
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 37, Number 4, 2007

PHILOS-TYPE OSCILLATION CRITERIA FOR
SECOND ORDER HALF-LINEAR

DYNAMIC EQUATIONS ON TIME SCALES

RAVI P. AGARWAL, DONAL O’REGAN AND S.H. SAKER

ABSTRACT. In this paper we establish some oscillation
theorems for the second order half-linear dynamic equation

(
r(t)(xΔ(t))γ

)Δ
+ p(t)xγ(t) = 0, t ∈ [a, b],

on time scales. Special cases of our results include some
well-known oscillation results for second-order differential and
half-linear differential equations. Our results are new for
difference, generalized difference and q difference half-linear
equations.

1. Introduction. The theory of time scales, which has recently
received a lot of attention, was introduced by Stefan Hilger in his
Ph.D. Thesis in 1988 in order to unify continuous and discrete analysis,
see [16]. The theory of “dynamic equations” unifies the theories of
differential equations and difference equations and it also extends these
classical cases to cases “in between,” e.g., to the so-called q−difference
equations. A time scale T is an arbitrary closed subset of the reals,
and the cases when this time scale is equal to the reals or to the
integers represent the classical theories of differential and of difference
equations. Many other interesting time scales exist, and they give
rise to many applications, see [5]. Since Stefen Hilger formed the
definition of derivatives and integrals on time scales, several authors
have expounded on various aspects of this new theory, see the paper
by Agarwal et al. [1] and the references cited therein. A book on the
subject of time scale, i.e., measure chain, by Bohner and Peterson [5]
summarizes and organizes much of time scale calculus, and in the next
section, we recall some of the main tools used in the subsequent sections
of this paper.
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In recent years there has been much research activity concerning the
oscillation and nonoscillation of solutions of some different equations
on time scales; we refer the reader to the papers [2, 3, 4, 6, 7 14, 20,
24].

Dosly and Hilger [8] considered the second order linear dynamic
equation

(1.1)
(
r(t)xΔ(t)

)Δ
+ p(t)xσ = 0, t ∈ [a, b],

and established necessary and sufficient conditions for oscillation of all
solutions on unbounded time scales.

Erbe and Peterson [12] considered (1.1) and supposed that r(t) is
bounded above on [t0,∞), t0 ∈ T, h0 = inf{μ(t) : t ∈ [t0,∞)} > 0, and
used the Riccati transformation and proved that (Wintener-type) if

(1.2)
∫ ∞

t0

p(t)Δt = ∞,

then every solution is oscillatory in [t0,∞). It is clear that the results
given in [8, 12] cannot be applied when p(t) is unbounded, μ(t) = 0
and p(t) = t−α when α > 1.

Recently Saker [24] and Bohner and Saker [7] used the Riccati
substitution and provided several oscillation criteria for the equation

(1.3)
(
r(t)xΔ(t)

)Δ
+ p(t)(f ◦ xσ) = 0, t ∈ [a, b],

when

(1.4)
∫ ∞

a

Δt

r(t)
= ∞,

or

(1.5)
∫ ∞

a

Δt

r(t)
< ∞,

holds, and improved the results established in [8, 12].

Erbe, Peterson and Saker [14], used generalized Riccati transforma-
tion techniques and the generalized exponential function and obtained
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some different oscillation criteria for (1.3) on time scales, and applied
these results to the linear dynamic equations with damping terms to
give some sufficient conditions for oscillations of all their solutions.

Recently, Sun and Li [26] considered the half-linear second order
dynamic equation

(1.6)
(
r(t)(xΔ(t))γ

)Δ
+ p(t)xγ(t) = 0, t ∈ [a, b],

where γ is an odd positive integer, and r and p are positive real-valued
rd-continuous functions such that

(1.7)
∫ ∞

a

Δt

(r(t))1/γ
= ∞,

and established some sufficient conditions for existence of positive
solutions. They also extended the results to dynamic equations of
advanced type, namely

(1.8)
(
r(t)(xΔ(t))γ

)Δ
+ p(t)xγ(t + τ ) = 0, t ∈ [a, b].

