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COMPLEX TRANSFORMATIONS OF SOLUTIONS OF
GENERALIZED INITIAL VALUE HEAT PROBLEMS

L.R. BRAGG

ABSTRACT. Let {zi}n
i=1 denote n complex variables.

Let z = (z1, . . . , zn), D = (D1, . . . , Dn) with Djφ(z) =
∂ϕ(z)/∂zj , and let P (D) be a multinomial partial differen-
tial operator in the Dj . Using complex translations and quasi
inner products, solutions are constructed for initial value gen-
eralized heat problems of the form

Ht(z, t) = P (D)H(z, t), H(z, 0) = ϕ(z)

in which ϕ(z) is entire with suitable growth. Growth bounds
are obtained for the H(z, t) and these, in turn, are used to
construct solutions of higher order and other types of well-
posed and ill-posed evolution problems. Applications are
given for special equations.

1. Introduction. Let zj = xj + iyj denote a complex variable,
1 ≤ j ≤ n. Let z = (z1, . . . , zn), D = (D1, . . . , Dn) in which
Djϕ(z) = ∂ϕ(z)/∂zj (when n = 1, z and D are assigned their usual
meanings). Let P (D) be a multinomial partial differential operator in
the Dj with constant coefficients. We shall primarily be concerned with
the following:

(a) The construction of a solution of the generalized heat problem

(1.1) Ht(z, t) = P (D)H(z, t), H(z, 0) = ϕ(z)

in which ϕ(z) is entire and of suitable growth, and

(b) the construction of solutions of higher order and other well-posed
and ill-posed evolution type problems in terms of the H(z, t).
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The mathematical tools to be used for these purposes are complex
translations, the quasi inner product [8] and entire and analytic func-
tions of differential operators. The growth bounds on the ϕ(z) (and
hence the H(z, t)) will play a vital role in these considerations. Appli-
cations will be made to a polynomial representation of a solution of a
generalized heat problem, the solution of a generalized Euler-Poisson-
Darboux problem, and to a Sobolev type problem. Lastly, two exam-
ples will be given in which the complex transformations reduce to real
transformations (when the zj are taken to be real) and the entireness
requirements on ϕ(z) can then be removed. These transformations
apply to their counterparts in Banach spaces.

In order to view this research in the broad scheme of partial dif-
ferential equations, it is useful to give a brief sketch of the historical
development of complex and real transmutations. Stated simply, a
transmutation is an integral transformation that connects the solution
of one problem in partial differential equations to the solution of an-
other such problem. The origins of complex transmutation methods
can be found in the studies of E.T. Whittaker [33] (also, see [34]).
His methods were extensively researched and broadened in scope by S.
Bergman (see [2]). The Whittaker-Bergman operator now takes on a
central role in function theoretic methods (see [23] for a discussion of
this, its applications, and other related methods). More recent devel-
opments in the function theoretic approach and their applications can
be found in [1]. The Cauchy integral formula and numerous modifi-
cations of it are at the heart of the function theoretic approach. The
notion of a real transmutation was introduced by J. Delsarte [19, 20]
and extended and applied by J.L. Lions [25, 26]. In 1967, the author
and J.W. Dettman initiated the development of the method of related
partial differential equations for constructing a wide class of transmu-
tations ([6], [10–12], [21]). The “heat” equation takes on a central
role in this work. Other methods for constructing transmutations in-
clude generalized translations (see Carroll [17–18]) and the method of
separation of variables [16]. Real transmutations have found applica-
tion in the construction of fundamental solutions of partial differential
equations ([5], [11–12]), the construction of solutions of abstract differ-
ential equations ([17–18], [22]), the solution of control problems [32],
and the development of function theories for a variety of standard and
singular partial differential equations [13–14].
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As will be seen, the quasi inner product (qip) is simply another, al-
beit convenient to use, version of the Cauchy integral formula. The use
of qip’s along with the solutions of the generalized heat problem (1.1)
for building up to solutions of other types of evolution problems com-
bines some of the key ingredients of the function theoretic approach
and the method of related partial differential equations. It will be
seen that this approach permits us to handle a wide variety of solution
representation questions for complex and real Cauchy problems by re-
ducing them to questions about the solutions of associated ordinary
differential equations. While this paper will focus upon the solution
representation problem, the approach should also be viewed as provid-
ing a framework for carrying out further studies in such areas as (i)
the well and ill-posedness of Cauchy problems, (ii) polynomial repre-
sentations of solutions of Cauchy problems, (iii) the weakening of the
analyticity (entireness) requirements on the data and (iv) the usual
related questions when the variables zj are taken to be real.

In §2, we review the definition and properties of the qip and then
use it to express certain exponential and other functions in forms that
will be more suitable for later purposes. Results on the entireness
of properties of qips will be given in §3 and these will be invoked in
subsequent sections to infer the existence of integrals in the complex
transformations. The generalized heat problem will be treated in
§4. Solution representations and growth bounds will be obtained
and a proof will be given to establish the validity of the solution
construction technique. A series representation problem closely related
to one considered in [30] will be discussed, and an example that
involves an operator P (D) with variable coefficients will also be given
to indicate that this approach can be extended to apply to numerous
other types of “heat” problems. The result of §4 will be applied in §5
to construct formulas for evaluating entire and analytic functions of the
operator P (D) acting on entire data. Throughout §4 and §5, symbolic
operators will be used to simplify the exposition. §6 is concerned
with hypergeometric type Cauchy problems (including a generalized
Euler-Poisson-Darboux problem), and §7 covers the application of a
related ordinary differential equation technique for obtaining solution
representations for two additional Cauchy problems, one of which has
the Sobolev type. In the case of the Sobolev problem, three different
ways of expressing the solution operator will lead to three different
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solution representations. Finally, §8 provided examples of related
equations in which the transformations involved reduce to real ones.
In these cases, the entireness requirement on the data is dropped and
results for abstract versions of these problems are given.

2. Quasi inner products and associated identities. Let f(z1)
and g(z2) denote analytic functions of z1 and z2 in open disks D1 and
D2, each centered at the origin, with

f(z1) =
∞∑

n=0

anzn
1 and g(z2) =

∞∑
n=0

bnzn
2 .

