure

of) a fundamental domain of the D8-action on Sn × Sn. It is described by the

inequalities 0 ≤ y1 ≤ x1 ≤ 1 and as a subset of Sn × Sn it is an orientable

manifold with boundary. This manifold has corners and possibly singularities of

high codimension, however the associated fundamental class x ∈ H2n(X, ∂X) is

well defined. The geometric boundary of X is

∂X = π−11 (∂∆OAB) = X ′0 ∪X ′1 ∪X ′2 = π−11 (OA) ∪ π−11 (OB) ∪ π−11 (AB).

If n ≥ 2 homologically significant are only X ′0 and X ′1 since X ′2 has codimension

n in Sn × Sn and they contribute to the (homological) boundary evaluated

in dimension 2n − 1. Since Stab(X ′0) = 〈β〉 we subdivide and define X0 =

X ′0 ∩{y2 ≥ 0} as the associated fundamental domain. Similarly, Stab(X ′1) = 〈γ〉
and X1 = X ′1 ∩ {y2 ≤ x2}, cf. Figure 3 and the subsequent tree-like diagram.
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A

B

O

x1

x2
x2

y1 y2 y2

(a) (c)(b)

Figure 3. Admissible filtration for Sn × Sn

Assuming that n ≥ 8, we continue the “subdivide and take the boundary”-

procedure, focusing only on the homologically significant part of the boundary.

∂X0 = Z ′0 ∪ T ′0 = {x1 = y1 = 0, y2 ≥ 0} ∪ {x1 ≥ 0, y1 = y2 = 0},

∂X1 = Z ′′0 ∪ T ′1 = {x1 = y1 = 0, y2 ≤ x2} ∪ {x1 = y1, x1 ≥ 0, x2 = y2}.

The sets Z ′0 and Z ′′0 can be further subdivided as follows (Figure 3):

Z ′0 = Z0 ∪ αZ0 ∪ γZ0 ∪ αγZ0,

Z ′′0 = Z0 ∪ βZ0 ∪ βγZ0 ∪ αβγZ0,

where Z0 := {x1 = y1 = 0, 0 ≤ y2 ≤ x2 ≤ 1}. Finally, T ′0 = T0 ∪ βT0 and

T ′1 = T1 ∪ γT1 where T0 = T ′0 ∩ {0 ≤ y3 ≤ 1} and T1 = T ′1 ∩ {y3 ≤ x3}.

0≤x1≤1
0≤y1≤1
y1≤x1

∂

zz

∂

%%

[y1=0]

�� ��

〈β〉

[x1=y1]

����

〈γ〉

[0≤y2]

∂

��

∂

��

[y2≤0] [x2≤y2] [y2≤x2]

∂

��

∂

��
x1=0
y1=0
0≤y2

y1=0
y2=0
0≤x1

x1=0
y1=0
y2≤x2

x1=y1
x2=y2
0≤x1

6.1. The fundamental domain – geometric boundary procedure.

As a summary of the construction we observe that the “take the boundary, then

subdivide”-procedure produces an admissible filtration

(6.1) Sn × Sn = F2n ⊃ F2n−1 ⊃ F2n−2 ⊃ . . .



Equipartitions of Measures by Hyperplanes 73

where F2n−1 :=
⋃
g∈D8

g(∂X) and F2n−2 :=
⋃
g∈D8

g(Z0 ∪ T0 ∪ T1 ∪X2).

For the intended application the explicit description (6.1) is sufficient. How-

ever, it is clear how one can continue the construction by using screens of higher

order. Observe that the ‘tree of fundamental domains’ is formally generated by

two types of branching while the root of the tree is a fundamental domain of the

manifold.

7. Fragment of the chain complex for Sn × Sn

The sets X, X0, X1, Z0, T0, T1 described in the previous section are con-

nected manifolds with boundary (with corners and possibly with mild singular-

ities in codimension ≥ 2). They all can be oriented in which case the corre-

sponding fundamental classes are denoted by x, x0, x1, z0, t0, t1. These classes

are naturally interpreted as the generators of D8-modules Hk(Fk, Fk−1;Z) for

k = 2n, 2n− 1, 2n− 2.

The orientation character of the D8-manifold Sn × Sn is given by

(7.1) (α, β, γ) = ((−1)n−1, (−1)n−1, (−1)n).

From (7.1) and the analysis of geometric boundaries given in Section 6 one

deduces the following relations:

∂x = (1 + (−1)nβ)x0 + (1 + (−1)n−1γ)x1,(7.2)

∂x0 = (1 + (−1)nα+ (−1)n−1γ − αγ)z0 + (1 + (−1)n−1β)t0,(7.3)

∂x1 = −(1 + (−1)nβ − βγ + (−1)n−1αβγ)z0 + (1 + (−1)nγ)t1.(7.4)

The top dimensional fragment of the associated chain complex is,

(7.5) Λx
B−→ Λx0 ⊕ Λx1

A−→ Λz0 ⊕ Λt0 ⊕ Λt1 −→ · · ·

The boundary homomorphisms are described by (7.2) so, for example, if n is

even,

(7.6) At =

[
1 + α− γ − αγ 1− β 0

−(1 + β − βγ − αβγ) 0 1 + γ

]
B =

[
1 + β

1− γ

]
.