In this paper we develop a qualitative theory of dynamic equations on
time scales which complement the results in [26]. We will establish
some sufficient conditions for oscillation of (1.6) on time scales where
γ ≥ 1 is a quotient of odd positive integers, r and p are positive, real-
valued rd-continuous functions defined on the time scale interval [a, b]
(throughout a, b ∈ T with a < b) with (1.7) or

(1.9)
∫ ∞

a

Δt

(r(t))1/γ
< ∞,

holding.

Recall that a solution of (1.6) is a nontrivial real function x(t) ∈
C1

rd[tx,∞), tx ≥ t0 ≥ a, which has the property r(t)(xΔ(t))γ ∈
C1

rd[tx,∞) and satisfies equation (1.6) for t ≥ tx. Our attention is
restricted to those solutions of (1.6) which exist on some half line [tx,∞)
and satisfy sup{|x(t)| : t > t1} > 0 for any t1 ≥ tx. A solution x(t)
of (1.6) is said to be oscillatory if it is neither eventually positive nor
eventually negative, otherwise it is nonoscillatory. Equation (1.6) is
said to be oscillatory if all its solutions are oscillatory.
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We note that, if T = R, xΔ(t) = x′(t) and (1.6) becomes the second
order half-linear differential equation

(1.10) (r(t)(x′(t))γ)′ + p(t)xγ(t) = 0, t ∈ [t0,∞).

For oscillation of (1.10) we refer the reader to the paper by Li [17] and
the paper by Manojlovic [19] and also to the references cited therein.
Recall the oscillation criteria of Philos-type for the second order linear
differential equation

x′′(t) + p(t)x(t) = 0, t ∈ [t0,∞),

is

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

[
H(t, s)q(s) − 1

4
h2(t, s)

]
ds = ∞;

here H and h will be defined in Section 3. However, it is known
that when p(t) = μ/t2, this equation reduces to the well-known Euler
equation where the results of Philos [21], Li [17] and Manojlovic [19]
cannot be applied. In fact, the Euler equation is oscillatory if μ > 1/4
and nonoscillatory if μ < 1/4, see [18, 25]. Also we note that the
results of Philos-type [21] cannot be derived from the results of Li [17]
and Manojlovic [19], since the inequality

Aλ − λABλ−1 + (λ − 1)Bλ ≥ 0, λ > 1,

they have used in the proof is true only if λ > 1.

If T = Z, then xΔ(t) = Δx(t) and (1.6) becomes the second order
half-linear difference equation

(1.11) Δ (r(t)(Δx(t))γ) + p(t)xγ(t) = 0, t ∈ [t0,∞).

For oscillation of the half-linear difference equation (1.11), we refer
the reader to the papers [15, 22, 23, 27 30] and the reference cited
therein.

If T = hZ, h > 0, then xΔ(t) = Δhx(t) and (1.6) becomes the more
general half-linear difference equation

(1.12) Δh (r(t)(Δhx(t))γ) + p(t)xγ(t) = 0, t ∈ [t0,∞).
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If T = qN = {qk, k ∈ N, q > 1}, then xΔ(t) = Δqx(t) and (1.1)
becomes the q-half-linear difference equation

(1.13) Δq (r(t)(Δqx(t))γ) + p(t)xγ(t) = 0, t ∈ [t0,∞).

Our aim in this paper is to give some oscillation criteria for (1.6).
Our results include the results of Li [17], Manojlovic [19] and Philos
[21] and we also improve their results for the second order differential
equation (1.10). Also, our results are new for the second order half-
linear difference equation, see [15, 22, 23, 27 30] and also for the
equations (1.12) and (1.13).

