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CAUCHY PRODUCTS OF POSITIVE SEQUENCES
M. BADRI AND P. SZEPTYCKI

ABSTRACT. Two elementary properties of positive sequences
(of weights) are studied that correspond to properties of the re-
producing kernels (being generalized Bergman kernels), and of
the weighted shifts (being hyponormal), in the space of analytic
functions in the disk determined by the sequence. Both prop-
erties are inherited by the Cauchy products (corresponding to
the products of reproducing kernels).

1. Introduction. The Cauchy product of two sequences (a,), (by) is
defined by

(1.].) Cp = Zan—lbl-
=0

It is of interest to study various properties of sequences (ay,), (b,) which
are inherited by the sequence (c,). In this note we consider two such
properties of positive sequences (t,):

¢ 1/n
(1.2) lim inf ( inf —* ) >1
n—00 E>1 tgqn
and, logarithmic concavity,
(1.3) > tpatprr, (k=1,2,...).

Properties (1.2) and (1.3) arise in the following Hilbert setting.

For a sequence (t,) of positive numbers such that supt,/t,+1 < 00,
let H(t,) be the space of analytic functions in the unit disk, defined by
H(tn) ={f =0 f(n)z" 325 [f(n)]*/tn < oo}

H(t,) is a Hilbert space with scalar product (f,g) = Yo, f(n)g(n)/
tn, with the orthonormal basis e, (2) = v/t,2" and the reproducing kernel

K, (z,w) = 3220 tn (20)".
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The operator T, of multiplication by z in H(¢,) can be written in the
form T,e, = v/t /tni1€nt+1 and is therefore a weighted shift.

Properties of H(t,), of K, and of T, in H(t,), correspond to
properties of (t,). The Cauchy product of sequences corresponds to
the pointwise product of reproducing kernels, and the questions about
sequences are equivalent to ones about reproducing kernels.

(1.2) (for a sequence with bounded quotients) corresponds to K,
being a generalized Bergman kernel [1, 2]. It can be shown that this
property is inherited by products [1]. In this case the question about
sequences can be settled in a Hilbert space setting, nevertheless an
elementary solution is of some interest.

We also note that the sequence s,, = infy>i ty/tyn satisfies the in-

equality Spim > SnSm and, as in [3], one can conclude that lim,, 5711 "

exists, possibly as +oo. Hence limit inferior in (1.2) could be replaced
by limit.

Logarithmic convexity of (¢,) corresponds to T, being hyponormal—it
is not clear, at least for the time being, that this property is preserved
by products of reproducing kernels. Thus, in this case, a positive
answer of the question concerning sequences yields a contribution towards
understanding of the Hilbert space setting.

Some additional comments about the operator theoretical aspects and
more details can be found in [1].

2. The main result. This section is devoted to the proof of the
following theorem.

THEOREM. Let (a,,) and (b,) be two sequences of positive numbers.

(i) If both (an) and (b,) satisfy (1.2), then so does their Cauchy
product.

(ii) If (an) and (b,) are logarithmically concave and if (c,) is the
Cauchy product of (a,) and (b,), then c2 — cp_1Cny1 > aoanbob, for
all n > 0. In particular, (c,,) is logarithmically concave. The above
inequality is the best possible.

PROOF. (i). Let € > 0. (1.2) implies existence of n(e) such that, for all
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k and for all n > n(e),
(2.1) ik < (1—¢)""ar, and  bpip < (1—¢e) "b.

We will establish a similar inequality for ¢, 1 for large n. Let n > 2n(¢)
and suppose first that k > n(e).

Write ¢g4r, in the form

k+n k n—1 n+k
Chtn = E Akn—1by = ( E + E + E )ak+n71bl-
1=0 1=0 I=k+l I=n

In the first and in the third sum we write agipn—ib; < (1 — &) "ar_;b;
and agyn_iby < (1 —€) ™agin_1bi_n; both sums can be bounded by
2(1 — &) "ey.

The middle sum is 0 when k£ + 1 < n — 1, otherwise let s be the least
integer such that n — 1 < sn(e) and write the middle sum in the form

n—1 s—2 (r+1)n(e) sn(e)
(2.2) Z agn—1b < Z Z Aptn—1b + Z Ak4n—1br
I=k+1 r=1l=rn(e)+1 I=(s—1)n(e)+1

(here we use the inequality & > n(e)). The double sum is 0 when s = 2
(notice that s > 2).

In the double sum in (2.2) we use (2.1):

—n+rn(e)

Ahtn—t < (1 —¢) At rn(e)—1> b < (1) b

adding up to the bound (s — 2)(1 — &)"c.

In the second term in (2.2) we write

b < (1—e) = mEh 1y,

(1 _ 8)—n—i—(s—l)n({-:)

Ak tn—1 < Ot (s—1)—1s

(here again we use k > n(e)), getting the bound (1 — &)"c.
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Adding these up,

(23)  cpin < (s+1)(1— )"k < ([’;(—;)1] + 2> (1— &) e,

where [z] denotes the largest integer contained in z.