For z1 ∈ D1, z2 ∈ D2, we define the quasi inner product (qip) of f(z1)
and g(z2), namely f(z1) ◦ g(z2), by means of the relation

(2.1) f(z1)◦g(z2) = (2π)−1

∫ 2π

0

f(z1e
iθ)g(z2e

−iθ)dθ =
∞∑

n=0

anbnzn
1 zn

2 .

As was noted in [8], this defines a type of convolution of f(z1) and g(z2).
If f(z1) and/or g(z2) are analytic functions of two or more variables,
we use underscores to designate the variables or parameters being used
in the formation of the qip. Thus, we write

f(z1, z2) ◦ g(z3, z4, z5)

to denote

(2π)−1

∫ 2π

0

f(z1e
iθ, z2)g(z3, z4e

−iθ, z5)dθ.

In this case, the an’s and the bn’s are, respectively, functions of z2 and
of z3 and z5.

With the complex change of variables s = eiθ in (2.1), that relation
becomes

(2.2) f(z1) ◦ g(z2) = (2πi)−1

∫
|s|=1

f(z1s)g
(z2

s

)ds

s

which is just a form of the Cauchy integral formula. An analogous
formula was used by J. Hadamard to discuss the singularities of the
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analytic function
∑∞

n=0 anbnzn in terms of the singularities of f(z) and
g(z) [31]. From [8], we note that the binary operation ◦ is commutative
and distributive over addition but is not, in general, associative.

Similarly, if p and q are positive integers with (p, q) = 1, we define
the generalized qip

f(z1)p ◦ qg(z2)

by the relation

(2.3)

f(z1)p ◦ qg(z2) = (2π)−1

∫ 2π

0

f(z1e
piθ)g(z2e

−qiθ)dθ

=
∞∑

n=0

aqnbpnzqn
1 zpn

2 .

The operation p ◦ q is distributive over the addition but is not commu-
tative or associative. However, we do have

(2.4) f(z1)p ◦ qg(z2) = g(z2)q ◦ pf(z1).

We will provide theorems on the entireness properties of these qips in
§3.

Now, let a and b denote complex parameters with |b| < 1. We note
that

eab =
∞∑

n=0

anbn

n!
= ea ◦ 1

1 − b
.

But since |b| < 1, we have 1/(1− b) =
∫ ∞
0

e−σebσdσ. After interchang-
ing orders of integration, we can write

(2.5) eab =
∫ ∞

0

e−σ(ea ◦ ebσ)dσ.

Also, we see that

(2.6) eabp

= ea
p ◦ 1

1
1 − b

=
∫ ∞

0

e−σ(ea
p ◦ 1e

bσ)dσ.

If f(z) is entire in z of small growth (say ρ < 1), we have
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(2.7)

f(ab) = f(a) ◦ 1
1 − b

=
∫ ∞

0

e−σ(f(a) ◦ ebσ)dσ,(a)

f(abp) =
∫ ∞

0

e−σ(f(a)p ◦ 1e
bσ)dσ.(b)

The conditions on f(z), as they pertain to Cauchy problems will be
considered in §5. Let us note further that

(2.8)

f(ab) =
∫ ∞

0

e−σ(f(aλ) ◦ ebσ/λ)dσ,(i)

f(abp) =
∫ ∞

0

e−σ(f(aλ)p ◦ 1e
bσ/λ1/p

)dσ,(ii)

in which λ is a positive parameter with |b| |λ < 1 or |b|| λ1/p < 1. It is
also easy to check that

(2.9)

f(a) ◦ g(bc) = f(a) ◦ g(bc),(a)
f(ab) ◦ g(c) = f(a) ◦ g(bc),(b)

with appropriate restrictions on b in (2.9). These will prove to be
convenient later in writing solution operators in alternative ways.
Finally, we note some special cases of (2.6) and (2.8) that will be useful
in §8:

(2.10)

I0(ab) = e(ab)/2 ◦ e(ab)/2

= (2π)−1

∫ 2π

0

eab cos θdθ,(a)

eab2 =
∫ ∞

0

e−σ(eab ◦ ebσ)dσ

=
∫ ∞

0

e−σI0(2
√

aσb)dσ, a > 0.(b)
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In these, I0 denotes the usual modified Bessel function of index 0.

3. Entireness and QIP’s. In [8], we noted the following results:
(a) If f(z1) and g(z2) are analytic functions in the open disk’s D1

and D2 respectively, then f(z1) ◦ g(z2) is analytic in z1z2 (for z1 ∈
D1, z2 ∈ D2) and, similarly, f(z1)p ◦ qg(z2) is analytic in zq

1zp
2 and

(b) if f(z1) is analytic in z1 in D1 and g(z2) is entire in z2, then,
for z1 ∈ D1, f(z1) ◦ g(z2) is entire in z1z2. Our study of complex
transformations of solutions of heat equations will require that we make
use of entire functions of several complex variables. Such functions will
enter as data functions and they will appear in the formation of various
qip’s. We will primarily be concerned with the growth properties of
these functions. There are, however, two distinct notions of growth
associated with these: growth in the individual variables and overall
growth (See [28, Chapter 3]). Since we will require both notions,
we provide results about them in this section. Let us first recall the
following:

Definition 3.1. Let f(ξ) =
∑∞

n=0 anξn in which ξ denotes a single
complex variable. Then f(ξ) is entire and of growth (ρ, τ ) if

(3.1) lim sup
n→∞

n

eρ
|an|ρ/n = τ ([3], [24]).

This implies the existence of a positive constant M so that

(3.2) |f(ξ)| ≤ Meτ |ξ|ρ ∀ complex ξ.

Throughout this section, we assume that the ρ’s and the τ ’s are strictly
positive.

We now give results on the overall growth:

THEOREM 3.1. Let f(z1) be entire in z1 of growth (ρ1, τ1), and let
g(z2) be entire in z2 of growth (ρ2, τ2). If ρ1 = αρ2 with 0 < α ≤ 1,
then f(z1) ◦ g(z2) is entire in z1z2 of growth (ρ, τ ), where

ρ = ρ1ρ2/(ρ1 + ρ2)
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and

τ =
(ρ1 + ρ2

ρ2

)
τ

ρ2/(ρ1+ρ2)
1

(ρ2τ2

ρ1

)ρ1/(ρ1+ρ2)

.

