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This paper is dedicated to the memory of Geoffrey Butler

ABSTRACT. A survey is given of a connection between
compound matrices and ordinary differential equations. Some
typical linear results are presented. For nonlinear autonomous
systems, a criterion for orbital asymptotic stability of a closed
trajectory given by Poincaré in two dimensions is extended
to systems of any finite dimension. A criterion of Bendixson
for the nonexistence of periodic solutions of a two dimensional
system is also extended to higher dimensional systems.

1. Introduction. Let X be any n X m matrix of real or complex
numbers, and let wfllf: denote the minor of X determined by the
rows (i1,...,0;) and the columns (ji,...,jk), 1 < i1 < iz < -+ <
ik <n, 1< 51 < jJo < -0 < jr < m. The k-th multiplicative
compound X* of X is the (%) x (') matrix whose entries, written

in lexicographic order, are wﬁf}’j In particular, when X is n X k
with columns z, ..., z*, then X(*) is the exterior product z' A--- Az

represented as a column vector. The term “multiplicative” is used since
the Binet-Cauchy Theorem [13, p. 17] states that

(1.1) (AB)F) = AW g(k)

for any matrices A and B of dimension consistent with the multiplica-
tion. An immediate consequence of (1.1) is that, for any nonsingular
n xn matrix X, (X®)~1 = (X1)*) since I® is clearly the (Z) X (Z)
identity, if I is the n X n identity.

When m = n, the k-th additive compound X*! of X is the () = (%)
matrix defined by

(1.2) X = D(I + hX)® |j,—,
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where D denotes differentiation with respect to h. For any integer ¢ =
1,...,(3), let (i) = (i1, ..., ix) be the i-th member in the lexicographic
ordering of all k-tuples of integers such that 1 <i; <ip <--+ <ip < n.
Then, if Y = X*], we have the following formula for y/ from (1.2):
(1.3)

i+ ey, i () = (),
Yl = (-1 T+Sacg:, if exactly one entry i, in () does not occur

in (j) and j, does not occur in (i),

0, if (i) differs from (j) in two or more entries.

In the special cases k = 1,k = n, we find
xM=x xM=1x

The term “additive” is used since

(1.4) (A + B)l = Al 4 BIkI

and, indeed, the map X — X*! is linear. This may be deduced directly
from the Binet-Cauchy formula (1.1) and the definition (1.3), since

(I+hAYD(I4+hBY® = (I+hA)(I+hB)\® = (I+h(A+B)+h*AB)*®),

which implies (1.4). Alternatively, (1.3) implies (1.4).

The connection between compound matrices and differential equa-
tions is as follows. If X (¢) is any n x m matrix solution of the system

(1.5) ' = A(t)z,
where A(t) is a continuous real or complex matrix-valued function of

the real variable t and 1 < k < min{m,n}, then Y (¢t) = X®)(¢) is a
(Z) X (’;:) matrix solution of the k-th compound system

(1.6) Y = AWy,

To see this, we may suppose that X(t) is n X n and nonsingular. Then
(1.5) implies X (t+h) = (I +hA(t))X (t) +o(h), near h = 0, and hence,
from (1.1),

X® (4 h) = (I+hA®) P X® (t) + o(h).
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Thus Y (t) = X*)(¢) is a fundamental matrix for (1.6), by (1.2). From
the preceding discussion, we find that, for any n x n matrix A,

(1.7) (exp(A)) ™) = exp(A™]).

In the case k = 1, (1.6) is the original equation (1.5) and, when
k =mn, APF(t) = Tr A(t) and (1.6) is the well-known Abel-Jacobi-
Liouville formula for the determinant of an n x n matrix solution of
(1.5)

Although cases of the relationship between (1.5) and (1.6) are con-
sidered for special equations by Mikusinski [15], Nehari [19] and less
directly by Hartman [9; Corollary 3.1, Chapter IV], the first treatment
in full generality is due to Schwarz [21] who considers the question of
when a fundamental matrix X (¢) satisfying X (¢9) = I is totally posi-
tive or strictly totally positive for all ¢ > ¢y and for each choice of tg.
Consideration of the compound equations (1.6) arises in a natural way
in this study, and a complete answer is obtained to the question raised
in the form of concrete necessary and sufficient conditions on the en-
tries of A(t) for total positivity and strict total positivity. In addition,
comprehensive results are obtained which, broadly speaking, describe
the properties of solutions of such systems with respect to oscillation.