The paper is organized as follows: In Section 3, we use Riccati
transformation techniques to obtain some new oscillation criteria of
Philos-type for (1.6) when (1.7) holds. In the case when T = R
our results reduce to Philos-type oscillation criteria of Li [17] and
Manojlovic [19], and our results improve the oscillation of second order
differential equations given by Philos [21], Li [17] and Manojlovic [19]
since these referenced results cannot be applied to the Euler equation
when γ = 1 and p(t) = μ/t2., see [18, 25]. When T = Z, our results
will give oscillation results for second order difference equations which
are new, and in the case when T = qN, for q > 1, we obtain new
oscillation results for q-difference equations. Finally, in Section 4, we
consider equations that do not satisfy (1.7) and present some conditions
that ensure that all solutions are either oscillatory or converge to zero.

2. Some preliminaries on time scales. On any time scale T we
define the forward and backward jump operators by

(2.1) σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

A point t ∈ T is said to be left-dense if ρ(t) = t, right-dense if σ(t) = t,
left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The graininess
μ of the time scale T is defined by μ(t) = σ(t) − t.

For a function f : T → R, the (delta) derivative is defined by

fΔ(t) = lim
s→t

f(σ(t)) − f(s)
σ(t) − s

, for s ∈ T\{σ(t)}.
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A function f : [a, b] → R is said to be rd-continuous if it is continuous
at each right-dense point and if there exists a finite left limit in all left-
dense points, and f is said to be differentiable if its derivative exists.
The derivative and the shift operator σ are related by the formula

(2.2) fσ = f + μfΔ where fσ := f ◦ σ = f(σ).

Let f be a real-valued function defined on an interval [a, b]. We say
that f is increasing, decreasing, nondecreasing, and nonincreasing on
[a, b] if t1, t2 ∈ [a, b] and t2 > t1 imply f(t2) > f(t1), f(t2) < f(t1),
f(t2) ≥ f(t1) and f(t2) ≤ f(t1), respectively.

Let f be a differentiable function on [a, b]. Then f is increasing,
decreasing, nondecreasing and nonincreasing on [a, b] if fΔ(t) > 0,
fΔ(t) < 0, fΔ(t) ≥ 0 and fΔ(t) ≤ 0 for all t ∈ [a, b), respectively.

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g where ggσ > 0 of
two differentiable functions f and g:

(2.3) (fg)Δ = fΔ(t)g(t) + f(σ(t))gΔ(t) = f(t)gΔ(t) + fΔ(t)g(σ(t))

and

(2.4)
(

f

g

)Δ

(t) =
fΔ(t)g(t) − f(t)gΔ(t)

g(t)g(σ(t))
.

For a, b ∈ T and a differentiable function f , the Cauchy integral of fΔ

is defined by

(2.5)
∫ b

a

fΔ(t)Δt = f(b) − f(a).

The integration by parts formula reads

(2.6)
∫ b

a

fΔ(t)g(t)Δt = f(b)g(b) − f(a)g(a) −
∫ b

a

fσ(t)gΔ(t)Δt,

and infinite integrals are defined as
∫ ∞

a

f(s)Δs = lim
t→∞

∫ t

a

f(s)Δs,
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and

(2.7)
( ∫ t

a

f(s)Δs

)Δ

= f(t).

In the case T = R we have

σ(t) = ρ(t) = t, μ(t) ≡ 0, fΔ = f ′,

and ∫ b

a

f(t)Δt =
∫ b

a

f(t) dt,

and in the case T = Z we have

σ(t) = t + 1, ρ(t) = t − 1, μ(t) ≡ 1, fΔ = Δf,

and ∫ b

a

f(t)Δt =
b−1∑
t=a

f(t),

whereas in the case T = hZ, h > 0, we have σ(t) = t + h, μ(t) = h and

fΔ = Δhf =
f(t + h) − f(t)

h
,

and ∫ b

a

f(t)Δt =
(b/h)−1∑
i=a/h

f(i),

and in the case T = qN = {t : t = qk, k ∈ N, q > 1} we have σ(t) = qt,
μ(t) = (q − 1)t and

xΔ
q (t) =

x(qt) − x(t)
(q − 1)t

and
∫ ∞

a

f(t)Δt =
∞∑

k=0

μ(qk)f(qk).