PROOF. Given ε > 0, it follows by (3.1) that there exists a positive
integer N such that if n ≥ N , then

(3.3)
|an| ≤ (ρn/ρ1

1 [e(τ1 + ε)]n/ρ1)/nn/ρ1

|bn| ≤ (ρn/ρ2
2 [e(τ2 + ε)]n/ρ2)/nn/ρ2 .

If we multiply these together, use the value of α and simplify, we get
(3.4)

|anbn| ≤ (αρ2)n/αρ2ρ
n/ρ2
2 en(1/nρ2+1/ρ2)(τ1 + ε)n/αρ2(τ2 + ε)n/ρ2

nn(1/αρ2+1/ρ2)

for n ≥ N . If we let ω = α/(1+α), then some algebraic manipulations
permit us to show that the second member of (3.4) can be expressed
in the form

(3.5)

[(ρ2ω)n/ρ2ωen/ρ2ω(1 + α)n/ρ2ω(τ1 + ε)n/ρ2α
(

τ2+ε
α

)n/ρ2

nn/ρ2ω

=

{
(ρ2ω)n/ρ2ω

[
e(1 + α)(τ1 + ε)1/(1+α)

(
τ2+ε

α

)ω]n/ρ2ω}
nn/ρ2ω

.

The stated result follows from the last member of this by replacing ω
by α/(α + 1) and α by ρ1/ρ2.

Example. We note that ez1 and ez2 are both entire of growth (1, 1).
By Theorem 3.1, ez1 ◦ez2 has growth (1/2, 2). But ez1 ◦ez2 = I0(2z1z2)
and it is easy to check, using Definition 3.1 directly, that I0(2z1z2) has
growth (1/2, 2) in z1z2.

By analogous but simpler computation, one can prove

THEOREM 3.2. Let f(z1) be analytic in z1 for |z1| < R, 0 < R < ∞,
and let g(z2) be entire of growth (ρ, τ ) in z2. Then, for |z1| <
R, f(z1) ◦ g(z2) is entire in z1z2 of growth (ρ, τ/Rρ).
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In the proof of Theorem 3.2, the restriction imposed on z1 is necessi-
tated by the requirement that the integral in (2.1) be well defined for
all z1z2. In practice, one can select z1 ∈ D1, z1 	= 0, and then choose
z2 so that z1z2 takes on the value one wishes to use.

By using calculations similar to those employed in the proof of
Theorem 3.1, we can prove

THEOREM 3.3. Let f(z1) be entire in z1 of growth (ρ1, τ1), and let
g(z2) be entire in z2 of growth (ρ2, τ2), where ρ1 = αρ2 with 0 < α ≤ 1.
Then f(z1)p ◦ qg(z2) is entire in zq

1zp
2 of growth (ρ, τ ), where

ρ = ρ1ρ2/[pρ1 + qρ2]

and

τ =
(pρ1 + qρ2)

ρ2

(
τ1

q

)qρ2/(pρ1+qρ2)(ρ2τ2

pρ1

)pρ1/(pρ1+qρ2)

.

THEOREM 3.4. Let f(z1) be analytic in z1 for |z1| < R, and let g(z2)
be entire in z2 of growth (ρ, τ ). Then, for |z1| < R, f(z1)p ◦ qg(z2) is
entire in zq

1zp
2 of growth (ρ/p, τ/(R)ρq).

For the case of the growth in the individual variables, we make use
of (3.2)

THEOREM 3.5. Let f(z1) be entire in z1 of growth (ρ1, τ1), and let
g(z2) be entire in z2 of growth (ρ2, τ2). Then there exists a positive
constant M such that

|f(z1)p ◦ qg(z2)| ≤ Meτ1|z1|ρ1+τ2|z2|ρ2
.

PROOF. If

|f(z1)| ≤ M1e
τ1|z1|ρ1 and |g(z2)| ≤ M2e

τ2|z2|ρ2
,
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then it readily follows that

|f(z1)p ◦ qg(z2)| ≤ (2π)−1

∫ 2π

0

|f(z1e
piθ)| |g(z2e

−qiθ)|dθ

≤ (2π)−1

∫ 2π

0

(M1e
τ1|z1epiθ |ρ1 )(M2e

τ2|z2e−qiθ|ρ2 )dθ

= Meτ1|z1|ρ1+τ2|z2|ρ2 with M = M1M2.

In the sections to follow, we will employ entire data functions
ϕ(z1, . . . , zn) that satisfy a condition of the form

(3.6) |ϕ(z1, . . . , zn)| ≤ Me

∑n

j=1
τj |zj |ρj

,

with 0 < ρj < 1, j = 1, 2, . . . , n, and τj > 0, j = 1, . . . , n.

We denote the class of all such entire functions by ∝(z). Since we
can construct a variety of elements of ∝(z) by applying qips to entire
functions of single complex variables, it follows from Theorem 3.5 that
∝(z) 	= ∅.

In view of the fact that |zj + ξj |ρj ≤ |zj |ρj + |ξj |ρj for zj and ξj

complex and 0 < ρj < 1, it follows that if ϕ(z1, . . . , zn) ∈ ∝(z) then

(3.7) |ϕ(z1 + ξ1, . . . , zn + ξn)| ≤ Me
(
∑n

j=1
τj |zj |ρj +

∑n

j=1
τj |ξj |ρj )

for some positive constant M and some set of ρj , j = 1, . . . , n, with
0 < ρj < 1. The inequality (3.7) will be used in §4 for imposing bounds
on complex translations of ϕ(z1, . . . , zn). In some cases of special
interest, one can select some of the ρj to have the value 1 provided
that the corresponding τj are suitably restricted (see the remark in
§4).

4. Generalized heat problems. Taking z, D, and P (D) as in
the introduction, we now wish to construct a solution of the complex
generalized heat problem (1.1) in which ϕ(z) ∈ ∝(z). To simplify the
exposition, we will use symbolic operators to denote solutions of (1.1).
Thus, we can write

(4.1) H(z, t) = etP (D)ϕ(z)
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to denote such a solution. If P (D) can be expressed in the form∑N
l=1 Pl(D) in which the Pl(D) are multinomials in the Dj , then we

write, as usual,

(4.2)

H(z, t) =
N∏

l=1

etPl(D)ϕ(z)

=
{ N−1∏

l=1

etPl(D)
}{

etPN (D)ϕ(z)
}
.

