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SHARP INEQUALITIES FOR THE PADE
APPROXIMANT ERRORS IN THE STIELTJES CASE

JACEK GILEWICZ AND ALPHONSE P. MAGNUS

1. Introduction. For the first time, ten years ago, the inequalities
in question were quietly used by the authors to prove the existence of
valleys in the c-table [6, Formulae (29) and (31)]. It was so natural
for us to consider that everything about the Padé approximants to
the Stieltjes functions coming from Stieltjes’ work was well known.
However, in the literature [1, 2, 3, 9] we have not been able to find
this!

Having discovered the above accident we proved the valley property in
another way (not published) and two conjectured inequalities became
“open problems” [7]. Today we can give a complete proof of these
inequalities.

2. Main result. Let f be a nonrational Stieltjes function and
Ay, /By, the [m/n] Padé approximant to f. We call the differences
f —[m/n] “Padé approximant errors.”

Theorem. Let [m/n] be a Padé approzimant to the nonrational
Stieltjes function f:

1/R
(1) f(z):/0 %, du >0, R>0.

The following inequalities occur:
Vn > max(0, —k) and Vz € ]0, R],

(2) 0< f(z)—[n+k+1/n|(z) < %{f(w)— [n+k/nl(z)}, k= -2
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3)  0<f(z)—[n+k/n+t1]() < %{f(w) — [n+k/nj(2)},
k>0,
(4) ,
0< f(@) = [n+k+1/n+1@) < (5) {F@) =~ n+k/nl@)},
E>-—1.

Moreover, the x factor on the right-hand side optimizes the order of
the corresponding series, i.e., the power of x cannot be increased.

Remarks.

On sharpness. For each given function f, the inequalities in question
can be improved by multiplying the right-hand sides by some positive
factor not greater than 1, which corresponds to the intermediate value
mentioned in the proof of the inequality (2). The referee remarked
that, for ¥ = —1, the inequality (2) can be derived from Corollary
17.1, p. 243 in [1], where this factor can be bounded in terms of the
denominators B, 1, and B, , of [n —1/n] and [n/n]:

By n(R)Bp_1n(z)x
Bn,n (x)anl,n(R)R

f(z) = [n/n](z) < {f(z) = [n—1/nj(x)}.

On the strict inequalities. Firstly, observe that the rational Stieltjes
functions are reconstructed by infinitely many Padé approximants, and
in this case the error is zero. The error vanishes also for x = 0. Without
loss of generality, we eliminate these two cases to obtain the strict
inequalities, more interesting than the weak ones.

Logical motivation. By the definition of Padé approximants we have
f(@) = [m/n](z) = O(a™ "),

i.e., the error is of the order (m + n + 1). On any antidiagonal
(m + n = const) of the Padé table, all errors are of the same order.
Conversely, for instance, following a diagonal, the order of errors
changes and the classical inequality

(5) f(2)—[n+k+1/n+1](z) < f(z) — [n+ k/n|(z), Yz €]0,R[,
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which is improved by (4), is no longer balanced with respect to the order
of the two sides. It follows that if x tends to zero, the left-hand side
tends to zero more rapidly than the right-hand side, and, consequently,
this inequality is, in this sense, trivial. Indeed, our idea was to balance
all inequalities with respect to the series order.

The absence of the optimal (sharp) inequalities in the work on Padé
approximations can be explained by the fact that the inequalities like
(5) are sufficient to prove the convergence properties of Padé sequences.

Proof of Theorem. It is well known [5, p. 242] that, in the Stieltjes
case defined in (1), the Padé approximant denominators of the sequence

(6) {ln+Ek/n] = Anyk/Bn}n>max(o,—k), Kk > —1 and fixed,

form a family of orthogonal polynomials {B,},
— 1
(7) B, (t) =t"B, <¥> , n>max(0,—k),

with respect to the measure t*+1 dpu(t):

YR
(8) /0 Bo() B () dus(t) = anbp-

In the following we use the family {P,.;} of the normalized orthogonal
polynomials:

(9) Poi(t;z) = Bp(t)/Bn(1/z), Pog(l/z;2) = 1.
In order to prove our theorem, we need two known lemmas.
Lemma 1. [8] Let f be a Stieltjes function defined by (1) and