Remark 7.1. The reader may use the D8-screens, introduced in Section B.2

and depicted in Figures 2 and 3, as a useful bookkeeping device for checking

the formulas (7.2). For example the term (1 + (−1)nα + (−1)n−1γ − αγ)z0, in

the middle equation, corresponds to the decomposition of the shaded rectangle,

shown in Figure 3(b), into four triangles. Being in the second screen, this rec-

tangle corresponds to a region in Sn−1×Sn−1 whose orientation, following (7.1),

transforms by the rule (α, β, γ) = (−1)n, (−1)n, (−1)n−1. This explains the sign

in (−1)nα, etc.
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8. Evaluation of the cohomology group H2n−1
D8

(Sn × Sn;Z)

The first obstruction to the existence of an equivariant map (5.1) lies in

the group H2n−1
D8

(Sn × Sn;Z) where Z ∼= H3j−1(S(W⊕j);Z) is the orientation

character of the sphere S(W⊕j). We remind the reader that these groups are

defined (Section B) as functors of D8-spaces with admissible filtrations. Also

note that the condition 2d− 3j = 1 (Section 2) allows us to assume that j is an

odd integer.

Proposition 8.1. Let M = Z be the orientation character of the sphere

S(W⊕j) where j is an odd integer. Then,

(8.1) H2n−1
D8

(Sn × Sn;Z) ∼=

Z/4 if n is even;

Z/2⊕ Z/2 if n is odd.

Moreover, a generator of Z/4 can be described as the cocycle

(8.2) φ : Λx0 ⊕ Λx1 → Z, φ(x0) = 1, φ(x1) = −1.

Proof. The orientation character Z of the D8-sphere S(W ) is easily deter-

mined from the signs of permutations (4.4) and reads as follows

(8.3) (α, β, γ) = (+1,+1,−1).

Since j is an odd integer the same answer is obtained for the orientation char-

acter of the sphere S(W⊕j). Assume that n is even. By applying the functor

Hom( · ,Z) to the chain complex (7.5) we obtain the complex

(8.4) Z B1←− Z⊕ Z A1←− Z⊕ Z⊕ Z

where,

A1 =

[
4 0 0

−4 0 0

]
, Bt1 =

[
2

2

]
.

From here we deduce that

(8.5) H2n−1
D8

(Sn × Sn;Z) ∼= Z/4

where a generator is the cocycle φ : Λx0 ⊕ Λx1 → Z, φ(x0) = 1, φ(x1) = −1.

The second half of (8.1) is established by a similar calculation. �

9. Evaluation of the obstruction

In light of Propositions 5.1 and 8.1 (isomorphisms (8.1)) our primary concern

are admissible triples (d, j, 2) such that d is an even integer; this is precisely the

case when the obstruction group is Z/4. Hence, throughout this section we

assume that (d, j) = (6k + 2, 4k + 1) for some integer k ≥ 0.
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As emphasized in Section B.4 the evaluation of the obstruction class θ can

be linked with the computation of mapping degrees of carefully chosen maps.

We begin with a map which plays an auxiliary role in these calculations.

9.1. The degree of the multiplication of monic polynomials. Let

Pm := {p(x) = a0+a1x+. . .+amx
m | ai ∈ R} be the vector space of polynomials

of degree at most m with coefficients in the field of real numbers. Let

µm,n : Pm × Pn → Pm+n

be the multiplication of polynomials. We focus our attention on the (affine)

space P0
m := {p(x) = a0 + a1x + . . . + am−1x

m−1 + xm | ai ∈ R} of monic

polynomials of degree m and the associated multiplication map

(9.1) µ0
m,n : P0

m × P0
n → P0

m+n.

Our objective is to evaluate the mapping degree of the map µ0
m,n, say as the

algebraic count of the number of points in the pre-image f−1(z) of a regular

point z ∈ P0
m+n. We begin with a preliminary proposition which guarantees

that the degree is well defined.

Proposition 9.1. The multiplication (9.1) of monic polynomials is a proper

map of manifolds.

Proof. Assume that A ⊂ P0
m and B ⊂ P0

n are sets of polynomials such

that A · B := {p · q | p ∈ A, q ∈ B} is bounded as a set of polynomials in

P0
m+n

∼= Rm+n. We want to conclude that both A and B individually are

bounded sets of polynomials. This is easily deduced from the following claim.

Claim. If A ⊂ P0
n is bounded set of polynomials then the set Root(A) :=

{z ∈ C | p(z) = 0 for some p ∈ A} is also bounded. Conversely, if Root(A) is

a bounded, A is also a bounded set of polynomials.

Proof of the Claim. The implication ⇐ follows from Viète’s formulas,

while the opposite implication ⇒ follows from the inequality

|λ| ≤ Max

{
1,

n−1∑
j=0

|aj |
}
,

where λ is a root of the polynomial a0 + a1x+ . . .+ an−1x
n−1 + xn. �

The next step needed for computation of the mapping degree of the map

(9.1) is the evaluation of the differential dµ0
m,n. The tangent space Tp(P0

m) at

the monic polynomial p ∈ P0
m is naturally identified with the space Pm−1 of all

polynomials of degree at most m− 1.



76 R.T. Živaljević

Lemma 9.2. Given monic polynomials p ∈ P0
m and q ∈ P0

n and the polyno-

mials u ∈ Pm−1, v ∈ Pn−1, playing the role of the associated tangent vectors,

the differential dµ0
m,n = dµ is evaluated by the formula

(9.2) dµ(p,q)(u, v) =
d

dt
(p+ tu)(q + tv)

∣∣∣∣
t=0

= pv + uq.

Let us determine the matrix of the map dµ0
(p,q) in suitable bases of the associa-

ted tangent spaces T(p,q)(P0
m ×P0

n) ∼= Pm−1 ×Pn−1 and Tpq(P0
m+n) ∼= Pm+n−1.