The Pl(D) in this may involve positive integer powers of some one of
the Dj , or they may involve products of powers of different Dj ’s. For
our purposes, it suffices to show how one can construct a solution of
(1.1) corresponding to the following cases: (I.) P (D) = μDp

1 and (II.)
P (D) = μDp

1Dq
2. In these, μ is a complex number and p and q are

positive integers. In view of the commutativity of the exponentials
etPl(D) in (4.2), repeated applications of our methods will permit the
evaluation of the last member of (4.2).

Our task in this section is to re-express the right hand member
of (4.1) and/or (4.2) in terms of standard analytical tools that will
permit us to establish rigorously that we do obtain a solution of (1.1).
The expression obtained will also permit us to give growth bounds
on |H(z, t)|. For these purposes, we will make use of the following
relations:

(4.3)

(a)
eaDj · ϕ(z1, . . . , zj , . . . zn) = ϕ(z1, . . . , zj + a, . . . , zn)

a complex (generalized translation),

(b)
eaDp

j · ϕ(z1, . . . , zj , . . . , zn)

= (2π)−1

∫ ∞

0

e−σ
{ ∫ 2π

0

eaeplθ

ϕ(z1, . . . , zj + σe−iθ, . . . , zn)dθ
}
dσ,

a complex, p a positive integer.

Formally, the second of these follows by replacing b in (2.6) by Dj

and then interpreting eσe−iθDj · ϕ(z) by means of (4.3a). The validity
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of (4.3b) and analogous formulas for ϕ(z) ∈ ∝ will be established in
Theorem 4.1.

A. Solution construction procedure.

Case I. The relation (4.3b) with a = μt and j = 1 for this P (D) leads
to
(4.4)

H(z, t) = etμDp
1 ϕ(z1, . . . , zn)

= (2π)−1

∫ ∞

0

e−σ
{ ∫ 2π

0

eμtepiθ

ϕ(z1 + σe−iθ, . . . , zn)dθ
}

dσ.

This can also be written in the more compact form

(4.5) H(z1, t) =
∫ ∞

0

e−σ(eμt
p ◦ 1ϕ(z1 + σ, z2, . . . , zn))dσ.

With the entireness condition on ϕ(z), the results of §3 show that the
repeated integral in the last member of (4.4) exists and that the orders
integration in that integral can be exchanged (see part B below). We
now prove:

THEOREM 4.1 The function H(z, t) defined by the last member of (4.4)
is a solution of (1.1) corresponding to P (D) = μDp

1 and ϕ(z) ∈ ∝(z).

PROOF. At t = 0, the inner integral in the last member of (4.4)
becomes ∫ 2π

0

ϕ(z1 + σe−iθ, . . . , zn)dθ,

and, since ϕ(z) ∈ ∝, this clearly has the value 2πϕ(z). It then readily
follows that the initial condition of (1.1) is satisfied by the last member
of (4.4).

Next, we differentiate with respect to t to get
(4.6)
∂H(z, t)/∂t

= μ

∫ ∞

0

e−σ
{

(2π)−1

∫ 2π

0

epiθeμtepiθ

ϕ(z1 + σe−iθ, . . . , zn)dθ
}
dσ.
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Also,
(4.7)

∂H(z, t)/∂z1

= (2π)−1

∫ 2π

0

eμtepiθ
{∫ ∞

0

e−σ ∂ϕ

∂z1
(z1 + σe−iθ, . . . , zn)dσ

}
dθ.

Upon replacing ∂ϕ/∂z1 in this by eiθ∂ϕ/∂σ, it follows by an integration
by parts, that
(4.8)
∂H(z, t)/∂z1

= (2π)−1

∫ 2π

0

eμtepiθ

eiθ
{∫ ∞

0

e−σ ∂ϕ

∂σ
dσ

}
dθ

= (2π)−1

∫ 2π

0

eμtepiθ

eiθ{e−σϕ(z1 +σe−iθ, . . . , zn)|∞0 }dθ

+ (2π)−1

∫ 2π

0

eμtepiθ

eiθ
{ ∫ ∞

0

e−σϕ(z1 +σe−iθ, . . . , zn)dσ
}

dθ.

The growth condition on ϕ(z) shows that the first term in the left
member of (4.8) reduces to

−(2π)−1ϕ(z)
∫ 2π

0

eμtepiθ

eiθdθ,

and this clearly vanishes since the expansion of the integrand leads to
positive integer powers of eiθ and

∫ 2π

0
eqiθdθ = 0 for q a positive (or

negative) integer. Hence, (4.8) becomes

∂H(z, t)/∂z1

= (2π)−1

∫ 2π

0

eμtepiθ · eiθ
{∫ ∞

0

e−σϕ(z1 + σe−iθ, . . . , zn)dσ
}

dθ.

This right member of this is just like the last member of (4.4) except
that it contains the additional factor eiθ. Repetitions of this argu-
ment show that each additional differentiation of H with respect to
z1 introduces one additional factor eiθ into the integrand. After p dif-
ferentiations of H(z, t) with respect to z1, we obtain, except for the
factor μ, the right hand member of (4.6). Thus, the relation (4.3b) has
permitted us to construct a solution of (1.1).
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Case II. If P (D) = μDp
1Dq

2, we require a procedure for peeling off
the effect of the differential operator Dq

2 to get a reduction to case I.
Again, we call upon (2.6) with p replaced by q. If we then replace a by
μtDp

1 and b by D2, we get
(4.9)
etμDp

1Dq
2ϕ(z)

=
∫ ∞

0

e−σ
{

(2π)−1

∫ ∞

0

etμepiθDp
1 ϕ(z1, z2 + σ1e

−iθ1 , . . . , zn)dθ1

}
dσ.

The procedure of Case I can now be used in the right member of this to
complete the solution construction. This leads to a 4-fold integral. The
proof of Case I can be carried over to Case II. For a somewhat different
approach to solving generalized heat problems with mixed derivatives,
see [7].

