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LIMITS OF VERTEX REPLACEMENT RULES

JOSEPH PREVITE, MICHELLE PREVITE AND MARY VANDERSCHOOT

ABSTRACT. In an earlier paper [10], J. Previte developed
a framework for studying iterated replacements of certain ver-
tices in a graph G by a finite replacement graph H. He showed
that the normalized sequence of iterated graphs converges in
the Gromov-Hausdorff metric (except for special cases). In
this paper, we extend the framework in [10] to iterated vertex
replacements where there are at least two replacement graphs
and prove a convergence result. We also give examples of
vertex replacement rules that yield convergent sequences of
graphs.

1. Introduction. The notion of vertex replacement rules was
motivated by studying the horospheres of the geodesic flow on a two-
dimensional singular space X of nonpositive curvature, see [1].

For two-dimensional singular spaces of nonpositive curvature, the
horospheres of X are graphs. The work in this paper is also related to
a class of iterative systems, introduced by Aristid Lindenmayer, see
[12, 13], which is used to model the growth of plants and simple
multicellular organisms. Lindenmayer theorized that the development
of a complex object, such as a plant, must be governed by a relatively
simple set of production rules. His approach created a new branch
of biomathematics. Lindenmayer systems were later used in the areas
of data and image compression. Since the systems introduced in this
paper are more natural and geometric, they promise applications in the
same fields that Lindenmayer impacted.

A vertex replacement rule R is a rule for substituting copies of finite
graphs, called replacement graphs, for certain vertices in a given graph
G. The result is a new graph R(G). Iterating R produces a sequence
of graphs Rn(G). By letting (Rn(G), 1) be the metric space Rn(G)
normalized to have diameter 1, the sequence of the normalized graphs
can be studied.
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Vertex replacement rules with one replacement graph were examined
in [10, 11]. Necessary and sufficient conditions were found for the
sequence {(Rn(G), 1)} to converge in the Gromov-Hausdorff metric.
Furthermore, these limit spaces have topological dimension one and,
except for special cases, Hausdorff dimension greater than one. It was
also shown that many standard examples of fractals, like the Sierpinski
triangle, are limit spaces of iterated vertex replacements.

In this paper, we examine the asymptotic behavior of iterated vertex
replacements when the replacement rule is given by more than one
replacement graph. Our main result, Theorem 3.5, gives sufficient
conditions for the convergence of these iterated vertex replacements.
Several examples of limit objects of such iterated vertex replacements
can be found in the final section.

Understanding how the lengths of certain paths grow under the re-
placement rule is essential to the proof of convergence of iterated vertex
replacements. Not surprisingly, it is considerably more difficult to de-
scribe the growth rate of paths when there is more than one replacement
graph. Thus we will restrict our attention to vertex replacement rules
where the growth rate can be described using primitive matrices.

2. Preliminaries. In this section we define and provide some
basic examples of vertex replacements. Throughout this paper we
will assume that all graphs are connected, locally finite, unit metric
graphs, i.e., each graph is a metric space and every edge has length
one. Furthermore, the distance between two points in a graph will be
measured by the shortest path in the graph between the two points.
In particular, in the graph shown in Figure 1, the distance between
vertices a and b is 7.

Definition 2.1. A graph H with a designated set of vertices
{v1, . . . , vk} is called symmetric about {v1, . . . , vk} if every permuta-
tion of {v1, . . . , vk} can be realized by an isometry of H. The vertices in
such a designated set are called boundary vertices of H and are denoted
by ∂H.

Definition 2.2. A vertex replacement rule R consists of a finite list
of finite graphs, called replacement graphs, {H1, . . . , Hp}, each with a
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FIGURE 1.

set ∂Hi of boundary vertices, so that |∂Hi| �= |∂Hj | for i �= j, where
| · | denotes the cardinality of a set.

Let G be a graph and let R be a vertex replacement rule given by
the replacement graphs H1, . . . , Hp. Recall that the degree of a vertex
v in G, denoted deg (v), is the number of edges in G adjacent to v.

Definition 2.3. A vertex v in G is called replaceable if deg (v) =
|∂Hi| for some replacement graph Hi in the replacement rule.

The replacement rule R acts on G by substituting each replaceable
vertex in G with its corresponding replacement graph so that the deg (v)
edges previously attached to v in G are attached to the |∂Hi| vertices of
Hi. Since |∂Hi| �= |∂Hj | for i �= j, each replaceable vertex has a unique
corresponding replacement graph. Also, since each replacement graph
Hi is symmetric about ∂Hi, it is irrelevant how the edges previously
adjacent to v are attached to ∂Hi. Thus, vertex replacement is a well-
defined procedure.

For example, we may define a vertex replacement rule R by the
replacement graphs H1 and H2 depicted in Figure 2.