In this paper, we wish to describe the connection between (1.6) and
the dimension of certain sets of solutions to differential equations as
demonstrated in [17, 18] and discussed in §3. We also show how such
considerations give new information about questions of orbital stability
and nonexistence of periodic trajectories for nonlinear systems.

Most of the developments on compound matrices have occurred in the
context of linear and multilinear algebra. There is an extensive classical
body of work dealing with the algebraic aspects of multiplicative
compounds; for example, see [1, 6, 10, 13, 14 and 24|. Besides
the Binet-Cauchy Theorem, the best-known results are due to Jacobi,
Franke and Sylvester. Good historical accounts may be found in [16]
and [20].

In contrast, the literature on additive compounds is quite sparse.
In the final chapter of the lecture notes [25], Wielandt discusses
algebraic and spectral properties of both multiplicative and additive
compounds. The same approach is taken in the book of Marshall
and Olkin [14]. Major applications are the work of Schwarz [21]
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on differential equations and of Fiedler [5] on stochastic matrices.
London [12] derives a large number of interesting properties of additive
compounds based on the relationship between (1.5) and (1.6) and shows
how properties of compounds may be used to greatly simplify many
classical spectral inequalities.

The elegant paper of Fiedler [5] presents algebraic aspects of additive
and multiplicative compounds in a coordinate-free setting. Fiedler also
identifies £ — 1 other generalized compounds associated with the k-th
additive and multiplicative compounds. However, their pertinence to
differential equations is not so obvious, so we do not discuss them here.

London [12] also shows how a relationship analogous to that between
(1.5) and (1.6) may be developed from a Binet-Cauchy-type formula
when the k-th multiplicative compound of X is replaced by the k-th
induced matrix of X, essentially substituting permanents for determi-
nants. A similar development is possible based on Kronecker powers
and Kronecker sums of matrices. Some remarks on this are contained in
the book of Bellman [2, Chapter 12]. It is interesting to note, however,
that, while the spectral properties associated with these developments
are quite similar to those of the analogous multiplicative and additive
compounds, they do not seem to be as effective in extracting infor-
mation about the solution space of (1.5) as the concepts considered
here.

2. Spectral and metric properties of compounds. Spectral
properties of compound matrices are readily deduced from the Binet-
Cauchy formula (1.1). If A,J and T are n X n matrices such that
AT = TJ, then (1.1) implies ART® = TF) j&) 1f J is triangu-
lar, then so also is J®), and the diagonal entries of J*) are prod-
ucts of diagonal entries of J taken k at a time. In particular, if
z',z2, ..., ¥ are independent eigenvectors of A corresponding to eigen-
values A1, Aa,--- , Ak, then the exterior product z' Az2 A---AzF is an
eigenvector of A*) with corresponding eigenvalue A\jAg---Ag. Simi-
larly, AT = TJ implies (I + hA)T = T(I + hJ) and hence, by (1.1),
(I+hA)BTE) = TFE) ([ +hJ)*), Thus, from (1.2), AFITE) = 7k) jlk]
and J! is triangular if J is. The diagonal of J*! is composed of sums

of diagonal entries of J taken k at a time. Thus, if z',z2, ..., z* are as
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before, then z' A2 A--- A z* is an eigenvector of A*l with eigenvalue
At A+ A
Let || denote any norm in R™ and the matrix norm which it induces.

The Lozinskii logarithmic norm of an n x n matrix A is then defined
[3, p. 41] to be the right-hand derivative

(2.1) p(A) = Dy|I + hA|n=o.

It has the property that

elo)ess (- [ :mA)) a0l | :m—A))

are nonincreasing and nondecreasing, respectively, when z is a solu-
tion of (1.5). It follows, therefore, that a sufficient condition for the
system (1.5) to be, respectively, stable; asymptotically stable; uni-
formly stable is that j;to u(Ad) < K, ty <t < oo (K independent
of t); limg, oo ftto u(A) = —oo; f: wlA) < M, to<s<t<oo (M
independent of s and t). If we replace pu(A) by —p(—A) in these ex-

pressions, then we obtain a necessary condition for (1.5) to have the
corresponding stability property.