B. Growth bounds on solutions. To obtain growth bounds on the
H(z, t), suppose we first take P (D) = μDp

1 as in Case I above with
ϕ(z) = ϕ(z1) and |ϕ(z1)| ≤ Meτ |z1|ρ , ρ < 1. Then

H(z, t) =
∫ ∞

0

e−σ
{

(2π)−1

∫ 2π

0

eμtepiθ · ϕ(z1 + σeiθ)dθ
}

dσ.

Hence
(4.10)

|H(z1, t)| ≤
∫ ∞

0

e−σ
{

(2π)−1

∫ 2π

0

|eμtepiθ | · |ϕ(z1 + σe−iθ)|dθ
}
dσ

≤
∫ ∞

0

e−σ
{

(2π)−1

∫ 2π

0

e|μt|Meτ [|z1|ρ+|σ|ρ]dθ
}

dσ (by (3.7))

= M∗(ρ, τ )e|μt|+τ |z1|ρ ,

where
M∗(ρ, τ ) = M

∫ ∞

0

e−σ+τ |σ|ρdσ, 0 < ρ < 1.

Thus, we see that the bound on H(z, t) depends upon the constants
ρ and τ but not upon the power p of the operator D1. Repeated
applications of the type of estimate used to obtain (4.10) permits us to
show, in general, that if H(z, t) satisfies (1.1) with ϕ(z) ∈ ∝(z) then

(4.10∗) |H(z, t)| ≤ M̃(ρ, τ )eK|t|+
∑n

j=1
τj |zj |ρj

,



COMPLEX TRANSFORMATIONS 691

where K is the sum of the absolute values of the coefficients of the
multinomial and M̃(ρ, τ ) is a generic constant depending only on the
ρi’s and the τi’s.

REMARK. We could select ρ = 1 in (4.10) provided that the associated
τ satisfies 0 < τ < 1. In this case, the M∗ in (4.10) has the value
(1 − τ )−1. Thus, we could have taken ∝(z) to be a somewhat larger
class to include functions ϕ(z) that have one or more of the ρj = 1
provided that the sum of the associated τj have a sum that is less
than 1.

C. Generalized heat series representations. The bounds (4.10) and
(4.10∗) can be applied to the problem of representing solutions of cases
of (1.1) in terms of special polynomials or multinomials. In order to
provide an example of this while keeping the notation simple, we restrict
ourselves to the one dimensional problem

(4.11) Ht(z, t) = DpH(z, t), H(z, 0) = ϕ(z)

in which z denotes a single complex variable and ϕ(z) is entire of growth
(ρ, τ ), 0 < ρ < 1. Let Pn(z, t) denote a polynomial solution of (4.11)
corresponding to the condition H(z, 0) = zn. Now, Pn(z, t) is easily
seen to be defined by the generating relation

eaz+apt =
∞∑

n=0

Pn(z, t)an

n!

and, using (4.5), is given by

Pn(z, t) =
∫ ∞

0

e−σ(et
p ◦ 1(x + σ)n)dσ.

The evaluation of this integral finally gives

(4.12) Pn(z, t) =
[n/p]∑
l=0

n!zn−pltl

l!(n − pl)!
.

By considering the maximum of ξne−Tξρ

for ξ ≥ 0 and T > 0, it is easy
to show that

(4.13) |z|n ≤ ( n

ρT

)n/ρ
e−n/ρeT |z|ρ .
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Then, from (4.10) with μ = 1, we get

(4.14) |Pn(z, t)| ≤
(

n

ρT

)n/ρ

e−n/ρe|t|+T |z|ρk(ρ, τ ),

where
k(ρ, τ ) =

∫ ∞

0

e−σ+T |σ|ρdσ.

Now, let ϕ(z) =
∑∞

n=0 anzn be an entire of growth (ρ, τ ), ρ < 1. Select
T > τ in (4.14) and select ε > 0 such that τ +ε < T . Using (3.1), there
exists a positive integer N such that if n ≥ N , then

|an| ≤
(eρ

n

)n/ρ

(τ + ε)n/ρ.

Finally, let

(4.15) H(z, t) =
∞∑

n=0

anPn(z, t).

THEOREM 4.2. The series (4.15) converges for all complex z and real
t and uniformly so in compact subsets of (z, t) space.

PROOF. From (4.15), we have

(4.16)

|H(z, t)| ≤
N∑

n=0

|an| |Pn(z, t)|

+
∞∑

n=N+1

|an| · |Pn(z, t)|.

Using the bound (4.16) on |Pn(z, t)| and the estimate on |an|, we see
that the bound on the second sum in (4.16) is given by

K(ρ, T )e|t|+T |z|ρ
∞∑

n=N+1

(
τ + ε

T

)n/ρ

.
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Since the series of constants in this converges, the theorem follows.

When p = 2, the equation (4.11) is the classical heat equation. The
representation of its solutions in terms of heat polynomials ((4.12) with
p = 2) with z real was treated in [22].

D. A radially symmetric operator. In the introduction, we selected
P (D) to be a multinomial operator in the Dj with constant coefficients.
We need not, however, so restrict P (D). As an example, consider the
equation

(4.17) Ht(z, t) = Δp
μH(z, t), H(z, 0) = ϕ(z)

in which z is a single complex variable, p is a positive integer, Δμ =
D2+ μ

z Dz(μ > 0), and ϕ(z) is entire in z2 of growth (ρ, τ ) with ρ < 1/2.
Under these conditions, the radial heat problem

(4.18) ωη(z, η) = Δμω(z, η), ω(z, 0) = ϕ(z)

has a solution that can be represented in terms of the radial heat poly-
nomials Rn(z, η) throughout (z, η) space, η real (see [4]). Moreover,
this solution function satisfies a growth condition of the form

|ω(z, η)| ≤ M(ρ, τ )e|η|+τ |z2|ρ .

Then a solution of (4.17) can be expressed as

(4.19)
H(z, t) = etΔp

μϕ(z)

= (2π)−1

∫ ∞

0

e−σ
{ ∫ 2π

0

etepiθ(
eσe−iθΔμϕ(z)

)
dθ

}
dσ.

Using the function ω(z, η), we finally obtain

(4.20) H(z, t) =
∫ ∞

0

e−σ
(
et

p ◦ 1ω(z, σ)
)
dσ.