The boundary vertices of the replacement graphs are shown with
circles. Note that each replacement graph is symmetric about its set of
boundary vertices. Let G be as depicted in Figure 3. Vertices w1, w2,
and w3 are replaceable by H1, and vertices v1, v2, and v3 are replaceable
by H2, but vertices x1, x2, and x3 are not replaceable. Figure 4 shows
R(G).
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H1 H2

FIGURE 2. A replacement rule R.

We extend the idea of a replaceable vertex to include the vertices
of the replacement graphs themselves, but only after the replacement
graphs have replaced some vertices. That is, one should not treat a
replacement graph Hi as an initial graph G, but always view it as
having already replaced some vertex. Hence, we view each boundary
vertex as having another edge attached.

Definition 2.4. A boundary vertex v is called replaceable if deg (v) =
|∂Hi| − 1 for some replacement graph Hi in the replacement rule.

Notice that for the replacement rule in Figure 2, the boundary vertices
of H1 are replaceable by H2 (each such vertex will have three edges
adjacent after being inserted into a graph G) while the remaining
vertices of H1 are replaceable by H1. Likewise, the boundary vertices
of H2 are replaceable by H2 while the remaining vertices of H2 are
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FIGURE 3. A graph G.
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FIGURE 4. The graph R(G).

replaceable by H1. Thus, the replacement rule R may be iterated to
create a sequence of graphs Rn(G). When each graph in this sequence
is scaled to have diameter one, we obtain the sequence {(Rn(G), 1)}
which, according to our main result (Theorem 3.5), will converge in the
Gromov-Hausdorff metric. Figure 5 shows the next two graphs in the
sequence and the limit space of this sequence.

FIGURE 5. (R2(G), 1), (R3(G), 1), and the limit of {(Rn(G), 1)}.
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We now select some notation. There exists a pointwise map π :
R(G) → G which undoes replacement by crushing the inserted replace-
ment graphs to the vertices they replaced. In general, for any set F in
G, let R(F ) be π−1(F ). If F ⊂ G contains no replaceable vertices, then
Rn(F ) can be identified with F , and we label Rn(F ) as F ⊂ Rn(G).
Similarly, if z ∈ G is not replaceable, label Rn(z) as z ∈ Rn(G). Let F
be any finite graph, and let γ be a simple path in F . Let Ni(F ) denote
the number of vertices in F replaceable by Hi, and let L(γ) denote the
length of γ. For a replacement graph Hi, we define Nj(Hi) to be the
number of vertices in Hi replaceable by Hj when one regards Hi as a
subset of R(G). That is, Nj(Hi) is the number of vertices v in Hi such
that deg (v) = |∂Hj | − 1 if v is a boundary vertex or deg (v) = |∂Hj | if
v is not a boundary vertex.

Let Hi be a replacement graph in the replacement rule R, and let vi

be a vertex in a graph G replaceable by Hi. Define the set ∂Rn(vi)
to be all vertices w ∈ Rn(vi) that are adjacent to one of the deg (vi)
edges outside of Rn(vi) that were adjacent to vi. So ∂Rn(vi) is the
set of vertices through which a path in Rn(G) passes when entering or
exiting Rn(vi) ⊂ Rn(G). Note that |∂Rn(vi)| = |∂Hi|. For example,
if R is the replacement rule given in Figure 2 and w1 is as in Figure 3,
then Figure 6 depicts the two vertices in ∂R3(w1) with circles. To
determine the growth of diam (Rn(G)) (and the growth in complexity
of (Rn(G), 1)), we need to measure the distance between points in
∂Rn(vi). Hence we define the function

ai(n) = distRn(vi)(u, u′),

where u, u′ ∈ ∂Rn(vi) for u �= u′. By the symmetry of each Hi about
∂Hi, the above definition is independent of the choices of u and u′ in
∂Rn(vi).

Definition 2.5. A path σ in a replacement graph is called a simple
boundary connecting path if σ is a simple path with boundary vertices
for endpoints and no boundary vertices on its interior.

For each n, there is a path in Rn(vi) that realizes ai(n) and projects
via πn−1 to a simple boundary connecting path σi(n) in Hi. It is
extremely difficult to combinatorially determine the σi(n) given an
arbitrary replacement rule R since, in general, σi(n) �= σi(m) for
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FIGURE 6. The graph R3(w1).

n �= m. However, when the replacement rule is simple, ai(n) is
given by matrix multiplication using the matrix Ã defined below. (See
Lemma 2.7.)

Definition 2.6. A replacement rule R given by the graphs
H1, . . . , Hp is simple if there is a unique matrix Ã such that, for any
set of simple boundary connecting paths {σ1, . . . , σp}, where σi ⊂ Hi,
we have

Ã =
[

A L
0 1

]
=

⎡
⎢⎢⎣

N1(σ1) · · · Np(σ1) L(σ1)
...