The value of ;(A) depends on |-|. In the cases |z| = sup; |z;|, >, |z,
(3, |zi?)1/2, the Lozinskii norm is given by

p(A) =sup |Reai+ Y lal| |, sup|Rea+> |al||, X\,
! i J i#j
respectively, where A\; > Ay > --- > )\, are the eigenvalues of

(A* + A)/2. More generally, we have the following expressions, for
k=1,...,n,
(2.2)

Sup;) [Re (agi +---+ak) + ng(i)ﬂa’gl‘ +--e+ a, D}
k) — : : : :
u(A™) = sup ) [Re (aﬁ R a;-',:) + Zig(j)(la?l + Iai’“|)}
A+ A
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respectively. Here (i) = (41,...,%x) is as described in §1.

It is noteworthy that the first two expressions given for p(A) in the
preceding paragraph are the upper bounds one obtains from Ger§gorin’s
Theorem [11, §10.6] for the real parts of the eigenvalues of A. It is well-
known that, in contrast to the autonomous case, the real parts of the
eigenvalues of A(t) being negative does not imply the stability of the
system (1.5). However, the GerSgorin upper bounds on the real parts
of the eigenvalues of A(t) being negative does imply that the system is
stable.

Gersgorin’s Theorem also illustrates how the consideration of com-
pounds leads to interesting new information: Every sum of k eigenval-
ues of A lies in at least one of the (Z) disks

{z:|z—a§i —---—aﬁ:\ Sp(i)},
where
p(i) =min g > (laf,[+---+lal ), D (af]+---+|aj]
J&() J€()
Moreover, a set of m of these disks having no points in common with
the remaining (Z) — m disks contains exactly m sums of k eigenvalues

of A. This statement follows directly by applying Gersgorin’s Theorem
to Akl whose eigenvalues are sums of k eigenvalues of A.

3. Linear differential equations. Let X be a subspace of
C([0,00) — R™) and let X (*) denote its k-th exterior power, 1 < k < n:

X® —splat Aa? A NP ra e X}
It will be assumed that X satisfies the conditions that, if z € X,

(3.1) lim sup |z(¢)| < oo,

t—o0

(3.2) htrgg.}f |z(t)] =0 = tlirgo z(t) =0.
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Further, we consider subspaces X o, X 8’9) of X, X ) respectively,
defined by
Xo={zeXx :tlim z(t) = 0}
—00

x4 ={yex®: lim y(t) =0}

THEOREM 3.1. Let X satisfy (3.1), (3.2). Then

codimX g < k < xF =x®),

This theorem includes some results of [17] and [18]. The reader is
referred to [17] for a bibliography on results of this type, of which the
following is typical.

COROLLARY 3.2. Suppose the system (1.5) is uniformly stable. Then
a necessary and sufficient condition that (1.5) have an (n — k + 1)-
dimensional set of solutions satisfying lim; ., z(t) = 0 is that the
system (1.6) be asymptotically stable.

This follows by choosing X to be the solution space of (1.5) so that
X (%) is the solution space of (1.6). Uniform stability of (1.5) implies

that X satisfies (3.1) and (3.2), and the condition ng) =X *) is the
asymptotic stability of (1.6). In more concrete terms, we have

COROLLARY 3.3. Suppose there exists a constant M such that
t
/ u(A) <M, 0<s<t<oo,
S

where M is independent of s,t. Then (1.5) has an (n — k + 1)-
dimensional set of solutions x such that lim;_, . z(t) =0 if

t— o0

t

liminf/ (AR = —o0
0

and only if, for 1 <1 <mn,

t

lim [ p(—AY) = .

t—o0 0
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This is an extension of a result in [17]. Results of this type may also
be proved, as in §5 of [18], when X is a stable subspace of the solution
set of (1.5), as in the case of dichotomies.

