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A SEQUENCE OF BEST PARABOLA THEOREMS
FOR CONTINUED FRACTIONS

LISA JACOBSEN AND DAVID R. MASSON

In honor of W.J. Thron on his 70th birthday

1. Introduction. The history of the parabola theorems dates back
to 1940 when Scott and Wall published the first, simple version [5].
Our paper is based on the following beautiful generalization by Thron
from 1958 [6]:

Theorem A. Let —7/2 < a < w/2 be a fized number, {gn}or, be a
fized sequence with 0 < go <1,0< g, <1 forn>1 and

0o k
1
(1.1) SI <— — 1> = o0,
and let
(1.2) Py, ={z€C:|z| —Re(ze7"*) < 2g,, 1(1 — g) cos® a}
forn=1,2,3,.... Finally, let K(a,/1) be a continued fraction with
(1.3) 0 # an € Py for all n € N.

Then K(a,/1) converges if and only if

(1.4) i ﬁ lan| DT = .

n=1 k=1

Comment 1. The conclusion in Theorem A is really just one of
several proved in [6]. For instance, if (1.3) holds, then
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(i) all the approximants f,, of K(a,/1) are finite and contained in
the half plane V given by

(1.5) V,, = {z € C;Re(ze™ ) > —g, cosa} for n € Ny = NU {0},

(ii) the even and the odd approximants of K (a,/1) both converge
to finite limits,

(iii) its approximants f,, satisfy

el A
1. nam| < l
(1.6) [fn = Frtm| < 1—-gicosa H - 1 |COS “

for all m,n € N, where

(1.7) ¢j = —gj—1(1-g;), ZQ’“’ @n = H <l N l) '

9k

Comment 2. If {g,} is bounded away from 0 and a, € Papn
for all n, but ay = 0, then K(a,/1) converges to fy_1 = fnv =
fn+1 = ---. (This follows by a simple argument based on the fact
that iminf{|w + 1| : w € V,;,n € N} > 0.) Clearly (1.4) holds in this
case, so that the condition a,, # 0 in (1.3) may be removed.

The simplicity and generality of such parabola theorems really meant
a breakthrough in the convergence theory of continued fractions. Sim-
ple choices for {g,} are all g, =1/2 or g, =1/2+1/(2(2n+ 1)) for all
n [6]. This corresponds to ¢, = —1/4 or ¢, = —1/4 — 1/(4(4n? — 1)).
Further, (1.4) holds if {a,} is bounded. However, Theorem A implies
convergence of larger classes of continued fractions than those indicated
by these examples. In this paper we shall describe some of these classes
and show that they are largest possible in a certain well-defined sense.

2. The choice of {g,}. The boundary 0P, of P, is a parabola
with focus at the origin, axis along the ray arg(z) = 2a, vertex at
e*2%¢, cos? o and intersecting the negative real axis at c,. P, , and

cn, are as given by (1.2) and (1.7). Hence, if |¢,| < |cn|, then the
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corresponding parabolic regions satisfy Pam C P,,n. For our purpose
we therefore want to choose {g,} such that “all |c,| are large.”

We shall restrict ourselves to the case where |c,,| | 1/4 monotonically.
The monotonicity represents the restriction. That ¢, approaches the
value—1/4 is a consequence of our wish to get |c,,| as large as possible.
The key to our investigations is the following result from [2, Theorem
1]:

Theorem B. Let T'€ Ny and p; > 0 for j =0,1,... ,T —1 be fized
numbers such that

T k-1
1 1 -2
(2.1) ¢, = 1716 E H (log(j)(n +pj)> # oo for alln e N.
k=1 j=0

Then K(c,,/1) converges and K (e, /1) diverges, if

T-1
(2.2) €n =Cp—€ H <log(]-)(n —i—pj)) ’ +0(n73)#£0
j=0

for all n € N and ¢ > 0. (Notation: logg)k = k,logyk =
logk,log oy k = log(log k), etc., where logk denotes the natural log-
arithm for £ > 0.)

We recognize that T = 0 gives ¢, = —1/4, i.e., all g, = 1/2, and
that T = 1 and py = 0 give ¢, = —1/4 — 1/(16n?), i.e., essentially
as Thron suggested in [6]. For these values of T and py we also have
en = —1/4—e+0(Mn73) ore, = —1/4— (1+ u)/(16n2) + O(n=3),
which also previously were known to give divergent continued fractions
K(e,/1) if e > 0 and p > 0 [3, p. 47-48], [1]. Increasing T" means
increasing |c,| for n sufficiently large, as long as log;)(n + p;) > 0 for
j=1,2,...,T—1.