. . .
...

...
N1(σp) · · · Np(σp) L(σp)

0 · · · 0 1

⎤
⎥⎥⎦ .

Let A denote the upper left p × p block of Ã. We call the matrix A a
path matrix of R. If A is primitive, i.e., Ak > 0 for some power k, then
R is called primitive.

In the case where a replacement graph Hi has only one boundary
vertex, and hence it has no path between distinct boundary vertices,
then the row N1(σi), . . . , Np(σi), L(σi) in the matrix Ã above is either
a row of zeros (when the boundary vertex of Hi is nonreplaceable) or
else a row in which all but one entry is a zero (when the boundary
vertex of Hi is replaceable).

The replacement rule in Figure 2 is simple and primitive. So if σ1 and
σ2 are simple boundary connecting paths in H1 and H2, respectively,
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then

Ã =

⎡
⎣N1(σ1) N2(σ1) L(σ1)

N1(σ2) N2(σ2) L(σ2)
0 0 1

⎤
⎦ =

⎡
⎣ 1 2 2

1 2 2
0 0 1

⎤
⎦ .

Lemma 2.7. For a simple replacement rule, we have

(1) a(n) = Ãnep+1,

where a(n) = [a1(n), . . . , ap(n), 1]T and ep+1 is the last column of the
(p + 1) × (p + 1) identity matrix.

Proof. Since R is simple, there is a unique matrix Ã such that for any
set of simple boundary connecting paths {σ1, . . . , σp}, where σi ⊂ Hi,
we have

Ã =

⎡
⎢⎢⎣

N1(σ1) · · · Np(σ1) L(σ1)
...

. . .
...

...
N1(σp) · · · Np(σp) L(σp)

0 · · · 0 1

⎤
⎥⎥⎦ .

For i = 1, . . . , p, let αi(n) be a path in Rn(vi) that realizes ai(n),
where vi is a vertex replaceable by Hi. Then

ai(2) = L(αi(2)) = L(σi) +
p∑

I=1

NI(σi)L(σI)

and

Nk(αi(2)) =
p∑

I=1

NI(σi)Nk(σI).

This implies

⎡
⎢⎢⎣

N1(α1(2)) · · · Np(α1(2)) L(α1(2))
...

. . .
...

...
N1(αp(2)) · · · Np(αp(2)) L(αp(2))

0 · · · 0 1

⎤
⎥⎥⎦ = Ã2.
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Similarly,

⎡
⎢⎢⎣

N1(α1(n)) · · · Np(α1(n)) L(α1(n))
...

. . .
...

...
N1(αp(n)) · · · Np(αp(n)) L(αp(n))

0 · · · 0 1

⎤
⎥⎥⎦ = Ãn.

Hence a(n) = Ãnep+1.

For the replacement rule given in Figure 2, the cube of the cor-

responding matrix Ã given on page 7 is
[

9 18 26

9 18 26

0 0 1

]
. One may verify

that a1(3) = 26 by measuring the distance between the two vertices of
∂R3(w1) in Figure 6.

Definition 2.8. Suppose A = [aij ] and B = [bij ] are p× p matrices.
We write

A ≥ B (resp. A > B) if aij ≥ bij for all i and j (resp. aij > bij).

We note that imposing simplicity on the replacement rule R is
stronger than we really need for the proof of the main result. Our
proof extends to rules R that are eventually simple:

Definition 2.9. Denote by M(R) the set of all possible path
matrices of a replacement rule R. We say R is eventually simple if
there exists an integer m and a unique path matrix A ∈ M(R) with
the property that B1 · · ·Bm ≥ Am for all Bi ∈ M(R).

However, to simplify the argument, we will restrict to simple, primi-
tive replacement rules.

3. Convergence results. Before we state our main result, let us
recall some facts about the Gromov-Hausdorff metric. For any metric
space X, distX will denote the metric on X. Let Z be a metric space.
For C ⊂ Z and ε > 0, let Cε = {z ∈ Z : distZ(z, C) < ε}.
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Definition 3.1. The Hausdorff distance between two nonempty
compact subsets A and B of Z is defined by

distHaus
Z (A, B) = inf{ε > 0 : A ⊆ Bε and B ⊆ Aε}.

The Hausdorff distance defines a metric on the set of all compact
subsets of Z.

We are now able to define the Gromov-Hausdorff distance. Informally,
when measuring the Gromov-Hausdorff distance between spaces X and
X ′, we place X and X ′ into some space in such a way that they are
as close together as possible and then measure the resulting Hausdorff
distance. Let S denote the collection of all isometry classes of compact
metric spaces.