A canonical choice of basis for P0
m−1 is u0 = 1, u1 = x, . . . , um−1 = xm−1

with similar choices v0 = 1, v1 = x, . . . , vn−1 = xn−1 and w0 = 1, w1 =

x, . . . , wp+q−1 = xm+n−1 for P0
n−1 and P0

m+n−1, respectively. Formula (9.2)

applied to this basis gives

dµ(p,q)(0, vj) = dµ(p,q)(0, x
j) = xjp(x), dµ(p,q)(ui, 0) = dµ(p,q)(x

i, 0) = xiq(x).

We conclude from here that the determinant of this matrix is equal to the resul-

tant (9.3) of two polynomials!

(9.3) R(p, q) = Det



a0 a1 . . . am−1 0 0 . . . 0

0 a0 a1 . . . am−1 0 . . . 0
...

...
. . .

. . .
...

...
. . .

...

0 0 . . . 0 a0 a1 . . . am−1
b0 b1 . . . bn−1 0 0 . . . 0

0 b0 b1 . . . bn−1 0 . . . 0
...

...
. . .

. . .
...

...
. . .

...

0 0 . . . 0 b0 b1 . . . bn−1


.

In particular we can use classical formulas forR(p, q), see [5, Chapter 12], among

them the formula

(9.4) R(p, q) =
∏
i,j

(αi − βj)

where αi are roots of p and βj are roots of q respectively, counted with the

appropriate multiplicities.

Lemma 9.3. Suppose that p(x) = a0 + a1x + . . . + am−1x
m−1 + xm and

q(x) = b0 + b1x+ . . .+ bn−1x
n−1 + xn are two polynomials with real coefficients

such that the corresponding roots α1, . . . , αm and β1, . . . , βn are all distinct and

non-real, {αi}mi=1 ∪ {βj}nj=1 ⊂ C \ R. Then the resultant of polynomials p and q

is real and positive, R(p, q) > 0.

Proof. By assumption all roots of p(x) (respectively q(x)) can be divided

in conjugate pairs α, α (respectively β, β). These two pairs contribute to the
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product (9.4) the factor

(α− β)(α− β)(α− β)(α− β) = AABB > 0. �

Proposition 9.4. Suppose that m = 2k and n = 2l are even integers. The

degree of the map µ0
m,n : P0

m × P0
n → P0

m+n is

(9.5) deg(µ0
m,n) =

(
k + l

k

)
.

Proof. We compute the degree deg(µ0
m,n) by an algebraic count of the

number of points in the pre-image (µ0
m,n)−1(ρ) where the polynomial ρ ∈ P0

m+n

is a regular value of the map µ0
m,n.

Assume that ρ = ρ1 . . . ρk+l is a product of pairwise distinct, irreducible,

quadratic (monic) polynomials ρi. Equivalently ρ does not have real roots and

all its roots are pairwise distinct. Note that such a polynomial can be easily

constructed by prescribing its roots, for example it can be found in any neigh-

bourhood of the polynomial xm+n. The inverse image (µ0
m,n)−1(ρ) is,

(µ0
m,n)−1(ρ) = {(p, q) ∈ P0

m × P0
n | p · q = ρ}.

It follows from Lemma 9.3 that R(p, q) > 0 for each pair of polynomials in the

inverse image (µ0
m,n)−1(ρ). In particular ρ is a regular value of the map µ0

m,n

and each pair (p, q) such that p · q = ρ contributes +1 to the degree. From here

we deduce that

deg(µ0
m,n) =

(
k + l

k

)
�

The multiplication map µm,n(p, q) = p · q is non-degenerate in the sense that

µm,n(p, q) = 0 implies that either p = 0 or q = 0. As a consequence it induces

a map

µ′m,n : P ′m × P ′n → P ′m+n

where P ′m := Pm \ {0} is the set of non-zero polynomials.

Proposition 9.5. Suppose that m = 2k and n = 2l are even integers. The

degree of the map µ′m,n : P ′m × P ′n → P ′m+n is

(9.6) deg(µ′m,n) = ± 2 ·
(
k + l

k

)
.

Proof. Let P0
d := {a0 + . . . + adt

d ∈ Pd | ad = 1} be the hyperplane of

monic polynomials, viewed as the tangent space at td to the euclidean sphere

Sd−1 = {p ∈ Pd | ‖p‖ = 1} in the space of polynomials Pd. The degree deg(µ′m,n)

can be evaluated as the degree of the map

(9.7) µ̂ = µ̂m,n : Sm × Sn → Sm+n
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where µ̂(p, q) = (p · q)/‖p · q‖ is the multiplication of polynomials composed with

the radial projection. The radial projection also induces a bijection of P0
d with

the open hemisphere Sd+ := {p ∈ Pd | ‖p‖ = 1, ad > 0}. Similarly −P0
d is

radially projected on the negative (open) hemisphere Sd−.

Following the proof of Proposition 9.4, let us choose for a regular value ρ

of the map µ0
m,n a polynomial very close to the north pole tm+n of the sphere

Sm+n. We observe that each decomposition p · q = ρ, contributing to the degree

of µ0
m,n, defines two points, (p, q) and (−p,−q) in the preimage µ̂−1(ρ). Since

the map (x, y) 7→ (−x,−y) preserves the orientation of the manifold Sm × Sn,

we observe that both (p, q) and (−p,−q) contribute to the degree of µ̂m,n with

the same sign which is independent of the choice of the decomposition p · q = ρ.