3. Oscillation criteria. In this section we give some new oscillation
criteria of Philos-type for (1.6) which includes as a special case the
results of Li [17], Manojlovic [19] and Philos [21].
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First, let us introduce the class of functions 	 which will be ex-
tensively used in the sequel. Let D0 ≡ {(t, s) : t > s ≥ t0} and
D ≡ {(t, s) : t ≥ s ≥ t0}.

The function H ∈ Crd(D,R) is said to belong to the class 	 if

(H1) H(t, t) = 0, t ≥ t0, H(t, s) > 0, on D0,

(H2) H has a continuous Δ-partial derivative HΔs(t, s) on D0 with
respect to the second variable. (H is an rd-continuous function if H is
an rd-continuous function in t and s).

In the sequel, we assume that:

(h)1 γ ≥ 1 is a quotient of odd positive integers and r and p are
positive real-valued rd-continuous functions.

Since we are interested in oscillatory behavior, we suppose that the
time scale under consideration is not bounded above, i.e., it is a time
scale interval of the form [a,∞). In order to prove our theorems, we
need the following auxiliary lemmas.

Lemma 3.1. Assume that (h)1 and (1.7) hold, and suppose x solves
(1.6) with x(t) > 0 for all t ≥ t0 ≥ a. Then

(3.1) xΔ(t) ≥ 0 and xΔ(t) ≥
(

rσ

r

)1/γ

xΔ(σ(t)) for all t ≥ t0.

Proof. Let x(t) > 0 for t ≥ t0. Now (1.6) implies

(
r(t)(xΔ(t))γ

)Δ
= − p(t)xγ(t) < 0,

so r(t)(xΔ(t))γ is decreasing. Now, we prove that xΔ(t) ≥ 0. Suppose
not. Without loss of generality, assume there exists t1 ≥ t0 such that
r(t1)(xΔ(t1))γ = c < 0. Then

r(s)
(
xΔ(t)

)γ ≤ r(t1)
(
xΔ(t1)

)γ
= c for all s ≥ t1,

and therefore

xΔ(s) ≤
(

c

r(s)

)1/γ

for all s ≥ t1.
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For t ≥ t1, we have

(3.2)

x(t) = x(t1) +
∫ t

t1

xΔ(s)Δs ≤ x(t1)

+ c1/γ

∫ t

t1

Δs

(r(s))1/γ
−→ −∞ as t → ∞,

a contradiction. Thus, xΔ(t) ≥ 0. The proof of the second part of (3.1)
follows from the fact that r(t)(xΔ(t))γ is decreasing. This completes
the proof.

Lemma 3.2. Let f(u) = bu − au(γ+1)/γ, where a > 0 and b are
constants, γ is a quotient of odd positive integers. Then f attends its
maximum value on R at u∗ = ((bγ)/(a(γ + 1)))γ, and

(3.3) max
u∈R

f(u) = f(u∗) =
γγ

(γ + 1)γ+1

bγ+1

aγ
.

Now, we are ready to state and prove our main results.

Theorem 3.1. Assume that (h)1 and (1.7) hold, and let H : D → R
be an rd-continuous function belonging to the class 	, and suppose there
exists a positive rd-continuous function δ such that

(3.4) lim sup
t→∞

1
H(t, t0)

∫ t

t0

K(t, s) Δs = ∞,

where (δΔ(s))+ = max{0, (δΔ(s))} and

K(t, s) = H(t, s)δ(s)p(s)

−
(δσ)γ+1r(s)

[
H(t, s)[

(
δΔ(s)

)
+

/δσ] − HΔs(t, s)
]γ+1

δγ(s)(γ + 1)γ+1Hγ(t, s)
.

Then every solution of equation (1.6) is oscillatory on [a,∞).