Definition 3.2. The Gromov-Hausdorff distance between two com-
pact metric spaces X and X ′ is defined by

distGH
S (X, X ′) = inf

Z∈S
I,J

{ε > 0 : distHaus
Z (I(X), J(X ′)) < ε},

where I and J are isometric embeddings of X and X ′ into Z, respec-
tively.

The space (S, distGH
S ) is a complete metric space. Moreover,

distGH
S (X, X ′) = 0

if and only if X is isometric to X ′.

Definition 3.3. Let ε > 0. A finite subset S of a metric space X is
an ε-net of X if X = Sε.

In the proof of our main result (Theorem 3.5), we will use the
following:

Lemma 3.4. If X and X ′ are compact metric spaces having ε-
nets {x1, . . . , xn} and {x′

1, . . . , x′
n}, respectively, and |distX(xi, xj) −

distX′(x′
i, x

′
j)| < ε for all i, j, then distGH

S (X, X ′) ≤ 2ε.
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Recall that (Rn(G), 1) denotes the metric space Rn(G) normal-
ized to have diameter 1, i.e., every edge in (Rn(G), 1) has length
1/diam (Rn(G)). In this section we prove the following theorem.

Theorem 3.5. Let H1, . . . , Hp define a simple, primitive vertex
replacement rule R with p ≥ 2, and let G be a finite graph with at least
one replaceable vertex. Then the normalized sequence {(Rn(G), 1)}
converges in the Gromov-Hausdorff metric.

The proof of our theorem relies on Perron-Frobenius theory. We state
the needed results below. See [9] for details.

Theorem 3.6 (Perron-Frobenius). If A is a p × p nonnegative
primitive matrix, then the following hold :

(1) The matrix A has a real positive eigenvalue of algebraic multi-
plicity one which is greater than (in magnitude) its remaining p − 1
eigenvalues, and

(2) the matrix A has a positive eigenvector corresponding to that
eigenvalue.

Definition 3.7. The eigenvalue of the matrix A described in the
Perron-Frobenius theorem is called the maximal eigenvalue of A.

Theorem 3.8 (Frobenius). If A is a nonnegative primitive matrix
with maximal eigenvalue λ and row sums r1, . . . , rp, then

(2) ρ ≤ λ ≤ R,

where ρ = mini ri and R = maxi ri. Equality holds on either side of
inequality (2) if and only if all row sums of A are equal.

Corollary 3.9. Let A be a nonnegative primitive p × p matrix with
integer entries and p ≥ 2. Then the maximal eigenvalue of A is greater
than 1.

Throughout the remainder of the paper p ≥ 2. The next lemma
shows that for R simple and primitive, the ai’s grow at the same rate.



1012 J. PREVITE, M. PREVITE AND M. VANDERSCHOOT

Lemma 3.10. If the replacement rule R is simple and primitive,
then there are positive constants Ci,j, i, j = 1, . . . , p (depending on R)
so that

lim
n→∞

ai(n)
aj(n + m)

=
Ci,j

rm
,

where r denotes the maximal eigenvalue of the path matrix of R.

Proof. Since R is simple, then there is a unique matrix Ã such that
for any set of simple boundary connecting paths {σ1, . . . , σp}, where
σi ⊂ Hi, we have

Ã =
[

A L
0 1

]
=

⎡
⎢⎢⎣

N1(σ1) · · · Np(σ1) L(σ1)
...

. . .
...

...
N1(σp) · · · Np(σp) L(σp)

0 · · · 0 1

⎤
⎥⎥⎦ .

The eigenvalues of Ã are the eigenvalues λ1, . . . , λp of the path matrix
A together with λp+1 = 1. Since R is primitive, by the Perron-
Frobenius theorem (Theorem 3.6), A has an eigenvalue, say λ1, of
algebraic multiplicity 1 that is greater than (in modulus) all of its other
eigenvalues and has associated positive unit eigenvector v′

1.

Recall, a(n) = [a1(n), . . . , ap(n), 1]T . If Ã has a set of (p + 1)-
linearly independent real unit eigenvectors v1 = [v′

1, 0],v2, . . . ,vp+1

corresponding to λ1, λ2, . . . , λp+1, respectively, then there exist fixed
constants ci so that

(3) a(n) = c1λ
n
1v1 + · · · + cp+1λ

n
p+1vp+1.

Let vj,k denote the k-th component of vj . Then for i, j ∈ {1, . . . , p},

ai(n)
aj(n + m)

=
c1λ

n
1v1,i + · · · + cp+1λ

n
p+1v(p+1),i

c1λ
n+m
1 v1,j + · · · + cp+1λ

n+m
p+1 v(p+1),j

.