5. Functions of differential operators. For the moment, let f(ξ)
be an entire function of the single complex variable ξ. With t real,
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P (D) as in the introduction, and ϕ(z) ∈ ∝(z) we define f(tP (D))ϕ(z)
by means of the relations

(5.1)

(i)
∫ ∞

0

e−σ(f(t) ◦ H(z, σ))dσ

f(tP (D))ϕ(z) = or

(ii)
∫ ∞

0

e−σ
(
f(λ) ◦ H

(
z,

tσ

λ

))
dσ, λ > 0,

in which H(z, t) is a solution of (1.1) corresponding to the operator
P (D) and the data function ϕ(z). The definition (5.1)(i) is motivated
by (2.8a) by replacing a in that formula by t, b by P (D), and then
formally applying the heat solution operator eσP (D) to ϕ(z) to obtain
H(z, σ). The formula (5.16) is an alternative version of this (see formula
(2.8)(i)).

We now make an appraisal of the integral (5.1)(ii) to determine when
it makes sense and to determine if we can relax the conditions on f .
Suppose we let h(λ) = max0≤θ≤2π |f(λeiθ)|. Then it follows that

(5.2)
∣∣∣∣
(

f(λ) ◦ H

(
z,

tσ

λ

))∣∣∣∣ ≤ h(λ)M∗(ρ, τ )e
κ|t|σ

λ e

∑n

j=1
τj |zj |ρj

.

Hence,

(5.3)

∣∣∣∣
∫ ∞

0

e−σ

(
f(λ) ◦ H

(
z,

tσ

λ

))
dσ

∣∣∣∣
≤ h(λ)M∗(ρ, τ )e

∑n

j=1
τj |zj |ρj

∫ ∞

0

e−σ(1− k|t|
λ )dσ.

The integral on the right side of this converges provided that 1 −
K|t|/λ > 0. If f(ξ) is entire and |t| is large, we can select λ so large
that K|t|/λ < 1. Under these circumstances, we see that (5.1)(ii) is
defined for all |t|.

Next, suppose that f(ξ) is analytic in a disk of radius R centered at
the origin. Then the λ in (5.3) must be restricted so that 0 < λ < R.
The integral in the right member of (5.3) then converges only if |t| <
R/K, i.e., in a time strip. If we know that H(z, tσ/λ) has an overall
growth (ρ, τ ), ρ < 1, then Theorem 3.2 shows that (f(λ) ◦ H(z, tσ/λ))
has an overall growth (ρ, τ/Rρ) so that (5.1)(ii) makes sense for all |t|.
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If we make use of (2.8)(ii), we can also show that, for k a positive
integer,

(5.4)
f(t(P (D))k)ϕ(z)

=
∫ ∞

0

e−σ
{
(2π)−1

∫ 2π

0

f(λkekiθ)H
(
z,

σt1/k

λ
e−iθ

)
dθ

}
dσ.

In the work to follow, f(tP (D)) (or f(t(P (D)k)) is taken to be a
formal solution operator for some Cauchy problem in which the initial
conditions involve one piece of non zero data ϕ(z) and 0’s. To construct
f , one can use an associated problem in ordinary differential equations.
This is constructed from the Cauchy problem by replacing P (D) by a
parameter ν (we usually take ν < 1), ϕ(z) by 1 and 0 data by 0’s. The
solution of this associated problem yields f(tν) (orf(tνk)). One then
obtains the required formal solution operator for the Cauchy problem
by replacing ν by P (D).

The Example 7B on a Sobolev type problem will illustrate that we
have, in fact, much more flexibility in constructing solution represen-
tations of Cauchy problems than would be indicated here. Depending
on the form of f(tν), it may be possible to obtain various solution rep-
resentations through a judicious qip decomposition of f(tν) or through
some other means of expressing f(tν).

6. Hypergeometric type cauchy problems. Let p and q be
non-negative integers with p < q + 1 and consider the Cauchy problem

(6.1)
[
tDt

q∏
j=1

(tDt + βj − 1) − tP (D)
p∏

l=1

(tDt + αl)
]
ν(z, t) = 0

ν(z, 0) = ϕ(z), ϕ(z) ∈ ∝(z).

in which the βj > 0. A solution of this is given formally by

(6.2) ν(z, t) = pFq(α1 . . . , αp; β1, . . . , βq; tP (D)) · ϕ(z).

Using (5.3)(ii), this can be expressed as

(6.3) ν(z, t) =
∫ ∞

0

e−σ
(
Fq(α1 . . . αp; β1, . . . , βq; λ) ◦ H

(
z,

σt

λ

))
dσ
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with H(z, t) as in (1.1). If the problems (1.1) and (6.1) are well-posed
when zj = xj , xj real (j = 1, . . . , n) and t > 0, then one could use the
methods of [6] to construct a set of transmutations (involving inverse
Laplace transforms and convolutions) to relate the solution of (6.1)
to the solution of (1.1). For entire data, the complex transformation
provides a more direct means for solving (6.1).

Now, suppose we have p = q + 1. The hypergeometric function
appearing in the integrand of (6.3) converges absolutely for λ < 1,
diverges for λ > 1, and has a variety of possible behaviors at λ = 1
(depending upon the values of the parameters αl and βj). In this case,
the pFq function is analytic with R = 1 and the problem (6.1) can be
guaranteed to have a solution only in the time strip |t| < 1/K. The
behavior of solutions as one approaches the boundaries of this time
strip are not considered here. The interested reader is referred to, for
example, [27] for relevant information.

We complete this section by considering two examples of Cauchy
problems having solutions that tie in the hypergeometric functions.
These will call upon the construction and solution of associated prob-
lems in ordinary differential equations.

PROBLEM 6A.

(6.4)
t
∂pW (z, t)

∂tp
+ a

∂p−1W (z, t)
∂tp−1

− t{P (D)}pW (z, t) = 0,

a > −1, t 	= 0
W (z, 0) = ϕ(z), ∂jW (z, t)/∂tj |t=0 = 0, j = 1, 2, . . . , p − 1,

where ϕ(z) ∈ ∝(z). This is a generalization of the familiar Euler-
Poisson-Darboux problem.

A problem in ordinary differential equations associated with problem
(6.4) is given by

(6.5)
tS(p)(t) + aS(p−1)(t) − tvpS(t) = 0

S(0) = 1, S(j)(0) = 0, j = 1, . . . , p − 1.