PROOF OF THEOREM 3.1. Suppose codim X ¢ < k and let z!,22,...,

z* be linearly independent elements of X . Then, there is a nontrivial
x € sp{zt,22,..., 2%} such that lim;,o, z(t) = 0, which implies that
y=a' Ax? A--- Az satisfies limy_,o0 y(t) = 0, by (3.1). Thus X ) =
X (®) Conversely, suppose ng) = X ®) and let z',22,...,z" be any
elements of X. Then y = x! A 22 A --- A 2F satisfies lim; o, y(¢) = 0.
Now (3.1) implies that there exists a sequence ¢; — oo such that
lim; o, X (¢;) = C exists where X is the n x k matrix whose columns
are z',z2,..., 2. We have C®) = lim;_,, y(t;) = 0 so that rk C' < k,
and there exists a nonzero vector £ € R™ such that C¢ = 0. Therefore,
x = X¢& satisfies lim; oo z(t;) = lim;00 X (¢)§ = C&¢ = 0, which
implies lim;_,, (t) = 0, by (3.2). Thus codim X ¢ < k. O

4. Nonlinear differential equations. Consider the nonlinear
autonomous system

(4.1) ' = f(z),

where f € C! (R" — R"). If zg € R™, let = = z(t, ) be the solution
of (4.1) which satisfies (0, z¢) = zo. We consider the system of linear
equations

f o f]
ox

where df/0x is the Jacobian matrix of f and df*!/9z denotes its k-
th additive compound. The case k = 1 of (4.2) is the equation of
first variation of (4.1) (cf. [9, Chapter V]), and the other cases of (4.2)
are the various compound equations corresponding to the variational
equation. In particular, when k& = n, (4.2) is the scalar linear equation

(4.3) y' = div f(z(t, z0))y.

The matrix Y (¢) = 0z(t,20)/0x¢ is a fundamental matrix for the
variational equation and satisfies Y (0) = I. Thus Y (*)(t), the matrix of

(4.2)

(z(t,zo0))y, k=1,...,n,
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Jacobian determinants 0(z;, ..., x;, ) (¢, 20)/0(zojy, . - s Toj,, ), 1 < 41 <

< ip <n, 1 <j < < jg <nis the fundamental matrix for
(4.2) satisfying Y(¥)(0) = I. From (4.3), we have the familiar formula
[9; Chapter V, Corollary 3.1]

6(:171, . .,xn)

8(1‘01, ey xon)

(t,z0) = exp/0 div f(z(s, o)) ds.

The equations (4.2) may be used to describe the local evolution in
R"™ of measures of k-dimensional surface content under the dynamics of
(4.1). Let {dzo1,...,dzon} be a basis for the vector space of differential
1-forms on R™. By the map xzy — z(t, z), this basis corresponds to
the basis {dz1,...,dz,} given by

0x; .
dz; = ZE)O]”(’dIO” i=1,...,n.

Thus the basis evolves in time t as a solution of the variational
equation of (4.1). The corresponding lexicographically ordered basis
{dacg“1 A---Ndz;, :1 <1y <--- <i <n} for the differential k-forms
in R™ therefore satisfies

Tiyye-ey Tiy)
4.4) dx;, N---Ndzx; TR (¢, 2g)dxgs, A Adzo;,
( ) Tiy Tip, = Zamoh’ -'7$0jk)( xO) Z0j, L0

and evolves in time as a solution of (4.2).
Let hg € CY(RF — R™), hg = hy(r), and consider

(k)
(4.5) O'k(ho):/ 3h0/\ (9h0 / Ohy
D

p|Or1 ' 6rk or
where D C R* is the domain of hy and is assumed to be such that
the integral exists. Now oy (ho) is a measure of the k-content of the

)

k-surface ho defined by the norm |- |. Different norms give different
measures o, but any two such measures are comparable in the sense
that the corresponding norms are. Suppose hi(r) = z(t, ho(r)) is

defined for all ¢ in a neighborhood of 0 and » € D. Then h; is a
k-surface with content oy, given by

(k)
(4.) (i) = [ |7

or
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Now the n x k matrix 0h:/0r = (0x(t,yo)/0x0)(0ho/0r) satisfies the
variational equation (4.2), k = 1, with 2y = hg. Therefore 8h£k)/8r
satisfies (4.2) and the discussion in §2 implies

onl") il
5 | XP [—/ w <— (gx (ac(u,ho))> du]
4.7
[ ()
or —= or exp s 1% ox T\u, hg U

if t > s. From (4.6), (4.7) we find that oy (h:) decreases as t increases
(respectively decreases) if the trace of the k-surface h; is in a region
where u(0f"/8z) < 0 (respectively, u(—0f*!/dz) < 0). For each of
the specific vector norms considered in §2, the corresponding Lozinskil
norm p(9f*1/9z) is given by the expression (2.2) with a! = 0f;/0x;.
In the case k = n we find from (4.3) that the map zo — z(¢, o)
decreases Lebesgue measure in R™ when ¢ > 0 (respectively, ¢t < 0) if
div f < 0 (respectively div f > 0).