Proof. Suppose to the contrary that x is a nonoscillatory solution of
(1.6), and let t0 ≥ a be such that x(t) 
= 0 for all t ≥ t0, so, without loss



1094 R.P. AGARWAL, D. O’REGAN AND S.H. SAKER

of generality, we may assume that x is an eventually positive solution
of (1.6) with x(t) > 0 for all t ≥ t0 ≥ a. Define the function w(t) by

(3.5) w(t) = δ(t)

(
r(t)xΔ(t)

)γ

xγ(t)
, for t ≥ t0.

Then by Lemma 3.1 we have w(t) > 0, and using (2.3) we obtain

wΔ(t) =
(
(rxΔ)σ

)γ
(

δ(t)
xγ(t)

)Δ

+
δ(t)
xγ(t)

((
r(t) xΔ(t)

)γ
)Δ

.

This implies by (2.4) that

(3.6)
wΔ(t) =

(
(rxΔ)σ

)γ
(

xγ(t)δΔ(t) − δ(t) (xγ(t))Δ

xγ(t) (xσ)γ

)

+
δ(t)
xγ(t)

((
r(t) xΔ(t)

)γ
)Δ

.

Now (1.6) and (3.6) imply

(3.7) wΔ(t) ≤ − δ(t)p(t) +

(
δΔ(t)

)
+

δσ
wσ − (

(rxΔ)σ
)γ δ(t) (xγ(t))Δ

xγ(t) (xσ)γ .

Now using the Chain rule [4, Theorem 1.87], we have

(xγ(t))Δ = γ ηγ−1xΔ(t), η ∈ [x(t), x(σ(t)].

Using the last equality and Lemma 3.1 in (3.7), we have

wΔ(t) ≤ − δ(t)p(t) +

(
δΔ(t)

)
+

δσ
wσ

− (
(rxΔ)σ

)γ γδ(t)ηγ−1xΔ(t)
xγ(t) (xσ)γ

≤ − δ(t)p(t) +

(
δΔ(t)

)
+

δσ
wσ

− γδ(t)
(δσ)λrλ−1

(wσ)λ
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where λ = (γ + 1)/γ. Thus, we have

(3.8) wΔ(t) ≤ − δ(t)p(t) +

(
δΔ(t)

)
+

δσ
wσ − γδ(t)

(δσ)λrλ−1
(wσ)λ .

From (3.8), it follows that

(3.9)

∫ t

t0

H(t, s)δ(s)p(s)Δs ≤ −
∫ t

t0

H(t, s)wΔ(s)Δs

+
∫ t

t0

H(t, s)

(
δΔ(s)

)
+

δσ
wσΔs

−
∫ t

t0

H(t, s)
γδ(t)

(δσ)λrλ−1
(wσ)λΔs.

Using the integration by parts formula (2.6), we have

(3.10)

∫ t

t0

H(t, s)wΔ(s)Δs = H(t, s)w(s)
∣∣∣t
t0
−

∫ t

t0

HΔs(t, s)wσΔs

= −H(t, t0)w(t0) −
∫ t

t0

HΔs(t, s)wσΔs

since H(t, t) = 0. Substituting (3.10) in (3.9) we get

(3.11)

∫ t

t0

H(t, s)δ(s)p(s)Δs ≤ H(t, t0)w(t0) −
∫ t

t0

HΔs(t, s)wσΔs

+
∫ t

t0

H(t, s)

(
δΔ(s)

)
+

δσ
wσΔs

−
∫ t

t0

H(t, s)
γδ(t)

(δσ)λrλ−1
(wσ)λΔs.

Hence,
(3.12)∫ t

t0

H(t, s)δ(s)p(s)Δs

≤ H(t, t0)w(t0) +
∫ t

t0

[
H(t, s)

(
δΔ(s)

)
+

δσ
− HΔs(t, s)

]
wσΔs

−
∫ t

t0

H(t, s)
γδ(t)

(δσ)λrλ−1
(wσ)λΔs.