As a consequence, deg(µ̂m,n) = 2 · deg(µ0
m,n) which in light of (9.5) completes

the proof of the proposition. �

Corollary 9.6. Suppose that f : Sm × Sm → S(λ⊕(2m+1)) is a D8-equiva-

riant map where m = 2k is an even integer. Then

deg(f) ≡ 4

(
2k − 1

k − 1

)
(mod 8).

Proof. By Corollary A.2 (Section A) it is sufficient to exhibit a single map

with the indicated degree. The multiplication map µm,m : Pm × Pm → P2m is

D8-equivariant if P2m
∼= λ⊕(2m+1) as D8-modules. Hence, the result follows from

Proposition 9.5. �

Example 9.7. The D8-equivariant map µ : S2 × S2 → S4 associated to the

multiplication of quadratic polynomials µ′2,2 : P ′2 × P ′2 → P ′4 has degree ±4,

consequently the degree of any D8-equivariant map is an integer of the form

8k + 4.

9.2. Evaluation of the obstruction class θ. The following proposition

is a key result for evaluation of the primary obstruction θ ∈ Z/4 to the existence

of a D8-equivariant map (5.1).

Proposition 9.8. Suppose that

(9.8) φ : Sd−1 × Sd−1 → S(W⊕j)

is a D8-equivariant map where (d, j) = (6k + 2, 4k + 1) for some integer k ≥ 0.

Then,

(9.9) deg(φ) ≡ 4

(
2k − 1

k − 1

)
(mod 8).

Proof. By Corollary A.3 it is sufficient to exhibit a particular D8-equivariant

map (9.8) which satisfies the congruence (9.9). Let us construct a D8-equivariant

map

(9.10) Φ: Rd × Rd →W⊕j
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with the property that if Φ(p, q) = 0 then either p = 0 or q = 0. By decomposing

the real D8-modules Rd × Rd ∼= U⊕d ∼= U⊕j ⊕ U⊕(d−j) and W⊕j ∼= U⊕j ⊕ λ⊕j

(Section 4.2) we observe that it is sufficient to construct a D8-equivariant map

(9.11) Φ′ : Rd−j × Rd−j → λ⊕j

which is non-degenerate in the sense that if Φ′(p, q) = 0 then either p = 0 or

q = 0. Let m := 2k so (d, j) = (3m + 2, 2m + 1) = (6k + 2, 4k + 1). Identify

Rd−j with the space of real polynomials of degree less or equal to d− j − 1 = m

and λ⊕j with the space of real polynomials of degree ≤ j − 1 = 2m. Then

the multiplication of polynomials defines a non-degenerate (symmetric) bilinear

form Φ′(p, q) = p · q which is an example of a D8-equivariant map (9.11) with

the desired properties.

Summarizing, using the identifications Rd ∼= P2m⊕Pm and W⊕j ∼= (P2m)⊕3

with the corresponding vector spaces of polynomials, we observe that the map

Φ has the following explicit form

(9.12) Φ(p, q) = Φ(p′, p′′; q′, q′′) = (p′, q′, p′′q′′)

where p′′q′′ = µ(p′′, q′′) is the polynomial multiplication. The degree deg(Φ) can

be calculated again, as in the proof of Proposition 9.5, by the reduction to the

case of monic polynomials p′′ and q′′. By choosing the regular value of the map

(9.12) in the form (0, 0, ρ), where ρ is a regular value for the multiplication of

monic polynomials we observe that Proposition 9.8 is an immediate consequence

of Proposition 9.4. �

The following proposition is the central result of this section and the ultimate

goal of all earlier computations. Note that the manifold Sd−1 × Sd−1 (Propo-

sition 9.8) can be naturally identified as a subset of the (2d − 2)-dimensional

element F2d−2 of the filtration (6.1) via the identification

Sd−1 × Sd−1 = (Sd × Sd) ∩ {x1 = y1 = 0} =
⋃
g∈D8

g(Z0).

Proposition 9.9. Suppose that ∆ = 2d − 3j = 1 where (d, j) = (3m + 2,

2m+1) and m = 2k is an even integer. Then the first obstruction to the existence

of a D8-equivariant map (5.1), evaluated as an element of Z/4, is equal to

(9.13) θ = 2

(
2k − 1

k − 1

)
(mod 4).

Proof. By (8.2) a generator of the obstruction group is the cocycle φ such

that φ(x0) = 1, φ(x1) = −1 where x0 and x1 are the (relative) fundamental

classes of the pseudomanifolds X0 and X1.
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Following the calculations (and notation) from Section 6, the homologically

relevant part of the geometric boundary of the pseudomanifold X0 has the fol-

lowing representation:

(9.14) ∂X0 = Z ′0 ∪ T ′0 = (Z0 ∪ αZ0 ∪ γZ0 ∪ αγZ0) ∪ (T0 ∪ βT0).

The set M := Z ′0 ∪T ′0 is, up to a closed subset of high codimension, a closed ori-

ented manifold. In light of (B.8) the obstruction θ can be evaluated as the

degree deg(f) where f = ψ|M is the restriction to M of an arbitrary D8-

equivariant map ψ : F2d−2 → S(U⊕j ⊕ λ⊕j). Such a map clearly exists since

dim(F2d−2) = dim(S(W⊕j)). Interpreting the degree as an algebraic count of

points in the preimage of a regular value, we observe that

deg(ψ) = deg(ψ|Z′0) + deg(ψ|T ′0).

The computation of the degrees on the right is facilitated by the equivariance of

ψ and existing D8-symmetries of X0 and T0. In particular, the fact that X0 is

“a half of the manifold” Sd−1 × Sd−1 ⊂ F2d−2, together with Proposition 9.8,

implies that

(9.15) deg(ψ|Z′0) = 2

(
2k − 1

k − 1

)
(mod 4).