The main results of this section are extensions to higher dimensions
of two results for the system (4.1) when n = 2: Bendixson’s negative
criterion and Poincaré’s stability criterion. These results and their
generalizations are as follows.

BENDIXSON’S NEGATIVE CRITERION. When n = 2, a sufficient
condition for the nonezistence of nonconstant periodic solutions of (4.1)
is that, for each = € R?,

div f(z) # 0.
THEOREM 4.1. Suppose that one of the inequalities

of of
M(8x><Q “<_0x><0

holds for allz € R™. Then the system (4.1) has no nonconstant periodic
solutions.
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POINCARE’S STABILITY CRITERION. When n = 2, a periodic orbit
v={p(t):0<t<w} of (4.1) is orbitally asymptotically stable if

/0 " div f(p(t)) dt < 0.

THEOREM 4.2. A sufficient condition for a periodic trajectory v =
{p(t) : 0 <t < w} of (4.1) to be orbitally asymptotically stable is that
the linear system

. b f[2]
Y= "oz

(p(t))y

be asymptotically stable.

COROLLARY 4.3. Suppose that, for some Lozinskii norm p,

/0‘“ H <6£] (p(t))> dt < 0.

Then v is orbitally asymptotically stable.

When n = 2,0f2 /0z = Trdf /dx = div f, so that Theorems 4.1 and
4.2 give the results of Bendixson and Poincaré, respectively, in that
case. By (2.2), any one of the following three expressions may be used
as p(0f121/0z) in Theorem 4.1 and Corollary 4.3:

afr 6fs 6fq afq B
sup 8_'1;,,, 8_’1)5 Z ‘8377« 8.’1}5 ,3—1,..,,71’7'-#3 ,
afr of, ofs . B
sup 0wr S+Z‘8mq oz, irs=1,...,n,r#£sy,
>\1+>\2,

where A1, A2 are the two largest eigenvalues of (0f*/0x + 0f/0x)/2.

The usual proof of Bendixson’s criterion based on Green’s theorem
in the plane does not lend itself readily to higher dimensional gener-
alization. However, the criterion may also be established by recalling
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from the preceding discussion that, if n = 2 and div f < 0 (respectively
div f > 0) on R2, then the flow defined by (4.1) is area diminishing
(respectively enhancing). But the area bounded by a nontrivial peri-
odic trajectory is a positive constant under the flow, thus contradicting
div f # 0. When n > 2 and |z| = (3, #2)'/2, the result of Douglas
[4] implies that any nontrivial periodic trajectory « is the boundary of
a surface for which the corresponding area o5 is a minimum and posi-
tive. The condition of Theorem 4.1 implies that 7 is invariant and o3 is
decreased by the flow as t increases (decreases), contradicting the min-
imality of the surface area so that no such periodic trajectory exists.
The idea of this proof is extended to general norms.

PrROOF OF THEOREM 4.1. Suppose v = {p(t) : 0 < ¢t < w} is
the trajectory of a nontrivial w-periodic solution p of (4.1). Consider
the family H of simply connected surfaces h € C'(R? — R"),h =
h(r,s), (r,s) € [0,w]x[0, 1] whose boundary is . For example, h(r, s) =
(1 — s)p(0) + sp(r) is such a surface. Let § = inf{os(h) : h € H}.
The result of Douglas [4] implies § > 0 in the case of the norm
lz| = (32, 22)'/2, and this implies § > 0 for the area oo corresponding
to any norm. Let Ho C H be a sequence of surfaces hy whose traces
lie in a ball B. Then, for some € > 0, h¢(r, s) = z(t, ho(r, s)) exists for
all (r,s) € [0,w] x [0,1],¢ € [—¢,¢] and for all hg € Ho. Then h; € H
and, if p(0f?/0x) < 0, we find from (4.5), (4.6), (4.7) that there is a
number 7 € (0,1) such that

oa(he) < noa(ho)

if hg € Ho. By choosing H ¢ to be a minimizing sequence for o2, we
find
0<do<ns, 0<n<l,

since we may choose hg so that o3 (hg) is arbitrarily close to § and § <
o2(h.) by definition. This contradiction shows that no such trajectory
7 exists in the case u(9f121/0x) < 0. When u(—0f12/0z) < 0, we
consider the evolution of the surfaces H o backward in time rather than
forward. O
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REMARKS.