Dividing by λn+m
1 yields

ai(n)
aj(n + m)

=
c1(1/λm

1 )v1,i + · · · + cp+1 (λp+1/λm
1 )n v(p+1),i

c1v1,j + · · · + cp+1 (λp+1/λ1)
n+m v(p+1),j

.
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Since λ1 > 1 and λ1 > |λ�| for 
 = 2, . . . , p + 1, we have that

lim
n→∞

ai(n)
aj(n + m)

=
Ci,j

λm
1

,

where Ci,j = v1,i/v1,j . Since v′
1 is positive, each Ci,j > 0.

In the general case, one can use complex and generalized eigenvectors
to obtain a similar proof.

Let G be a graph containing a vertex vi which is replaceable by
Hi. Recall the set ∂Rn(vi) is the set of all vertices w ∈ Rn(vi) that
are adjacent to one of the deg (vi) edges outside of Rn(vi) that were
adjacent to vi, and the function ai is given by

ai(n) = distRn(vi)(u, u′),

where u, u′ ∈ ∂Rn(vi) for u �= u′. Define

bi(n) = sup
z∈Rn(vi)

{distRn(vi)(u, z) | u ∈ ∂Rn(vi)}.

By the symmetry of each Hi about ∂Hi, the above definition is
independent of the choices of u, u′ ∈ ∂Rn(vi). Clearly, ai(n) ≤ bi(n).
However, the lemma below shows that for R simple and primitive, all
of the ai’s and bi’s grow at the same rate.

Lemma 3.11. If the replacement rule R is simple and primitive and
r is the maximal eigenvalue of the path matrix of R, then there exist
positive constants K̃, κ1, and κ2 such that

κ1 ≤ ai(n)
bj(n)

≤ κ2,(4)

κ1

rm
≤ bi(n)

bj(n + m)
≤ κ2

rm
,(5)

and
κ1

rm
≤ ai(n)

bj(n + m)
≤ κ2

rm
(6)

for all i, j = 1, . . . , p and for all n > K̃.
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Proof. From Lemma 3.10, we have that

(7) lim
n→∞

ai(n)
aj(n)

= Ci,j ,

where Ci,j is a positive constant. Let k2 = maxi,j Ci,j + 1. The fact
that ai(n) ≤ bi(n) for all i = 1, . . . , p together with equation (7) imply
that there is an integer K such that

ai(n)
bj(n)

≤ k2

for all i, j = 1, . . . , p and all n > K.

We now show the left inequality in inequality (4). Let βj(n) be a path
in Rn(vj) which realizes bj(n). Note that πn−1(βj(n)) ⊂ Hj passes
through at most M = max� N(H�) replaceable vertices. If a replaceable
vertex w on πn−1(βj(n)) ⊂ Hj is in the interior of πn−1(βj(n)), then
w corresponds to a portion of βj(n) in Rn−1(w) of length ai(n− 1) for
some i = 1, . . . , p. Likewise, if the endpoint w of πn−1(βj(n)) which is
in ∂Rn(vj) is replaceable, then it corresponds to a portion of βj(n) in
Rn−1(w) that also has length ai(n − 1) for some i = 1, . . . , p. On the
other hand, if the endpoint w of πn−1(βj(n)) which is not in ∂Rn(vj)
is replaceable, then it will give rise to a portion of βj(n) in Rn−1(w) of
length bi(n − 1) for some i = 1, . . . , p.

Therefore, for all j = 1, . . . , p, we have

L(βj(n)) = bj(n) ≤ diam (Hj) + (M−1) max
�

a�(n− 1) + max
�

b�(n− 1).

This implies that, for all j = 1, . . . , p,

bj(n) ≤ (n − K) max
�

diam (H�) + max
�

b�(K)

+ (M − 1)
(
max

�
a�(n − 1) + · · · + max

�
a�(K)

)
.

By Lemma 3.10 there exists a constant W and an integer K so that,
for all n > K, we have

ai(n) ≤ Wa1(n)

for all i = 1, . . . , p. So

bj(n) ≤ (n − K) max
�

diam (H�) + max
�

b�(K)

+ W (M − 1) (a1(n − 1) + · · · + a1(K)) .
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As in Lemma 3.10, we may assume without loss of generality that
the path matrix A of R has a set of p−linearly independent real unit
eigenvectors. Equation (3) in the proof of Lemma 3.10 gives

(8) a�(j) = c1λ
j
1v1,� + · · · + cp+1λ

j
p+1v(p+1),�,

where the ci are fixed and r = λ1 is the maximal eigenvalue of A. Then,
for n > K, we have

n−1∑
j=K

a1(j)

= c1(λn−1
1 + · · · + λK

1 )v1,1 + · · · + cp+1(λn−1
p+1 + · · · + λK

p+1)v(p+1),1

≤ (p + 1)(max
�

|c�|) λn
1 − λK

1

λ1 − 1
.