It is not difficult to show that this has the series solution

(6.6) S(t) =
∞∑

m=0

(1)m

(
1
p

)
m(

1+a
p

)
m

m!
(vt)mp

(mp)!
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in which (A)m = A(A+1) . . . (A+m−1), m ≥ 1, and (A)0 = 1. Taking
0 < α < 1, the series (6.6), using the qip (2.3), can be rewritten as

(6.7) S(t) = 2F1

(
a,

1
p
;
1 + a

p
; α

)
p ◦1 etv/α1/p

.

Then a solution of (6.4) can be expressed symbolically as S(tP (D))ϕ(z).
From our discussion in §5, this leads to

(6.8) W (z, t) = 2F1

(
1,

1
p
;
1 + a

p
; α

)
p ◦1 H(z, t/α1/p).

In view of the fact that S(t) was constructed to satisfy (6.5), one can
use arguments similar to the ones used in the proof of Theorem 4.1 and
the proofs in [6] to show that the function W (z, t) defined by (6.8) is,
indeed, a solution of (6.4).

If we take n = 1, z1 = z and P (D) = D1 = D in (6.4), it follows from
our discussion in §5 that if ϕ(z) has growth (ρ, τ ), 0 < ρ < 1, then

(6.9) |W (z, t)| ≤ M∗(ρ, τ ) 2F1

(
1,

1
p
;
1 + a

p
; α

)
eτ |z|p+|t|/α1/p

.

Note that when p = 2, the problem (6.4) reduces to the classical E.P.D.
problem. An alternative function theoretic technique for constructing
its solution may be found in [1].

PROBLEM 6B.

(6.10)
∂pW (z, t)

∂tp
− tq{P (D)}kW (z, t) = 0, t > 0

W (z, 0) = ϕ(z), ∂jW (z, t)/∂tj |t=0 = 0, j = 1, . . . , p − 1,

in which p, q, k are positive integers with k < p. The associated problem
in ordinary differential equations is given by
(6.11)

y(p)(t) − vktqy(t) = 0, y(0) = 1, y(j)(0) = 0, j = 1, . . . , p − 1.

After some lengthy calculations, one obtains

(6.12) y(t) = 0Fp−1

(
; 1 − 1

p + q
, . . . , 1 − p − 1

p + q
; Tvk

)
k ◦ 1

1
1 − ν
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where T = tp+q/(p + q)p. Using (2.7b), we get
(6.13)

y(t) =
∫ ∞

0

e−σ

{
0Fp−1

(
; 1 − 1

p + q
, . . . , 1 − p − 1

p + q
; T

)
k ◦ 1e

vσ

)}
dσ

provided 0 < v < 1. A formal solution operator for Problem 6B follows
by replacing v in (6.13) by P (D). Finally, using the results of §5, we
obtain
(6.14)

W (z, t)

=
∫ ∞

0

e−σ
0

(
Fp−1

(
; 1 − 1

p + q
, . . . , 1 − p − 1

p + q
; T

)
k ◦1 H(z, σ)

)
dσ

as a solution of (6.10).

7. Additional examples. In this section, we provide two further
examples of Cauchy problems. The main concern in the first of these
relates to the growth bounds. A real parameter η is introduced into the
solution function and growth bounds on the solution are obtained in
terms of η. For a fixed t, a critical equation is obtained for η that will
minimize the growth bounds. The second example involves a Sobolev
type equation.

PROBLEM 7A.

(7.1)
∂pW (z, t)

∂tp
− (P (D))qW (z, t) = 0, (p, q) = 1,

W (z, 0) = ϕ(z), ∂jW (z, t)/∂tj |t=0 = 0, j = 1, 2, . . . , p − 1.

Using the now familiar method of associated O.D.E.’s, we find that
the required function f(νt) for obtaining a solution operation for the
problem (7.1) is given by

(7.2) f(tν) = (2π)−1

∫ ∞

0

e−σ
{∫ 2π

0

etqiθeνσe−piθ

dθ
}

dσ.

Upon replacing ν in this by P (D) and operating on ϕ(z), we obtain

(7.3) W (z, t) =
∫ ∞

0

e−σ(et/ηp

q ◦p H(z, ηpσ))dσ
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after introducing the parameter η, 0 < η < 1.

Now, suppose we take the dimension n = 1 and let P (D) = D. If
|ϕ(z)| ≤ Meτ |z|ρ , 0 < ρ < 1, then, as usual,

|H(z, t)| ≤ M∗(ρ, τ )e|σ|+τ |z|p .

Using this in (7.3), we get

(7.4)
|W (z, t)| ≤

∫ ∞

0

e−σ
{ 1

2π

∫ 2π

0

e|t|/ηq

M∗e|σ|η
p+τ |x|ρdθ

}
dσ

= M∗e|t|/ηq+τ |z|ρ
∫ ∞

0

e−σ(1−ηp)dσ.

Since 0 < η < 1, the integral in the last member of this converges to
(1 − ηp)−1 and we obtain a bound on |W (z, t)|. A useful choice for η
is the one that minimizes the last member of (7.4). For fixed |t|, the
critical equation for this choice of η is given by pηp+q + |t|ηp − |t| = 0.
It is readily checked that there is at least one critical point η0 in the
interval (0, 1).

PROBLEM 7B. Here, we wish to construct solutions of the following
version of a Sobolev problem:

(7.5)

Wt(z, t) − βtΔnWt(z, t) = ΔnW (z, t), t > 0, β > 0

W (z, 0) = ϕ(z), ϕ(z) ∈ ∝(z), Δn =
n∑

j=1

D2
j .

(See [9] for a slightly different Sobolev problem). It is readily shown,
using an associated problem, that a solution of (7.5) can be expressed
symbolically as

(7.6) W (z, t) = f(tΔn)ϕ(z)

in which

(7.7) f(tν) = (1 − βνt)−1/β, 0 < ν < 1.

The form of the solution representation for W (z, t) that results from
(7.6) is dependent upon the nature of the transformation that connects
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the solution operator f(tΔn) to the solution operator etΔn of the heat
problem.

(7.8) Ht(z, t) = ΔnH(z, t); H(z, 0) = ϕ(z).

