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SUBORDINATION OF POLYNOMIALS
ANTONIO CORDOVA AND STEPHAN RUSCHEWEYH

ABSTRACT. We prove a general sufficient condition for
polynomials to be subordinate to certain analytic functions.
This generalizes and unifies other known conditions.

1. Introduction. Let A denote the set of analytic functions in
the unit disk D of the complex plane C, and let P, be the set of
polynomials of degree < n. If f,g € A, then f is called subordinate to
g (denoted by f < g) if f = g ow, where w € A satisfies |w(z)| < |z
in D. The concept of subordination turned out to be very useful for
many applications in function theory, and, therefore, it is of interest to
obtain simple, sufficient criteria which guarantee subordination. The
most elementary one of such criteria works if g happens to be univalent
in D. Then f < g if and only if f(0) = g(0) and f(D) C g(D).
Less immediate, but nevertheless easy to prove, is the following known
special result.

Theorem A. Let P € P,, P(O) = 1 and 0 ¢ P(D). Then
P=<Q,:=(1-2)"

Note that here already the omission of one single boundary point of
Q.(D), namely, @,(1) = 0, guarantees subordination. Theorem A is
fairly surprising, and it seems to represent the only known case, so far,
of this kind of subordination criterion. In connection with our work
[1, 2] on the “maximal range” problem for polynomials, we were led to
conjecture that the following might be true.
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Theorem 1. Letn > 2 and assume that Q € Py, has all of its critical
points (j in D, j=1,...,n—1. Let P € P, satisfy P(0) = Q(0) and

(1.1) Q)¢ P(D), j=1,...,n—1L

Then P < Q.

Clearly, Theorem A is a very special case of Theorem 1 (except for the
case n = 1, where it is trivial anyway), which we are going to establish
in the present paper. In a somewhat rough interpretation, it says that
the range of P can “leave” the range of @ only through the images of
the critical points of Q.

One may ask why the statement in Theorem 1 is restricted to
polynomials. This, in fact, is not necessary as far as () is concerned.
Important for @ is only a certain restriction of the curvature of Q(0D).
And this restriction determines the degree of polynomials P for which
the conclusion holds. We shall prove the following much more general
(but perhaps less transparent) result.

Theorem 2. Let F' be meromorphic in C, F' # const., and assume
that, for a certain n € N,

2F"(z) n+1
1) > D
Re(F,(z) + >_ 5 z € OD\¢,

where € is the set of zeros and poles of F' in C. Let w € A be such
that

(()

)
(ii) P := F ow is the restriction to D of a polynomial in P,,.
(iii) Qlﬂw( ) =o.

Then w(D) C D, and, in particular, P < F.

One further remark concerning Theorem 1 is in order. Generally, we
will not have that

(12) Q(CJ) ¢ Q(D)) ] = la cee 0 — ]-7
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so that, in these cases, Theorem 1 does not give the trivial result Q < Q.
If, however, @ is univalent in D, then @ = 0 only on the boundary,
and the univalence gives (1.2). In these cases Theorem 1 provides
a necessary and sufficient condition for P < @. Note that here the
stronger P(D) C Q(D) is replaced by (1.1). The following simple
application of Theorem 1 deals with this type of Q.

Corollary. Let P € P, be such that P(0) =0 and

n—1 2xij
en-t, j=1,...,n—1, z€D.

P(z) #

n
Then P < z — z™/n, and, in particular,

1
|P(z)] < nt , zeD.
n

An interesting consequence of this Corollary is that if P € P,, with
P(0) =0 and

n 2mij

n—f—le ~  j=1,...,n, z€D,

P(z) #

then P is the n-th partial sum of the Taylor series expansion about
z =0 of an w € A satisfying |w(z)| <1 in D.

We note that it is easy to construct univalent polynomials with all
zeros of the derivative on dD. Following a result of Suffridge [7], we
have that

zn—1
P(z) :/ [T = tes)at
0 i
is univalent in D if

2
n+1

<min{la; —ar+2mm|:1<j<k<n-1, meZ}

Many of these and other univalent polynomials with the given property
have been studied in [1, 2, 6, 7].
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The situation in Theorem A is special in some other sense. Let P, @,
be as in that theorem. Then one can show that

P e co{Qn(zz) : z € OD}.

Here ¢o stands for the closed convex hull. A corresponding result
does not hold, in general, for the polynomials subordinate to some
Q@ in Theorem 1, as can easily be seen from the case discussed in the
Corollary above. It is an open problem to determine to which of the
cases in Theorem 1 this special property of the polynomials Q,, extends.

Our proof of Theorem 2 makes use of a result which is somewhat
reminiscent of Alternant Theorems in real approximation theory. Since
this may have other interesting applications as well, we wish to state
it here as a theorem.

Theorem 3. Let R(z) = [[j_,(2 — 2;), and let @ # $ be a finite
subset of O0D\{1,z21,...,2m}. Assume that, for every V € P, with
V(1) = 0, we have

(1.3) 0 € co{R(2)V(2) : z € H}.

Then z; € 0D, j=1,...,m.

2. Proof of Theorem 2. This proof has two parts. First, we
show, by a fairly straightforward argument, that the theorem holds
when P’ = const. or P’ has all of its zeros on dD. In the second, much
more involved, part, we reduce the general case to Part 1.