1096 R.P. AGARWAL, D. O’REGAN AND S.H. SAKER

Now use Lemma 3.2 with

a =
γδ(t)H(t, s)
(δσ)λrλ−1

, b = H(t, s)

(
δΔ(s)

)
+

δσ
− HΔs(t, s) and u = wσ

to obtain
(3.13)∫ t

t0

H(t, s)δ(s)p(s) Δs

≤ H(t, t0)w(t0)

+
∫ t

t0

(δσ)γ+1r(s)
[
H(t, s)

(
(δΔ(s))+/δσ

) − HΔs(t, s)
]γ+1

δγ(s)(γ + 1)γ+1 (H(t, s))γ Δs.

Then, for all t ≥ t0, we have

(3.14)
∫ t

t0

K(t, s) Δs ≤ H(t, t0)w(t0),

and this implies that

(3.15)
1

H(t, t0)

∫ t

t0

K(t, s) Δs ≤ w(t0),

for all large t, which contradicts (3.4). Therefore, every solution of
(1.6) oscillates on [a,∞).

As an immediate consequence of Theorem 3.1 we get the following.

Corollary 3.1. Let assumption (3.4) in Theorem 3.1 be replaced by

(3.16) lim sup
t→∞

1
H(t, t0)

∫ t

t0

H(t, s)δ(s)p(s) Δs = ∞,

and
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(3.17)

lim sup
t→∞

1
H(t, t0)

·
∫ t

t0

(δσ)γ+1r(s)
[
H(t, s)

(
δΔ(s)/δσ

) − HΔs(t, s)
]γ+1

δγ(s)(γ + 1)γ+1Hγ(t, s)
Δs < ∞.

Then every solution of equation (1.6) is oscillatory on [a,∞).

Corollary 3.2. Assume that (h)1 and (1.7) hold, δ(t) ≡ 1, r(t) ≡ 1,
and we write HΔs(t, s) = −h(t, s). If

(3.18)

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)p(s) − r(s)hγ+1(t, s)

(γ + 1)γ+1Hγ(t, s)

]
Δs = ∞,

then every solution of (1.6) is oscillatory on [a,∞).

Corollary 3.3. Assume that (h)1 and (1.7) hold, r(t) = 1, δ(t) ≡ 1,
γ = p − 1, and suppose HΔs(t, s) = −h(t, s)[H(t, s)]1/q for some
function h; here 1/q + 1/p = 1. If

(3.19) lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)p(s) − hp(t, s)

pp

]
Δs = ∞,

then every solution of (1.6) is oscillatory on [a,∞).

As a special case of Theorem 3.1, if T = R, then σ(t) = t, μ(t) ≡ 0,
δΔ = δ′ and HΔs(t, s) = ∂H(t, s)/∂s, so (3.4) becomes

(3.20) lim sup
t→∞

1
H(t, t0)

∫ t

t0

A(t, s) ds = ∞,

where
(3.21)
A(t, s) = H(t, s)δ(s)p(s)

− δ(s)r(s) [H(t, s) ((δ′(s))+/δ(s)) − ∂H(t, s)/∂s]γ+1

(γ + 1)γ+1Hγ(t, s)
= ∞,
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and
(δ′(s))+ = max{0, (δ′(s))}.

Then we have the following oscillation criteria for (1.10).

Corollary 3.4. Assume that (h)1 and

∫ ∞

a

1
r1/γ(s)

ds = ∞

hold. Furthermore, let H : D → R be a continuous function belonging
to the class 	, and suppose there exists a positive continuous function
δ such that (3.20) holds. Then every solution of equation (1.10) is
oscillatory.

From Corollary 3.2 and Corollary 3.3, if T = R we have the following
well-known oscillation criteria.