When k < n(e) we take n > 3n(e) and, using (2.3), can write

Ck+n = Ck4n(e)+n—n(e)

(2.4) < ({%} i 2> (1 = &)=nHn(e) Ck-;:(s) o
S An(E)Ck:(]- - 6)7n,

where

Anle) = ([%] +2>(1 C @ gy SEHn)
) 1<k<n(e) Ck

(2.3) and (2.4) give
(2.5) Cntk < pn(e)(1 =€) "¢, forn >3n(e) andall k>1,

where 1, (¢) = max (A, (¢), (n — 1)/n(e) + 2).
Observe that lim,, o ftn (6)1/” = 1. It follows that

Ck

> (1—¢€)"un(e)™ forallk>1 andn > 3n(e)
Cn+k

and that

c 1/n
lim inf ( inf —=* >1—e.
n—o0 k>1 Cpyk

(ii). Observe that c2 is a sum of n? terms and c,1¢, 1 is a sum of
n? — 1 terms. Not all of the terms in these sums can be compared one
with one, some of them have to be compared in pairs: these comparisons
leave an extra term as indicated in the statement. To carry out the
details of the argument we note that t% > tg_1tk+1 implies

(26) trflts+1 S trts



CAUCHY PRODUCTS 355

forl1 <r<s.

To prove that ch > Cp—1Cn+1, We write

(27) Ci = Zalei—l +2 Z axab, _kbn_g,
0<k<I<n
n—1n+1
(28) Cn—1Cn+1 = Z Z akalbn—k—lbn—l+1
k=0 [=0

and record a consequence of (2.6),

(2.9) araibp_gnn_; + ak—1a141bp_1—1bp_k41

Z akalbn—k—i-lbn—l—l + ak—lal+1bn—lbn—ka

valid whenever 1 <k <[ <n—1.

Indeed, letting ara; = ar—1a141 + €,bn_kbn_y = bp_ki1bn_i—1 +n,
e,n > 0, we find that the difference between the left and the right sides
of (2.9) is en.

We can now compare term by term (2.7) with (2.8). The terms in (2.7)
of the form agarb,b,,_x or a,arb,_rby can be compared with terms in
(2.8) as follows (using 2.6)):

(2.10) a0akbrbn_r > agarbpi1bp_p—_1, 0<k<n—1,
‘ anakbn—kbo > an—i—lak—lbn—kbOa 1 < k <n.

(2.10) takes care of all terms in (2.8) which contain a,41 or b,41, of
the two terms in (2.7) of the form a2b?,a2b? and of half of the terms

agarbpbn, 1k, 1 <k <n -1, and a,arbob, ,1 <k <n—1.
The term 2aga,byb, is not affected by this step.
Next, by (2.9),

(2.11)
2,2 2 2
apby g+ ap—10p+1bp_g—1bp_py1 < apbp_g—1bn_py1 + ar_1ax41b5, _p,

which includes the squares in (2.7) remaining from (2.10), one half of the
terms ag_1ak+1bn—k+1bn—k—1 in (2.7) and all of the terms containing a?
or b2_, in (2.8).
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For every term akart1bpn—rbn—k—1 in (2.7) there is a corresponding
identical term appearing once in (2.8), 0 < k < n—1, and, since the terms
agaibyby,_1 and a,_ja,bpb; have already appeared once in (2.10), they
are gone from (2.7). We are left with one of each of axar41bn—kbn—k—1,
1<k <mn-—2,in (2.7) to be accounted for in the next step.

We next write, for s =1,2,...,n — 2, using (2.9),

ak:ak:+sbnfkbnfk:fs + ak:flak:+s+1bnfk:fsflbnfk+l
(212) > akak+sbnfkfsflbn7k+1 + akflakJrerlbnfkbnfkfs;
1<k<n-s-—1,

which includes all terms in (2.8) with indices of a differing by s, those of
b differing by s + 2, and those with indices of b differing by s and those
of a by s+ 2.

On the left-hand side we see all the terms in (2.7) with indices of a and
b differing by s + 2, each appearing once, and with indices differing by s
and taking values between 1 and n — 1. This includes all terms left over
from the step corresponding to s — 2 except for those with indices 0 and
n—those are taken care of in (2.10).

The step before the last is

a10n—2b,—1b2 + apan—1b1b, > a1a,—2b1by, + apan—1b,—1b2

20y 1by 201 + aranbob, 1 > aza, 1boby, 1 + aranb, 201,
and the last step is
a1an_1bp_1b1 + aganbobn, > a1an_1bob, + aganbn_1b;.

The term aga,bob, appearing twice in (2.7) has been used only once in
the last step, and is left over as claimed in (ii). O
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