Similarly, deg(ψ|T ′0) = 0 follows from the fact that β acts on T ′0 = T0 ∪ βT0
by changing its orientation (equation (7.2)), while it keeps the orientation of

S(W⊕j) fixed (equation (8.3)). This observation completes the proof of the

proposition. �

10. Summary of proofs of main results

Proof of Theorem 2.1. By Proposition 5.1, Theorem 2.1 is an immediate

consequence of Theorem 2.2. �

Proof of Theorem 2.2. By Proposition B.6 the existence of an equivariant

map (2.2) implies the existence of the chain map (B.6) where C∗ is the chain

complex associated to an admissible filtration in the sense of Definition B.3.

In order to facilitate calculations we choose the standard filtration on X =

Sn × Sn described in Section 6 and calculate the relevant fragment of the asso-

ciated chain complex C∗ = C∗(S
n × Sn) in Section 7.

By Proposition B.7 the first obstruction θ to the existence of the chain map

(B.6) lies in the cohomology group (B.7) which is in our case (see (B.4) and

Remark B.8) the group H2n−1
D8

(Sn × Sn;Z). This group is evaluated in Propo-

sition 8.1 (Section 8) and found to be isomorphic to Z/4.

The obstruction class θ is evaluated in Proposition 9.9 following the descrip-

tion of the associated cocycle given in (B.8). We use the idea, described in greater
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detail in Section B.4, that in some situations we have some freedom in choosing

the map fn for evaluating the obstruction cocycle θ(fn) by the formula (B.8).

As an element of the group Z/4 the obstruction class θ is according to (9.13)

equal to

θ = 2

(
2k − 1

k − 1

)
.

It is non-zero if and only if
(
2k−1
k−1

)
is an odd integer which is the case if and

only if k = 2l. It follows that in the case when d is even the triple (d, j, 2) is

admissible if for some integer l ≥ 0,

d = 3 · 2l+1 + 2 and j = 2 · 2l+1 + 1. �

Appendix A. Mapping degree of equivariant maps

There is a general principle, see Kushkuley and Balanov [16], equation (0.1)

in Section 0.3., relating the mapping degrees of two G-equivariant maps

f, g : Mn → S(V )

where G is a finite group, Mn is a not necessarily free, closed, oriented G-

manifold, and S(V ) is the unit sphere in a real, (n + 1)-dimensional G-vector

space V . The principle says that there exists a relation

(A.1) ±(deg(f)− deg(g)) =

k∑
j=1

aj |G/Hj |

for some integers aj , where H = {H1, . . . ,Hk} is a list of isotropy groups corre-

sponding to orbit types of Mn, provided the orientation characters of M and V

are the same in the sense that each g ∈ G either changes orientations of both M

and V , or keeps them both unchanged.

In some (favorable) situations the “local degrees” aj vanish if Hj 6= {e}
is a non-trivial subgroup of G, in which case the equation (A.1) implies the

congruence

(A.2) deg(f) ≡ deg(g) (mod |G|).

Here we record one of these favorable situations applying to the case of the

dihedral group D8 of order 8 acting on the manifold M = Sm × Sm.

Theorem A.1. Let V be a real D8-vector space of dimension (2m+ 1) such

that the isotropy space Vγ , corresponding to the element γ ∈ D8, has dimension

≥ m+2. Assume that the representation V has the same orientation character as

the space Sm×Sm. Then for each pair f, g : Sm×Sm → S(V ) of D8-equivariant

maps, the associated mapping degrees satisfy the following congruence relation:

(A.3) deg(f) ≡ deg(g) (mod 8).
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Proof. The action of D8 on Sm × Sm is free away from the two spheres

Sγ = {(x, y) ∈ Sm × Sm | x = y} and Sαβγ = {(x, y) ∈ Sm × Sm | x = −y}.
Let f1 and g1 be the restrictions of f (respectively g) on their union T =

Sγ ∪ Sαβγ . The space T is D8-invariant and our initial objective is to show that

there exists a D8-equivariant homotopy F1 : T × [0, 1]→ V between f1 and g1.

We apply the Proposition I.7.4 from [3, p. 52] which says that it is suffi-

cient to construct a Z/2-equivariant homotopy F ′1 : Sγ × [0, 1]→ Vγ between the

restrictions f ′1 = f1|Sγ and g′1 = g1|Sγ , where Z/2 = N(〈γ〉)/〈γ〉 is the Weyl

group of 〈γ〉. Since this Z/2-action on Sγ is free, the existence of the homotopy

F ′1 follows immediately from the assumption:

dim(Sγ) = m ≤ dim(S(Vγ))− 1.

The homotopy F1 can be extended to a D8-equivariant homotopy

F : Sm × Sm → D(V )

between f and g where D(V ) = Cone(S(V )) is the unit ball in V . Moreover,

since the action of D8 on (Sm×Sm) \ (Sγ ∪Sαβγ) is free, we can assume that F

is smooth away from Sγ ∪ Sαβγ and transverse to 0 ∈ V .

The set Z(F ) := F−1(0) is finite, G-invariant and a union of free orbits.

For each x ∈ Z(F ) choose an open ball Ox 3 x such that O :=
⋃

x∈Z(F )

Ox is

G-invariant and Ox∩Oy 6= ∅ for x 6= y. Let Sx := ∂(Ox) ∼= S2m be the boundary

of Ox.