Corollary 3.5 (Philos’s theorem). Assume that (h)1 holds, δ(t) ≡ 1,
γ = 1, r(t) ≡ 1 and ∂H(t, s)/∂s = −h(t, s)

√
H(t, s) for some function

h. If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
p(s)H(t, s) − h2(t, s)

4

]
ds = ∞,

then every solution of

x′′(t) + p(t)x(t) = 0, t ∈ [t0,∞)

is oscillatory.

Corollary 3.6 (Li’s theorem). Assume that (h)1 holds, r(t) = 1,
δ(t) ≡ 1, γ = p − 1 and ∂H(t, s)/∂s = −h(t, s)[H(t, s)]1/q for some
function h; here 1/q + 1/p = 1. If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)p(s) − hp(t, s)

pp

]
ds = ∞,
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then every solution of(
(x′(t))γ−1

)′
+ p(t)xγ−1(t) = 0, t ∈ [t0,∞)

is oscillatory.

Corollary 3.7 (Manojlovic’s theorem). Assume that (h)1 and (1.7)
hold, δ(t) ≡ 1, and we write ∂H(t, s)/∂s = −h(t, s). If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)p(s) − r(s)hγ+1(t, s)

(γ + 1)γ+1Hγ(t, s)

]
ds = ∞,

then every solution of (1.10) is oscillatory.

If T = Z, then δΔ(n) = Δδ(n) = δ(n + 1) − δ(n), HΔs(m, n) =
Δ2H(m, n) = H(m, n + 1) − H(m, n) and (3.4) becomes

(3.22) lim sup
m→∞

1
H(m, n0)

m−1∑
n=n0

L(m, n) = ∞,

where

L(m, n) = H(m, n)δ(n)p(n)− δγ+1(n + 1)r(n)
(γ + 1)γ+1δ(n)Hγ(m, n)

Bγ+1(m, n)

and

B(m, n) =
(

(Δδ(n))+
δ(n + 1)

− (H(m, n + 1) − H(m, n))
)

.

If T = hZ, h > 0 then σ(t) = t + h, μ(t) = h, δΔ(t) = Δhδ(t) =
(δ(t + h) − δ(t))/h, HΔs(t, s) = Δ2H(t, s) = H(t, s + h) − H(t, s) and
(3.4) becomes

(3.23) lim sup
t→∞

1
H(t, t0)

(t/h)−1∑
s=t0

Q(t, s) = ∞,

where

Q(t, s) = H(t, s)δ(s)p(s)− δγ+1(s + h)r(s)
(γ + 1)γ+1δ(s)Hγ(t, s)

Cγ+1(t, s),

C(t, s) =
(

(Δhδ(s))+
δ(s + h)

− (H(t, s + h) − H(t, s))
)

,
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and
(Δhδ(s))+ = max{0, (Δhδ(s))}.

If T = qN = {qk, k ∈ N, q > 1}, then σ(t) = qt, μ(t) = (q − 1)t,
δΔ
q (t) = (δ(qt) − δ(t))/((q − 1)t), HΔs(t, s) = (H(t, qs) − H(t, s))/

((q − 1)s), and from (3.4) and the definition of the integration on qN,
one can deduce oscillation conditions for (1.13); the details are left to
the reader.

For the oscillation of half-linear difference and half-linear generalized
difference equations, we have the following.

Corollary 3.8. Assume (h)1 holds and that

∞∑
n=a

1

(r(n))1/γ
= ∞.

Let H : D → R be a sequence belonging to the class 	. If there exists
a positive sequence δ(n) such that (3.22) holds, then every solution of
equation (1.11) is oscillatory.

Corollary 3.9. Assume (h)1 holds and that

∞∑
n=a

1

(r(n))1/γ
= ∞.

Let H : D → R be a sequence belonging to the class 	. If there
exists a positive sequence δ such that (3.23) holds, then every solution
of equation (1.12) is oscillatory.

Remark 3.1. With an appropriate choice of a function H, one can
derive a number of oscillation criteria for (1.6) on different types of
time scales. Consider, for example, the function H(t, s) = (t − s)λ,
(t, s) ∈ D, with λ ≥ 1 an odd integer. Evidently, H belongs to the
class 	. Then (3.4) reduces to an oscillation criterion of Kamenev-
type.