By use of this result we get the following sequence (T' = 0,1,2,...)
of parabola theorems.

Theorem 1. Let —7/2 < a < 7/2 and T € Ny be fized numbers,
{cn} be given by (2.1), and
(2.3)

Pon = {2z € C;|z| — Re(ze %) < 2|cy|cos’a} forn=1,2,3,....
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Then K(an/1) with all 0 # ap € P, converges in C = C U {oo} if
and only if (1.4) holds.

(As always, K(a,/1), a, # 0, converges if some tail, K(am+n/1),
converges. Hence, it really suffices that a4y € Py, from some n on,
for a fixed m € N, ifa, #0 forn=1,2,... ,m.)

Proof. In [2, Theorem 3.1 and its proof] it was found that a minimal

solution {Yn(l)} of the recurrence relation Y;,, = Y,,_1 + ¢,Y,,_2 is given
by

n n

(2.4) v = XD (14 O((log(ryn) ™))

where X, (™)~ has the large n behavior

T

(25) X~ = C(1/2)"<H(log(k) n)1/2> (14 O(1/log(z) n)).

k=0

Hence, g, = Yn(l)/YTElj1 satisfies ¢, = —gn—1(1 — gn). Further, either
by straightforward computation, or by use of the main result in [8], we
find that this choice of {g,} also satisfies

oo k
(2.6 > [0

k=0 n

Since g, — 1/2, we thus have that the sequence {gn .} satisfies (1.1)
for N sufficiently large. Hence, K32 v (an/1) converges by Theorem
A, and thus K(a,/1) converges. 0O

These parabola theorems are best in the sense that {c,} cannot be
replaced by {e,} which is slightly larger in modulus, at least from some
n on. From (2.4)—(2.5) it follows that the {g,} corresponding to (2.1)
has the form

k

T
_1.1 -2
(2.7) gn=35+7 ,},1 0l/log y(n+pj) +0(n~7).

|
—

<.
I
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To ascertain that {g,} satisfies (1.1) if T > 1, such that also the
properties of Comment 1 are valid, one can adjust p; to obtain gy = 1.
For instance, one can choose

(2.8)
1 1 T k-1
=t ——— 1/log,; ) forn=0,1,2,...,
O R ; JE[I /1og(jy(n+p;) forn
where
(2.9) pr=e, pr=c¢e, p3=c¢€,....
This gives
(2.10)

Cp = _gnfl(l - gn) =
T

1 1 - —2 L
4 16(n+T/2)(n+T/2-1) kZ g(log(g n+pa)) +0(n"),

and the truncation error estimate (1.6) becomes

(2.11)  |fn — fatm| < M, = O(l/log(T) n) for all n and m in N.

3. The condition (1.4). From the Seidel-Stern-Stolz criterion (see
for instance [3, Theorem 4.19, p. 79 and Theorem 4.28, p. 87]) it follows
that (1.4) holds if and only if K(]a,|/1) converges. Further, by [4,
Satz 2.11, p. 47] it follows that K (|a,|/1) converges if 3" |a,| /2 = oco.
Clearly, then, it suffices that {a, } has a subsequence {a, )} such that
> |an(ky| /% = 0o. We thus have

Theorem 2. The sequence {|a,|} satisfies (1.4) if there exist a
subsequence {|an )|}, an M >0 and a T € N such that

-1

2
(3.1) lanw)| < dp = (M H log ;) k> from some k on.
=0

This is a best result in the sense that K (dy/1) diverges if

(3.2) dy = di(log(p_1) k)* + O(k)  from some k on, where € > 0.
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Proof. The first part follows trivially from the considerations above.
To see that K(dx/1) diverges, we let N € N be so large that
log(7_1)(2N — 1) > 0. Then

d2N+1d2N+3 U d2k—1

pona1 dentedanya---dog

> k 2n —1log(2n — 1)  logp_o)(2n —1) ’
- Z H ( 2n log(2n)

k=N+1n=N4+1 1Og(T—z) (2n)

) log(Tfl) (2n — ].) ot n_l_E
( 10g(T—1)(2”) ) (1+0( )