Let N := (M × [0, 1]) \ O, M0 := M × {0} and M1 := M × {1}. By

construction, there is a relation among (properly oriented) fundamental classes

(A.4) [M1]− [M0] =
∑

x∈Z(F )

[Sx]

inside the homology group H2m+1(N,Z). The map

F∗ : H2m+1(N,Z)→ H2m+1(V \ {0},Z) ∼= Z

maps the left hand side of the relation (A.4) to the difference of degrees, deg(f)−
deg(g). The right hand side is mapped to an element divisible by 8 since by

assumption the orientation characters of manifolds M × [0, 1] and V are the

same. �

Corollary A.2. Suppose that f, g : Sm × Sm → S(λ⊕(2m+1)) are D8-equi-

variant maps where m = 2k is an even integer. Then

deg(f) ≡ deg(g) (mod 8).

Proof. The orientation character of both Sm × Sm and S(λ⊕(2m+1)) is

given by the formula (α, β, γ) = (−1,−1,+1), see (4.3) in Section 4.2 and (7.1)
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in Section 7. Since the whole space λ⊕(2m+1) is fixed by γ the result is an

immediate consequence of Theorem A.1. �

Corollary A.3. Suppose that

(A.5) f, g : Sd−1 × Sd−1 → S(W⊕j)

are D8-equivariant maps where (d, j) = (6k + 2, 4k + 1) for some integer k > 0.

Then,

deg(f) ≡ deg(g) (mod 8).

Proof. In light of (7.1) and (8.3) the orientation character of both Sd−1 ×
Sd−1 and W⊕j is given by (α, β, γ) = (+1,+1,−1). The dimension D of the

isotropy space W⊕jγ is 2j = 8k+ 2 so the dimension requirement D ≥ d+ 1 from

Theorem A.1 reduces to 8k + 2 ≥ 6k + 3 which is satisfied if k > 0. �

Appendix B. Obstructions, filtrations and chain complexes

B.1. The obstruction exact sequence. For a review of equivariant ob-

struction theory, which includes an exposition of G-CW -complexes and the G-

cellular approximation theorem, the reader is referred to [3, Chapter II].

One of the central results in the area is the following obstruction exact se-

quence.

Theorem B.1. Suppose that X is a free G-CW -complex and that Y is n-

simple G-space for a fixed integer n ≥ 1. Then there exists an exact sequence

(B.1) [X(n+1), Y ]G → Image{[X(n), Y ]G → [X(n−1), Y ]G} → Hn+1
G (X,πn(Y ))

In many applications Y = S(V ) is a G-sphere S(V ) ∼= Sn for some real

G-module V . In that case Theorem B.1 has the following important corollary.

Corollary B.2. Suppose that X is a free G-CW -complex. Let Y = S(V ) =

Sn be an n-dimensional G-sphere associated to a real G-representation V (n≥2).

Then (B.1) reduces to

(B.2) [X(n+1), S(V )]G → {∗} → Hn+1
G (X,Z)

where Z is the orientation character of S(V ) and {∗} is a singleton.

The exactness of the sequence (B.2) means that there exists a single element

of the obstruction group Hn+1
G (X,Z) (the image of ∗) which is zero if and only

if there exists a G-equivariant map f : X(n+1) → S(V ).
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B.2. Admissible filtrations. Our objective is to extend the applicability

of basic obstruction theory, as outlined in Section B.1, by introducing more

general filtrations which do not necessarily arise from a G-CW -structure on X.

The reader may keep in mind the G-manifold complexes introduced in Section 4.1

as a guiding example of such filtrations.

Definition B.3. Let X be a not necessarily free G-space which admits

a G-invariant triangulation (CW -structure) turning X into a simplicial complex

(CW -complex) of dimension d ≥ n + 1. Let X(k) be the associated k-skeleton.

A finite filtration

(B.3) ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn ⊂ Xn+1 ⊂ . . . ⊂ Xd = X

is called admissible if the following condition is satisfied,

(a) Xk is a G-invariant subcomplex of X(k) for each k.

Let C∗(X) be the G-chain complex associated to the filtration (B.3) where

Ck(X) := Hk(Xk, Xk−1;Z). The associated cohomology groups with coefficients

in a Z[G]-module M are sometimes referred to as special equivariant cohomology

groups and denoted by

(B.4) H∗G(X;M).

An admissible filtration (B.3) is said to be free in dimension k if,

(b) Ck = Ck(X) := Hk(Xk, Xk−1;Z) is a free Λ-module, where Λ := Z[G] is

the group ring of the group G.

Remark B.4. The reader should keep in mind that the cohomology groups

(B.4) are functors of a filtered space X, not the space alone. This is in agreement

with the approach in [3, p. 112] where the corresponding equivariant cohomology

groups depend on a given G-CW -structure.

Remark B.5. The structure of a simplicial complex on a G-space X plays

an auxiliary role and in intended applications one starts directly with a filtration

(B.3), tacitly assuming that it can be “triangulated”. The most natural is the

situation when X is a G-manifold complex where the constituent manifolds are

semialgebraic sets (as in Section 6) and this condition is automatically satisfied.

The condition (b) is evidently not necessarily satisfied if X is a free G-space with

an admissible filtration.

We assume that the target G-space Y is also filtered by a filtration

(B.5) ∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ . . . ⊂ Yn ⊂ Yn+1 ⊂ . . . ⊂ Yν = Y

arising from some, not necessarily free, G-CW -structure on Y . Let D∗ =

({Dk}ν0 , ∂) be the associated cellular chain complex, Dk := Hk(Yk, Yk−1).
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The following proposition allows us to reduce the problem of the existence of

G-equivariant maps between X and Y , to the question of the existence of chain

maps between the associated chain complexes of Λ = Z[G] modules.