Hence for n > K,

(9)

bj(n) ≤ (n − K) max
�

diam (H�) + max
�

b�(K)

+ W (M − 1)(p + 1)(max
�

|c�|) λn
1 − λK

1

λ1 − 1
.

Equation (8) and inequality (9) imply that there exist positive constants
k1 and K so that for all n > K,

k1 ≤ ai(n)
bj(n)

≤ k2

for all i, j = 1, . . . , p.

The above inequality along with Lemma 3.10 imply that there are
positive constants K ′, k′

1, and k′
2 such that

k′
1

rm
≤ bi(n)

bj(n + m)
≤ k′

2

rm

and

k′
1

rm
≤ ai(n)

bj(n + m)
≤ k′

2

rm
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for all i, j = 1, . . . , p and for all n > K ′, where r is the maximal
eigenvalue of the path matrix of R. Let K̃ = max(K, K ′), κ1 =
min(k1, k

′
1), and κ2 = max(k2, k

′
2).

For large n, we can use Lemma 3.10 to normalize each ai(n) to a1(n).
In particular, for any path η ⊂ G, define

f(η) = N1(η) + N2(η)C2,1 + · · · + Np(η)Cp,1,

where Ci,1 are the positive constants from Lemma 3.10. Using f , we
can identify those paths in G that give rise to distance minimizing paths
in Rn(G) when R is simple and primitive.

Definition 3.12. A path η in a graph G is called preminimizing if,
for any path η′ connecting the endpoints of η, we have f(η) ≤ f(η′).

Note that if η is preminimizing, then any subpath of η is premini-
mizing. Lemma 3.13 below shows that preminimizing paths give rise
to distance minimizing paths.

Lemma 3.13. Let G be a finite graph. There is a number K(G) so
that if ξ is a distance minimizing path in Rn(G) and n > K(G), then
πn(ξ) is preminimizing in G.

Proof. Let ξ be a distance minimizing path in Rn(G) such that
the endpoints w1 and w2 of η′ = πn(ξ) ⊂ G are nonreplaceable (or
not vertices). Suppose η′ is not preminimizing. Then there exists a
preminimizing path η ⊂ G having endpoints w1 and w2 and such that
f(η) < f(η′), and there is a path in Rn(η) connecting w1 and w2 having
length L(η) +

∑
i Ni(η)ai(n).

By Lemma 3.10,

lim
n→∞

L(η) +
∑

i Ni(η)ai(n)
a1(n)

= f(η).

Similarly, limn→∞(L(η′) +
∑

i Ni(η′)ai(n)/a1(n)) = f(η′). Thus, there
exists a constant K depending only on G and R so that for all n > K,
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we have L(η) +
∑

i Ni(η)ai(n) < L(η′) +
∑

i Ni(η′)ai(n) = L(ξ),
which contradicts the fact that ξ is distance minimizing. Therefore,
η′ = πn(ξ) is preminimizing.

If the endpoints of πn(ξ) are replaceable, apply the above argument
to the path πn(ξ) with the endpoints removed. The resulting path is
preminimizing. Hence the entire path πn(ξ) is preminimizing.

Remark 3.14. A consequence of the above proof is that if η and η′

are paths in G with common endpoints and f(η) = f(η′), then

lim
n→∞

L(η) +
∑

i Ni(η)ai(n)
L(η′) +

∑
i Ni(η′)ai(n)

= 1.

The idea in the proof of our main result is to use Lemma 3.4 to prove
that the sequence {(R�(G), 1)} is Cauchy in the Gromov-Hausdorff
metric by constructing an ε-net for each graph (R�(G), 1) and showing
that for large 
 the nets do not change very much. Since (S, distGH

S )
is a complete metric space, where S is the collection of all isometry
classes of compact metric spaces, then {(R�(G), 1)} converges in the
Gromov-Hausdorff metric.

For any finite graph G, define Δ0(G) to be the set of all midpoints of
edges that are adjacent to replaceable vertices in G. Clearly x ∈ Δ0(G)
is not a vertex. Since x ∈ Δ0(G) is not a replaceable vertex, then for
n ≥ 0 we can identify x ∈ Δ0(G) with Rn(x) ∈ Rn(G). For notational
purposes, we write Rn(x) as x(n) and Rn(Δ0(G)) as Δn(G). Note that
|Δn(G)| = |Δ0(G)| for all n. For example, if the replacement rule R
is as in Figure 2 on page 3 and initial graph G is as in Figure 3, then
Figure 7 points out the elements of Δ0(G) ⊂ (G, 1), Δ1(G) ⊂ (R(G), 1)
and Δ2(G) ⊂ (R2(G), 1) with arrows.