PHILOS-TYPE OSCILLATION CRITERIA 1101

Example 3.1. Consider the half-linear dynamic equation

(3.24)
(
tγ−1

(
xΔ

)γ
)Δ

+
β

t2
(x)γ = 0,

for t ∈ [1,∞), where β is a positive constant and γ > 1 is a positive
integer (and a quotient of odd positive integers). Let p(t) = β/t2 and
r(t) = tγ−1. Note that (1.7) is satisfied since

∫ ∞

1

(
1
t

)(γ−1)/γ

Δt = ∞ for γ > 1.

We will apply Theorem 3.1 with δ = t and H(t, s) = 1. Now

lim sup
t→∞

∫ t

1

K(t, s) Δs = lim sup
t→∞

∫ t

1

[
sp(s) − sγ−1

(γ + 1)γ+1sγ

]
Δs

= lim sup
t→∞

∫ t

1

[
β

s
− 1

(γ + 1)γ+1s

]
Δs = ∞

when β > 1/((γ + 1)γ+1). Then every solution of (3.24) is oscillatory
when β > 1/((γ + 1)γ+1). We also note that when γ = 1 the condition
is β > 1/4 which is the sufficient condition for the Euler equation.
Also, one can see that the results of Philos [21], Li [17] and Manojlovic
[19] cannot be applied to (3.24) when T = R. So our results not
only include as special cases the results of Philos [21], Li [17] and
Manojlovic [19] but also improve these results and can be applied to
the Euler equations provided that β > 1/4 (see [18, 25]).

4. Other criteria. In this section we consider (1.6), where r does
not satisfy (1.7), i.e.,

(4.1)
∫ ∞

a

1

(r(t))1/γ
Δt < ∞.

We start with the following auxiliary lemma, whose proof is similar to
the proof of Theorem 3.3 in [14] and hence is omitted.

Lemma 4.1. Assume (h)1 and (4.1) hold, and suppose

(4.2)
∫ ∞

a

[
1

r(t)

∫ t

a

p(s)Δs

]1/γ

Δt = ∞.
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Suppose that x is a nonoscillatory solution of (1.6) such that there
exists t1 ∈ T with

(4.3) x(t)
(
xΔ(t)

)γ
< 0 for all t ≥ t1.

Then
lim

t→∞ x(t) exists and is zero.

Using Lemma 4.1, we can derive the following criteria.

Theorem 4.1. Assume (h)1, (4.1) and (4.2) hold. Let H : D → R
be an rd-continuous function belonging to the class 	. If there exists
a positive differentiable function δ(t) such that (3.4) holds, then every
solution of (1.6) is oscillatory or converges to zero.

Proof. Assume that x is a nonoscillatory solution of (1.6). Hence,
x is either eventually positive or eventually negative, i.e., there exists
t0 ≥ a with x(t) > 0 for all t ≥ t0 or x(t) < 0 for all t ≥ t0. Without
loss of generality, we assume that x(t) is eventually positive. From (1.6)
we have (

r(t)(xΔ(t))γ
)Δ

= − p(t)xγ(t) < 0,

and so r(t)(xΔ(t))γ is an eventually decreasing function and either
xΔ(t) is eventually positive or eventually negative. If xΔ(t) is even-
tually positive we can derive a contradiction as in Theorem 3.1.

If xΔ(t) is eventually negative, we see from Lemma 4.1 that x(t)
converges to zero as t → ∞. This completes the proof.
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6. M. Bohner and S.H. Saker, Oscillation for perturbed nonlinear dynamic
equations, Math. Comput. Modelling, to appear.

7. M. Bohner and S.H. Saker, Oscillation of second order nonlinear dynamic
equations on time scales, Rocky Mountain J. Math. 34 (2004), 1239 1254.
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