Proposition B.6. Suppose that X is a d-dimensional G-space with an ad-

missible filtration (B.3) (Definition B.3). Suppose that Y is a G-CW -complex

and let (B.5) be its associated filtration by skeletons. Then if there exists a G-

equivariant map f : X → Y , there exists also a chain map f∗ : C∗(X)→ D∗(Y )

of the associated, augmented chain complexes

(B.6)

· · · → Cn+1
∂
//

fn+1

��

Cn
∂
//

fn
��

Cn−1

fn−1

��

→ · · · →C1
∂
//

f1
��

C0
//

f0
��

Z
∼=
��

// 0

· · · →Dn+1
∂
// Dn

∂
// Dn−1→ · · · →D1

∂
// D0

∂
// Z // 0

Proof. If there exists a G-equivariant map f : X → Y then by the cellular

approximation theorem (Theorem 2.1 in [3, Section II.2]) there exists a cellular

map g : X → Y which is G-homotopic to f . It follows that g(Xk) ⊂ g(X(k)) ⊂
Y (k) = Yk which in turn implies the existence of the chain map (B.6). �

B.3. Algebraic description of the obstruction. Proposition B.6 allows

us to reduce the topological problem of the existence of equivariant maps to

an algebraic problem of finding a chain map. This in turn leads to algebraic

counterparts of Theorem B.1 and Corollary B.2.

Proposition B.7. Suppose that C∗ := {Ck}dk=−1 and D∗ := {Dk}dk=−1 are

finite chain complexes of Λ = Z[G] modules where C−1 ∼= D−1 ∼= Z. Sup-

pose that the chain map Fn−1 := (fj)
n−1
j=−1 : {Ck}n−1k=−1 → {Dk}n−1k=−1 exists

and is fixed in advance (n + 1 ≤ d). Suppose that Fn−1 can be extended one

step further, i.e. that there exists a homomorphism fn : Cn → Dn such that

∂ ◦ fn = fn−1 ◦ ∂. Then the obstruction to the existence of a chain map (B.6),

Fn+1 := (fj)
n+1
j=−1 : {Ck}n+1

k=−1 → {Dk}n+1
k=−1, extending the chain map Fn−1 (with

the modification of fn if necessary) is a well defined element θ of the cohomology

group

(B.7) Hn+1(C∗;Hn(D∗)) = Hn+1(Hom(C∗, Hn(D∗))).

Moreover, θ is represented by the cocycle

(B.8) θ(fn) : Cn+1
∂−→ Cn

fn−→ Zn(D∗)
π−→ Hn(D∗).

The vanishing of θ is not only necessary but also sufficient for the existence of

the chain map Fn+1 (B.6) if Cn and Cn+1 are free (or projective) modules.

Proof. The homomorphism fn∂ : Cn+1 → Dn has the following properties:

(1) Image(fn∂) ⊂ Zn(D∗) := Ker(Dn
∂→ Dn−1).



86 R.T. Živaljević

(2) Image(fn∂) ⊂ Bn(D∗) := Image(Dn+1
∂→ Dn) if and only if there exists

fn+1 such that ∂ ◦fn+1 = fn ◦∂ (provided Cn+1 is a projective module).

In other words, if θ(fn) = π ◦ fn ◦ ∂ is the homomorphism

θ(fn) : Cn+1
∂−→ Cn

fn−→ Zn(D∗)
π−→ Hn(D∗)

then fn+1 exists if and only if θ(fn) = 0.

(3) θ(fn) ∈ Hom(C∗, Hn(D∗)) is a cocycle.

If θ := [θ(fn)] is the associated cohomology class let us show that it has the

properties claimed in the proposition.

Suppose that the chain map Fn+1 exists where fn is replaced by a homo-

morphism f ′n : Cn → Dn such that fn+1 ◦ ∂ = ∂ ◦ f ′n and f ′n ◦ ∂ = ∂ ◦ fn−1
(in particular θ(f ′n) = 0). Let h1 = fn − f ′n : Cn → Dn. Since ∂ ◦ fn = ∂ ◦ f ′n
we observe that Image(h1) ⊂ Zn(D∗). Let h = π ◦ h1 : Cn → Hn(D∗). It follows

that

θ(fn) = θ(fn)− θ(f ′n) = θ(h1) = π ◦ h1 ◦ ∂ = h ◦ ∂ = δ(h)

which implies that [θ(fn)] = 0 ∈ Hn+1(C∗;Hn(D∗)).

Conversely, if θ = 0 then θ(fn) is a coboundary, i.e. θ(fn) = δ(h) = h ◦ ∂
for some homomorphism h : Cn → Hn(D∗). Since the module Cn is projective,

there exists a homomorphism h1 : Cn → Zn(D∗) such that h = π ◦ h1, hence

(B.9) θ(fn) = π ◦ fn ◦ ∂ = π ◦ h1 ◦ ∂ : Cn+1 → Hn(D∗).

Let f ′n := fn − h1. Since Image(h1) ⊂ Zn(D∗) we observe that ∂ ◦ f ′n = ∂ ◦ fn
which implies that ∂ ◦ f ′n = fn−1 ◦ ∂.

From the equality θ(f ′n) = π ◦ f ′n ◦ ∂ = 0 we deduce that Image(f ′n ◦ ∂) ⊂
Bn(D∗). Since Cn+1 is a projective module, there exists a homomorphism

fn+1 : Cn+1 → Dn+1 such that ∂ ◦ fn+1 = f ′n ◦ ∂. This completes the con-

struction of the chain map Fn+1. �

Remark B.8. If the chain complex C∗ = C∗(X) arises from a fixed admis-

sible filtration (B.3) (Definition B.3) then the group Hn+1(C∗;M) (where M =

Hn(D∗)) is nothing but the (special) equivariant cohomology groupHn+1
G (X;M)

which appears in line (B.4).