In the following, we provide three different ways for obtaining an
integral representation for W (z, t). The first of these uses formula
(5.1)(ii) directly while the other two result from using other types of
formulas for connecting f(tν) to the exponential function. The last
procedure we use leads to a solution formula that is meaningful in
more abstract cases.

Procedure 1. Applying (5.1)(ii) directly in (7.6), we get

(7.9) W (z, t) =
∫ ∞

0

e−σ

(
(1 − η)−β ◦ H

(
z,

βtσ

η

))
dσ, 0 < η < 1.

Procedure 2. We first rewrite (7.7) in the form

(7.10) f(tv) =
∫ ∞

0

e−σ
(
(1 − η)−β ◦ e(βtσv)/η

)
dσ.

From the definition (2.1), the qip in the integrand of this has the eval-
uation 1F1(1/β; 1; βtσv) (a hypergeometric function). Hence, (7.10)
becomes

(7.11) f(tv) =
∫ ∞

0

e−σ
1F1

(
1
β

; 1; βτσv

)
dσ

and the solution of (7.5) can be written

(7.12) W (z, t) =
∫ ∞

0

e−σ
[
1F1

(
1
β

; 1; βtσΔη

)
ϕ(z)

]
dσ.

If β > 1, the integrand term in braces can be evaluated using Theorem
3.3 of [6]. In fact, we get

(7.13)
1F1

(
1
β

; 1; βσtΔn

)
ϕ(z)

=
1

Γ
(

1
β

)
Γ
(
1 − 1

β

)
∫ 1

0

ξ1/β−1(1 − ξ)−1/βH(z, βσtξ)dξ.
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We can now insert this in the integrand in the right member of (7.12)
to obtain W (z, t).

Procedure 3. Observe that if βλt < 1 in (7.7), then we have

(7.14)
f(tλ) =

1
Γ(1/β)

∫ ∞

0

σ1/β−1e−σ(1−βtλ)dσ

=
1

Γ(1/β)

∫ ∞

0

σ1/β−1e−σeσβλtdσ

If we replace λ in this by Δn and apply both sides to ϕ(z), we get

(7.15) W (z, t) =
1

Γ(1/β)

∫ ∞

0

σ1/β−1e−σH(z, βtσ)dσ.

The representation is valid for β > 0 but requires that ϕ(z) ∈ ∝(z).
The transmutation formula (7.13) holds only if β > 1 while (7.15) holds
for all β > 0. In view of the fact that the integrands in (7.13) and (7.15)
do not require complex arguments, the zj ’s may be replaced by real
variables xj , j = 1, . . . , n, and the data function ϕ(z) = ϕ(x) selected in
(7.5) no longer need to be restricted to the class ∝. The formula (7.15),
in fact, motivates the following generalization in a Banach Space:

THEOREM 7.1. Let X be a Banach space and let A be the infinitesimal
generator of a semigroup of operators {TA(t)} in X. Let ϕ ∈ D(A).
Then the function

(7.16) W (t) =
1

Γ(1/β)

∫ ∞

0

σ1/β−1e−σ{TA(βtσ)ϕ}dσ, β > 0,

is a solution of the Sobolev problem

(7.17) Wt(t) − βtAWt(t) = AW (t), t > 0, β > 0, W (0+) = ϕ.

The proof of this theorem is relatively straightforward and is left to
the reader.

The important point illustrated in this case is the flexibility one has
in expressing various functions of operators in terms of the exponential
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operator. This will be particularly useful in future projected studies
on the well-posedness and ill-posedness of Cauchy problems and the
weakening of requirements on the data. §8 to follow will provide two
further examples where an appropriate writing of the solution operator
leads to a real transmutation formula.

8. Examples of real transmutations. For z real, the problems in
this section have been discussed in other papers using real arguments.
Nevertheless, they serve to illustrate how the appropriate formation of
a qip can quickly lead to known results.

PROBLEM 8A. We first consider the Euler-Poisson-Darboux problem
(taking n = 1)

(8.1)
Wtt(z, t) +

1
t
Wt(z, t) = D2W (z, t),

W (z, 0) = ϕ(z), Wt(z, 0) = 0; ϕ(z) ∈ ∝(z).

Using associated equation techniques, a solution of (8.1) can be ex-
pressed formally as

(8.2) W (z, t) = I0(tDz)ϕ(z).

From the results of §5 we have

(8.3) W (z, t) =
∫ ∞

0

e−σ(I0(t) ◦ H(z, σ))dσ.

However, if we make use of the qip formula (2.10a) with a = t and
b = Dz, we see that

(8.4)
W (z, t) = (2π)−1

∫ 2π

0

et(cos θ)Dzϕ(z)dθ

= (2π)−1

∫ ∞

0

ϕ(z + t cos θ)dθ.

This is the much simpler form of the solution. Moreover, this formula
permits the following generalization:
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Let X be a Banach space and let B denote the generator of a
continuous group {GB(t)} of operators in X. Suppose that W (t)
satisfies the problem

(8.5)
W ′′(t) +

1
t
W ′(t) = B2W (t), t > 0,

W (0) = ϕ, W ′(0) = 0 where ϕ ∈ D(B2).

Then

(8.6) W (t) = (2π)−1

∫ 2π

0

[GB(t cos θ)ϕ]dθ.

PROBLEM 8B. We conclude with an example that involves the clas-
sical heat problem in 1 space variable, namely

(8.7)
Ht(z, t) = D2H(z, t)

H(z, 0+) = ϕ(z), ϕ ∈ ∝.

The solution of this can be formally expressed as in (4.1):

(8.8) H(z, t) = etD2
ϕ(z).

Rather than use the results of §5, we go directly to the qip formula
(2.10b). Taking a = t and b = D, we get

(8.9) H(z, t) =
∫ ∞

0

e−σI0(2
√

tσD)ϕ(z)dσ.

From (8.2), we see that I0(2
√

tσD)ϕ(z) is simply the function W (z, 2
√

tσ),
and (8.9) becomes

(8.10) H(z, t) =
∫ ∞

0

e−σW (z, 2
√

tσ)dσ,

where W (z, t) satisfies (8.1). We leave it to the reader to write the
abstract generalizations of problems (8.7) and (8.1) whose solutions
are connected by a formula of the type (8.10).
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