Before we begin, we illustrate the proof that {(R�(G), 1)} is Cauchy
using the replacement rule R and initial graph G from Figures 2 and
3, respectively. We first construct a net for each graph (R�(G), 1) for
all very large 
.
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(G, 1) (R(G), 1)

����

����

(R2(G), 1)

FIGURE 7. The elements of Δ0(G), Δ1(G) and Δ2(G) pointed out with arrows.

Since each point x ∈ Δ0(G) is within a distance of 1/3 to Δ0(G)\{x},
then Δ0(G) forms a 1/3-net of (G, 1). Similarly, Δ1(G) and Δ2(G)
form 1/3-nets of (R(G), 1) and (R2(G), 1), respectively. In fact, for all
n > 0, Δn(G) is a 1/3−net of (Rn(G), 1). If we require finer nets, then
notice from Figure 8 that Δ0(R(G)) is a 1/10-net of (R(G), 1) and for
all n > 0, Δn(R(G)) is a 1/10-net for (Rn+1(G), 1). If we require a
sequence of still finer nets, then we simply fix m sufficiently large and
use {Δ0(Rm(G)), Δ1(Rm(G)), Δ2(Rm(G)), . . . } as nets for the graphs
in the sequence {(Rm(G), 1), (R1+m(G), 1), (R2+m(G), 1), . . .}.

Once we have a sufficiently fine net for each graph (R�(G), 1), where

 is very large, we then show that these nets do not change very much
as 
 → ∞. Figure 7 illustrates that, for any pair x(0), y(0) in Δ0(G),
there is a corresponding pair x(n), y(n) in Δn(G) and that, for all
n > 0, the distance between x(n) and y(n) is well approximated by the
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(R(G), 1) (R2(G), 1)

FIGURE 8. The elements of Δ0(R(G)) and Δ1(R(G)) are pointed out.

distance between x(0) and y(0). In the proof below we show that, for
fixed m large enough and for all large n and n′, we have that∣∣∣dist(Rn+m(G),1)(x(n), y(n))− dist(Rn′+m(G),1)(x(n′), y(n′))

∣∣∣
is very small. By Lemma 3.4, the sequence {(R�(G), 1)} is Cauchy in
the Gromov-Hausdorff metric, and hence converges.

Theorem 3.15 (Theorem 3.5). Let H1, . . . , Hp define a simple,
primitive vertex replacement rule R, and let G be a finite graph
with at least one replaceable vertex. Then the normalized sequence
{(Rn(G), 1)} converges in the Gromov-Hausdorff metric.

Proof. Let ε > 0 be given. We first show that we may fix m large
enough so that Δn(Rm(G)) forms an ε-net of (Rm+n(G), 1) for all
sufficiently large n.

Let bmax(n) = maxi=1,... ,p bi(n). For each x(n) ∈ Δn(Rm(G)),
consider the ball B(x(n), bmax(n)+1) of radius bmax(n)+1 centered at
x(n) in the (unscaled) graph Rm+n(G). Let V (Rm(G)) denote the set
of all replaceable vertices in Rm(G). Since 2bmax(n) ≥ diam (Rn(v)) for
any replaceable vertex v, the union of these balls covers Rn(V (Rm(G)))
for all n ≥ 1. Moreover, since Rn+m(G) \ Rn(V (Rm(G))) contains no
replaceable vertices for all n and diam (Rn+m(G)) → ∞ as n → ∞,
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then for large enough n, the balls B(xm(n), bmax(n) + 1) form a cover
of all of Rn+m(G).

Now in order to prove that Δn(Rm(G)) forms an ε-net of the
normalized graph (Rn+m(G), 1), it remains to show that the scaled
balls B(x(n), (bmax(n) + 1/diam (Rn+m(G)))) have positive radius less
than ε. Since R is primitive, we may assume without loss of generality
that the initial graph G contains at least two replaceable vertices of
each type. Therefore, 2bmax(n + m) ≤ diam (Rn+m(G)). Hence

bmax(n) + 1
diam (Rn+m(G))

≤ bmax(n) + 1
2bmax(n + m)

.

Therefore, by Lemma 3.11, we may choose m large enough so that

0 <
bmax(n) + 1

2bmax(n + m)
< ε

for all n greater than some constant K1. Thus, we may fix m large
enough so that the set Δn(Rm(G)) forms an ε-net of (Rn+m(G), 1) for
all n > K1.

Let x and y be any arbitrary pair of points in Δ0(Rm(G)). We now
show that when m is fixed as above, then for all large n and n′, we
have∣∣∣dist(Rn+m(G),1)(x(n), y(n))− dist(Rn′+m(G),1)(x(n′), y(n′))

∣∣∣ < ε.