Example B.9. The first obstruction θ to the existence of a chain map be-

tween the following chain complexes lies in the group H2(C∗;H1(D∗)) ∼= Z/4.

Assuming

(B.10)

Z[Z/2]
1−ω
//

f3
��

Z[Z/2]
2(1+ω)

//

f2
��

Z[Z/2]
1−ω
//

f1
��

Z[Z/2] //

f0
��

Z //

∼=
��

0

0 // 0 // Z[Z/2]
1−ω
// Z[Z/2] // Z // 0



Equipartitions of Measures by Hyperplanes 87

that both f0 and f1 are the identity maps a simple calculation shows that θ = 2.

Remark B.10. The cyclic group Z/4 = {1, ω, ω2, ω3} acts on the sphere

S3 = S1 ∗ S1 ⊂ C2 by rotating each of the circles S1 through the angle of 90◦

with the Lens space L(4, 1) = S3/(Z/4) as the quotient. The partial quotient

S3/H where H = {1, ω2} is the projective space RP 3 which inherits a Z/2 action

form the group (Z/4)/H. It is not difficult to see that the first line of (B.10)

is an associated chain complex obtained as a quotient from the standard Z/4-

invariant CW -structure on S3. In light of Proposition B.6 the non-triviality of

the obstruction θ, as calculated in Example B.9, guarantees that there does not

exist a Z/2-equivariant map f : (RP 3)(2) → S1, where S1 has the antipodal

action and (RP 3)(2) is the 2-skeleton of RP 3.

Example B.11. Suppose we want to show that there does not exist a Z/2-

equivariant map f : Sn+1 → Sn (Borsuk–Ulam theorem) by the methods of

this paper. We initially choose an admissible filtration {Fk}n+1
k=0 of Sn+1 (in

the sense of Definition B.3) by defining F0 = . . . = Fn−1 = S0, Fn = Sn and

Fn+1 = Sn+1, where S0 ⊂ Sn are Z/2-invariant subspheres of Sn+1. Then Cn ∼=
Hn(Sn, S0;Z) ∼= Z and easy calculation shows that the associated obstruction

θ is 0, meaning that this filtration is not well adopted for this problem. If we

modify the filtration by choosing Fn−1 to be a Z/2-invariant sphere Fn−1 = Sn−1

(where S0 ⊂ Sn−1 ⊂ Sn) then a direct calculations shows that θ 6= 0.

Remark B.12. The last part of Proposition B.7, claiming that θ is a com-

plete obstruction provided Cn and Cn+1 are free modules, is a motivation for

isolating admissible filtrations free in selected dimensions, cf. condition (b) in

Definition B.3. Note that the freeness of Cn and Cn+1 is a condition that can

be satisfied even if X is not a free G-space, e.g. if the corresponding set of fixed

points XH has a codimension ≥ 2 for each subgroup H 6= {e}.

B.4. Heuristics for evaluating the obstruction θ. In many cases the

chain map Fn−1 = (fj)
n−1
j=−1, which in Proposition B.7 serves as an input for

calculating the obstruction θ, is unique up to a chain homotopy. This happens for

example when D∗ is a chain complex associated to a G-sphere Y of dimension n.

In this case one can inductively build a ‘ladder of maps’ (B.6) in order to find

a representative of the chain homotopy class of the chain map [Fn−1] needed for

the evaluation of θ. A very instructive explicit example of this calculation can

be found in [15].

In practise one can bypass these calculations by constructing and using in-

stead an arbitrary G-equivariant map φn : Xn → Y . In the case of G-manifold

complexes (Section 4.1) the group Cn = Hn(Xn, Xn−1;Z) is generated by the

(relative) fundamental classes of manifolds with boundary and the calculation
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of the map π ◦ fn : Cn → Hn(D∗) ∼= Hn(Y ) ∼= Hn(Sn) in (B.8) is reduced to the

calculation of the corresponding mapping degrees.

Examples of calculations which essentially follow this procedure can be found

in [28, Section 4].

B.5. Computational topology and effective obstruction theory. The

problem of calculating topological obstructions to the existence of equivariant

maps is identified in [2] as one of the questions of great relevance for compu-

tational topology. The focus is naturally on those features of the obstruction

problem where topology and computational mathematics interact in an essen-

tial way. This brings forward algorithmic aspects of the question emphasizing

explicit procedures suitable for semiautomatic and/or large scale calculations.

Here we recapitulate and briefly summarize some of the general ideas used in

the proof of Theorem 2.2 which may be of some independent interest in the

development of the effective obstruction theory.

(1) One works with manifold G-complexes (Section 4.1) which are more

general and often more economical than G-CW -complexes.

(2) Given a G-space (manifold) X, the associated G-manifold complex arises

through the iteration of the ‘fundamental domain - geometric boundary’

procedure (see the diagram in Section 6).

(3) The fact that the generators of G-modules are fundamental classes (Sec-

tion B.4) allows us to evaluate boundaries and chain maps as the map-

ping degrees (Sections 7–9).

(4) The emphasis in the basic set-up of the obstruction theory (Appendix,

Section B) is on ‘admissible filtrations’ (Proposition B.6) and chain com-

plexes, rather than spaces, (Proposition B.7).
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[28] R. Živaljević, User’s guide to equivariant methods in combinatorics II, Publ. Inst. Math.

Belgrade 64 (78) (1998), 107–132.



90 R.T. Živaljević
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