P,.k(t;x) an orthogonal polynomial of degree n in t defined by (9); then
the Padé approximant error is given by

k+1

du(t),

1/R
(10) fz) = [n+ k/ni(z) = ka/O [Py (t; )] 1t— tx

k> —1; n > max(0, —k).
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Proof. We begin with the proof of a weaker relation than (10), without
the square in the right-hand term:
k+1

1/R
ay @kl = [T P ),
k> —1; n > max(0, —k).
Firstly, we show that the function r defined by
rle) = fa) - 2 [ Pt o
Tt
is rational. In fact, with ( (7) and (9) we obtain
/ By( o (B)th L+
1 —tz

du(t)

du(t),

where the numerator of the integrand vanishes for xt = 1. Then the
integral is a polynomial of degree n + k in x and r is rational of type
{n+k/n}.

We estimate now the remainder f — r:

f(z) —r(z)
n+k:+1
= /B Y1+t + -+ (zt)" L (zt)" + - dpt).

The contribution of [(1 + zt + --- + (xt)"~!] is zero because of
orthogonality (8); then, after resuming the rest,

o) =rla) = g L [ RO gy,

Because B, (0) # 0, the remainder is of order (2n + k + 1), which
proves that r is a Padé approximant [n + k/n]. This ends the proof of
the relation (11).

We now introduce the square:

tk+1
/Pn;k(t; x)m du(t)

= [ Paase)Paatse) 41 - Pt dutt)

:/[Pn;k,(t;x)]Z tk+1x d,u(t) +/Pn;k(t;x)[1 - Pn;k(t;x)]thrl du(t).

1—t 1—tx
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Following (9), the polynomial 1 — P, s, vanishes for z¢t = 1 and so can
be simplified by (1 — zt). Consequently, by orthogonality, the second
integral vanishes, which completes the proof of Lemma 1. O

The square in (10) was needed to prove the following extremal
property.

Lemma 2. [4, p. 25] In the set of all polynomials Q,(t) of degree n
such that Q,(1/x) = 1, the polynomial P, (t; ) minimizes the integral

1/R k1
(12) 1= [ QuP s duto)

for all x belonging to 0, R].

Proof. Each polynomial Q),, can be written as
Qn(t) = Ppk(t; z) + (1 — at)gm (1),
where deg(gy,) < n. Introducing this in (12) obtains

tk+1
1—tzx

I= [Pt P dn(®) + 2 [ Pas(t)an(® dutt)

+ /(1 —t2) g ()t T du(t).

The second term vanishes by orthogonality, and the third term is
strictly positive for  belonging to |0, R[ because the measure dy is
positive. O

Proof of Inequality (2). We apply Lemma 1 to the left-hand side error
of (2):

f(@)=[n+k+1/n](z)

. 1/R
— +2 P . t: 2
2 [Pl

w2 [F o tFH2
< P (t; du(t).
<ot [ Pt du

tk+2

du(t) k= -2,
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where the last majoration is obtained following Lemma 2. Taking some
intermediate value of ¢ outside the integral and replacing it by the
maximal one, i.e., 1/R, we obtain exactly the inequality (2).

Proof of Inequality (3). In a similar way, we apply Lemma 1 to the
left-hand side Padé error of (3) and, with the help of Lemma 2, obtain
the required majoration:

f(@)=[n+k/n+1](z)

v [ g tF
= Poi1k—1(t;
[ PP T
k

1/R ;
< wk/ [tz Pk (t; 7)) 1
o _

(%) Lk /OI/R[Pmk(t;:v)]2 1t_ . dp(t)
:<%){ﬂ@—ﬁn+kﬂﬂwﬂ-

du(t), k>0,

IN

Termination of the Proof. The inequality (4) can be proved in a
similar way, but it is also the consequence of the two inequalities (2)
and (3). The positivity of errors in the interval ]0, R[ is, of course,
classic [5]. O

Conclusion. The inequalities obtained in our theorem are sharp in
the sense that the power of x cannot be increased in the right-hand
side. They are interesting especially when = tends to zero. Note also
that the improving factor /R belongs to the interval ]0,1[ and the
classical inequalities correspond precisely to the value 1.
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