Let K2 be the constant K(Rm(G)) from Lemma 3.13. Suppose n >
max(K1, K2). Let γ ⊂ Rm(G) be the projection via πn of a path
realizing the diameter of Rn+m(G), and let η be the projection of a
distance minimizing path between x(n) and y(n). In general, these
paths are preminimizing, by Lemma 3.13, but not necessarily unique.
However, in light of Remark 3.14, we may as well assume that for any
two points x = x(0) and y = y(0) in Δ0(Rm(G)), there is a unique
preminimizing path η in Rm(G) between them such that for n large
enough, any path realizing distRn+m(G)(x(n), y(n)) projects via πn to
η. Similarly, we may assume that γ is unique.

Since γ has at most two replaceable endpoints, then we have

L(γ) +
∑

i

Ni(γ)ai(n) ≤ diamRn+m(G)

≤ L(γ) +
∑

i

Ni(γ)ai(n) + 2bmax(n).
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Hence,

L(η) +
∑

i Ni(η)ai(n)
L(γ) +

∑
i Ni(γ)ai(n) + 2bmax(n)

≤ dist(Rn+m(G),1)(x(n), y(n))

(10)

≤ L(η) +
∑

i Ni(η)ai(n)
L(γ) +

∑
i Ni(γ)ai(n)

.

So Lemmas 10 and 11 imply
(11)

lim sup
n→∞

dist(Rn+m(G),1)(x(n), y(n)) ≤ lim sup
n→∞

(
L(η)+

∑
i
Ni(η)ai(n)

a1(n)

)
(

L(γ)+
∑

i
Ni(γ)ai(n)

a1(n)

)

=
f(η)
f(γ)

and

lim inf
n→∞ dist(Rn+m(G),1)(x(n), y(n))

(12)

≥ lim inf
n→∞

(
L(η)+

∑
i
Ni(η)ai(n)

a1(n)

)
(

L(γ)+
∑

i
Ni(γ)ai(n)+2bmax(n)

a1(n)

)

=
f(η)

f(γ) + 1
κ1

.

Recall that as m increases f(γ) → ∞. Therefore, inequalities (11)
and (12) imply that for fixed m large enough there exists a constant
K3 (depending only on ε) so that for all n, n′ > K3, we have

(13) |dist(Rn+m(G),1)(x(n), y(n))− dist(Rn′+m(G),1)(x(n′), y(n′))| < ε.

Hence, by Lemma 3.4,

distGH
S

[
(R�(G), 1), (R�′(G), 1)

]
≤ 2ε
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for all 
, 
′ > m + max(K1, K2, K3). In other words, {(R�(G), 1)} is
Cauchy. Since (S, distGH

S ) is complete, there is a compact metric space
X to which (R�(G), 1) converges as 
 → ∞.

H                              H                              G1 2

FIGURE 9. A replacement rule R = {H1, H2} and an initial graph G.

FIGURE 10. (R(G), 1), (R2(G), 1), and (R3(G), 1).

FIGURE 11. Peter’s cross.



LIMITS OF VERTEX REPLACEMENT RULES 1023

4. Examples.

Example 1. In our first example, the replacement rule R (Figure 9)
has path matrix

[
1 2

1 2

]
. A few iterations of the replacement rule are

shown in Figure 10 and the limit space of the sequence {(Rn(G), 1)} is
depicted in Figure 11.

Example 2. For our second example, the replacement rule R (Figure
12) has path matrix

[
2 3

2 1

]
. A few iterations of the replacement rule are

shown in Figure 13 and the limit space of the sequence {(Rn(G), 1)} is
depicted in Figure 14.

H1 H2 G

FIGURE 12. A replacement rule R = {H1, H2} and an initial graph G.

FIGURE 13. (R(G), 1), (R2(G), 1), and (R3(G), 1).
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FIGURE 14. A doily.

Example 3. In this example, the replacement rule R (Figure 15)
has path matrix

[
2 1

1 2

]
. A few iterations of the replacement rule are

shown in Figure 16 and the limit space of the sequence {(Rn(G), 1)} is
depicted in Figure 17.

H 2H 1 G

FIGURE 15. A replacement rule R = {H1, H2} and an initial graph G.

FIGURE 16. (R(G), 1), (R2(G), 1), and (R3(G), 1).



LIMITS OF VERTEX REPLACEMENT RULES 1025

FIGURE 17. A modified Sierpinski tetrahedron.

Example 4. In our final example, the replacement rule R (Figure 18)
has path matrix A =

[
0 2

1 2

]
. Note that, although A is not positive, it is

primitive since A2 is positive. Figure 19 shows a few iterations of the
replacement.

1                                                         2H                                    H  G  

FIGURE 18. A replacement rule R = {H1, H2} and an initial graph G.

FIGURE 19. (R(G), 1), (R2(G), 1), and (R3(G), 1).
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