(a) When n = 2, it is sometimes convenient to assume that the
Bendixson criterion is satisfied only on some open subset E of R2.
If F is simply connected, no nontrivial periodic orbit of (4.1) lies in E.
If F is multiply connected, one easily finds a bound on the number of
closed orbits based on the connectivity of £. When n > 2, it seems to
be necessary to impose additional restrictions on the structure of E or
the dynamics of (4.1) as in Theorem 8 of [23].

(b) For example, if F is open and convex such that u(9f?/dz) < 0
(or u(—0f121/8z) < 0) in E, the proof given above shows that E cannot
contain a simply connected 2-surface whose boundary is invariant under
the flow of (4.1). In particular, E contains no nontrivial periodic
trajectory.

(c) Suppose E is open with compact closure, is positively (or neg-
atively) invariant with respect to (4.1) and u(9f[P/8z) < 0 (or
u(—0f2/oz) < 0) in E. Suppose also that v C E is such that all
smooth 2-surfaces h with boundary ~ and trace in F satisfy 0 < § <
o2(h), and that one such surface ho satisfies o2(hg) < co. Then ~v
cannot be invariant. An argument similar to that used in the proof of
Theorem 4.1 shows 0 < § < o2(ht) = 0, ¢ — oo (ort - —o0), a
contradiction.

(d) If 0 < r € C}(R®* — R), then the orbits of 2’ = r(z)f(z)
are the same as those of (4.1). This can be seen by making the
transformation y(s) = z(t),s = fot r(z(u)) du, in this system. Thus
we may replace f by rf in the statement of Theorem 4.1 without
altering the conclusion of the theorem. The corresponding modification
of Bendixson’s criterion is due to Dulac (cf. [22]).

Poincaré’s stability criterion pertains to the orbital stability of a
periodic trajectory associated with (4.1). Suppose the system has a
periodic solution z = p(t) with least period w > 0 and trajectory
v ={p(t) : 0 <t < w}. This trajectory is orbitally stable if, for each
€ > 0, there exists a § > 0 such that any solution z(t), for which the
distance of z(0) from + is less than J, remains at a distance less than ¢
from v for all t > 0. It is orbitally asymptotically stable if the distance
of z(t) from ~ also tends to zero as t — oo.
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PrROOF OF THEOREM 4.2. Let x = p(t) be a nontrivial w-periodic
solution of (4.1). Then the variational equation (4.2), k = 1, z(¢, z¢) =
p(t), is a linear system with w-periodic coefficient matrix df(p(t))/dz.
By Floquet’s theorem [3, p. 47], a fundamental matrix Y (¢) of (4.2),
k =1, may be written in the form

(4.8) Y (t) = P(t) exp(Lt),

where the n x n matrices P(t), L are w-periodic and constant, respec-
tively. The stability character of (4.2), k = 1, is, therefore, determined
by the eigenvalues of L which are called the characteristic exponents.
Since y = p’(t) is a nontrivial periodic solution of (4.2), k = 1, it follows
that one of the characteristic exponents is equal to zero (mod 27i/w).
A fundamental result in stability theory is that v is orbitally asymp-
totically stable if the remaining n — 1 characteristic exponents have
negative real part. There are several essentially different proofs of this
fact in the literature; for example, see [3, 7, 8, 9]. Now, the equation
(4.2), k = 2, 2(¢t,zp) = p(t), has fundamental matrix

Y@ (t) = PO (t) exp(L12t)

by (1.1), (1.7) and (4.8). The characteristic exponents of (4.2), k = 2,
are thus the eigenvalues of LI?! which are sums of pairs of eigenvalues
of L. Since L has at least one eigenvalue zero, it follows that all
the remaining (n — 1) eigenvalues of L are also eigenvalues of L%,
These eigenvalues must, therefore, all have negative real part since
Y@(t) — 0, — co. Hence, 7 is orbitally asymptotically stable.

The condition of Corollary 4.3 may be shown to be a sufficient
condition for the system (4.2) with & = 2, z(t,z9) = p(t), to be
asymptotically stable. Thus the assertion about orbital asymptotic
stability follows from Theorem 4.2.
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