B i ﬁ n—1log(n —1) ‘Hlog(sz)(n_ 1)
N n logn

k=N+1 \n=N-1 log(r_z)n

1+e/2
. <—1°g<T—1>(” ”) (1+0(n1=%) +O(n_2))>

log(p_1yn
which converges to a finite number. Similarly,

dZNg2N+2 e CiZk

= = = < oo. O
k=N+2 daony1dani3 - dogga

4. Limit periodic continued fractions of parabolic type. A
continued fraction K (a,/1) is said to be limit p-periodic of parabolic
type for a p € N if

(4.1) lim appyr =c¢, € C—-{0}, forr=1,2,...,p,

n—oo
and the linear fractional transformation

a o &
1+ 1+ + 14w

(4.2) Sp(w) =

is of parabolic type, i.e., S, has coinciding fixed points. If ¢, = 0 or
o0, then special requirements are needed. For p = 1 this means that



BEST PARABOLA THEOREMS 383

an — —1/4. From the parabola theorems one obtains convergence
criteria for such continued fractions. In particular, we get

Corollary 3. K(a,/1) converges in C if

T-1 k

-2

from some n on, for some m and T in Ny. Its rate of convergence is

Proof. The disk |z 4+ 1/4| < R, where R, is given by the bound in
(4.3), is contained in Py ,, given by (2.4). O

This extends a result from [7]. The basis of the proof was that
—1/4 € 0Py . Indeed, —1/4 € 0P,  for every permissible a. One of
the beautiful properties of F, o is that its boundary consists of pairs
(c1, c2) such that Sy(w) is of parabolic type. Better still, to every such
pair (c1,¢z) we can find a corresponding parabola:

Theorem 4. Let S2(w) given by (4.2) be of parabolic type. Then

. 1
(4.4) lcr| — Re (cpe™™) = 2 cos’a forr=1,2,
where
Im (\/c1) £1/2 T
4. — Arctan W) =L/ o momy
(4.5) a rctan Re (va) € ( 5 2)

(Here Re (y/c1) > 0, and the minus sign in (4.5) is to be chosen if
and only if Im (/cy) > Im(/cz). Statement (4.4) is equivalent to
¢r € 0Py o0.)

Proof. It is well known and easy to ascertain that, writing a, = v2,
we have a, € P, if and only if v, is contained in the strip

(4.6) Qon=1{2€C:|Im(ze )| < \/gn_1(1 — gn)cosal.



384 L. JACOBSEN AND D.R. MASSON

Qo 0 is a strip symmetric about its axis z = te'®, t € R, with constant
vertical width 1, whose boundary contains the points £4/2. Since Sa(w)
is parabolic, we have that cico # 0 and ¢; = (i£,/c2)?. Without loss of
generality, we thus write ¢, = u2, where u; = uy i with Re (u) > 0.
Hence, u; and us are elements of 0Qq, o if

tana — <Im (ur) + %) /Re(u1). O

Therefore, we also get convergence results for limit 2-periodic con-
tinued fractions of the parabolic type from the parabola theorems, in
particular

Theorem 5. Let c1,co and o be as in Theorem 4, and let T and m
be fized nonnegative integers. Then K(a,/1) with agpir = ¢ + O2n4r
for all n and r = 1,2 converges if

— T-1 &k _
(4.7) |bntom| < w Z H <log(j) n) ’ from some n on,

k=0 j=0

where r =1 if n is odd, and r = 2 if n is even. Its rate of convergence
is O(1/ log(ryn).

Proof. Let a,, = v2 and ¢, = u2 for r = 1,2, such that Re (u;) > 0
and us = uy =1, and let g,, be given by (2.6). Then v;,19,, is contained

in the strip Qu,n if |vntom — | < (/gn=1(1 — gn) — 1/2) cos o, since
Up € 0Qq,00- We have

|5n+2m| = |an+2m - cr‘ = |vn+2m + ur|‘vn+2m - ur|
= 2lvpsom — url[ur|(1+O(n"?))

T-1 k
|u,| cos a _
ST g > [ogm)~

k=0 j=0
from some n on, and thus
cosa =+ F
-2 —4
Un+2m — uT| < 16 ];) J O(IOg(j) TL) + O(n )
= J:

=(Vgn-1(1 —gn) —1/2) cosa + O(n_3).
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(See (2.10).) Hence, possibly by increasing m, we have vy 1om € Qa,n
from some n on, and the result follows from (2.11).

For period lengths p > 2, we can no longer use the parabola theorem
directly, but by considering contractions of K(a,/1) one can obtain
similar results.
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