Part 1. We make use of the following Lemma.

Q

Lemma 1. (Jack [3], Miller and Mocanu [4]) Let w € A b
nonconstant, w(0) = 0, and zp € D such that |w(zp)| > |w(z)| for
all z satisfying |z| < |zo|. Then (zow'(20))/w(z0) € R and

(2.1) Re <M + 1) > 20w(z0) o

w’(20) w(20)

Furthermore, equality in (2.1) can occur only if w(z) = az, where a is
some constant.



SUBORDINATION OF POLYNOMIALS 163

The case of equality is not covered in [3] or [4], but can easily be
deduced from the Julia-Wolff Theorem (see, for instance, Pommerenke
[5, p. 306]).

Now assume that P = Fow and, to begin with, that P’ is nonconstant
and has all its zeros on 0D, which implies that

"
(2.2) Re(ZP (z)+1> <t D,

P'(z) 2’

If the Theorem does not hold for P, then there exists zo € D such that
|w(z0)] = 1. In fact, we may assume that z; is one of the points with
smallest modulus which have this property. Then |w(z)| < |w(z0)| =1
holds for |z| < |z9|. We have

(2.3) P'(20) = F'(w(20))w' (0),

and we note that w(zp) ¢ € by assumption. We take logarithmic
derivatives in (2.3), then real parts and use (2.1) to obtain

(24) Re <% + 1) I CACO (“’(ZO)F”(“’(ZO)) + 1)

wCo) O\ Flel)
ol (e ) -y

Here, the left-hand side turns out to be < (n+1)/2 by (2.2), while the
right-hand side is > (n 4 1)/2 by Lemma 1 and the assumption on F.
This gives the desired contradiction.

If P = const., then w = 0 and we are done. If P’ = const. # 0,
then the left-hand side of (2.4) is 1, while the right-hand side is > 1
except in the case that equality occurs in (2.1). That, however, implies
w(z) = az, and the relation P = F o w shows that F must be linear.
This contradicts the assumptions on F'.

Part 2. Let F; denote the set of functions w which satisfy the
assumptions of Theorem 2 for the given F. If Theorem 2 is false,
then there exist wy € F; and zg € D with |w1(29)| > 1. The function
wo € Fy defined by wa(z) := wi(22p) is analytic in D, and we have

(2.5) |lwa(1)] > 1.
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Proposition 1. Assume Theorem 2 is false and ws as above. Then
there exists a domain ) with the following properties:

(a) we(D) C Q.

(b) 09 is a finite collection of Jordan curves.
(c) Qis compact and €N Q = @.
(

d) The set
Fi={weF :wD)CQ}

is nonempty and compact. FEach function w € F extends analytically
into D.

(e) FEach function w € F has at most a finite number of points of
contact with 0K2, i.e., the sets

o :={2 € 0D : w(z) € 00}
are finite. Furthermore, w'(z) # 0 for z € 9,,.

(f) The set
A:={w(l):w e F}
is compact, and there exists ¢ € OA\OQ with |¢| > 1.

Proof. We can find a bounded domain s such that
e 0 is a finite collection of Jordan curves,

e wy(D) C Ny,

e CNQy =g,

e F maps 0Q into a finite number of line segments.

Let
Foi={we F :w(D) € Qa2}.
We note that, by construction, F' is analytic in Q, and F’ is bounded

away from zero in the same set: there exist constants p; < oo, g > 0
such that

[F(w)] < pa,  |F'(w)] = p2,  for w € Q.
Let w € F, and P = F ow. Then we have |P(2)| < p; for z € D, and
thus, by Bernstein’s theorem, |P'(z)| < npy in D. This gives

(2.6) W (2) = e G

BECCIRET S
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This implies, in particular, that the length of the curve
Yo i={w(t) 1 0<t <1}

is at most M := npy/ps.
Let J C Q2\(w2(D) UD) be a Jordan domain which satisfies
e F maps 0J into finitely many line segments,

e there exists a point W € @J such that every analytic curve
connecting the origin with @ in Q9\J is of length larger than M.

We now set 2 := 5\ J and verify the assertions in Proposition 1(a),
(b), (c) are obvious. The first part of (d) follows from (2.6), noting that
F C Fs and that F is closed. The second part can be deduced from the
fact that Fow € P, and F’ # 0 in Q. Each point of contact of w € F
with 0 corresponds to a contact of the corresponding polynomial P
with one of the finitely many straight line segments in F'(9€). Since
P has at most n contacts with any given straight line, the conclusion
follows. Furthermore, P’ # 0 in the points of contact, which, therefore,
holds for w’ as well; this gives (e). To prove (f), we first note that
A has points outside D (see (2.5)). On the other hand, @ ¢ O0A
by construction (compare the necessary length of analytic curves to
connect 0 with @ in Q with the length of the curves ~,). This shows
that there must be a boundary point ¢ of A in Q\D. o

Proposition 2. Let F,A,(, 9, be as in Proposition 1. Then, for
w € F withw(l) =¢ and P = F ow, we have

(2.7) max Re [ZPI(Z)W] >0

zE

holds for every U € P, with U(0) = U(1) = 0.
To prove this, we employ the following lemma [1, Lemma 2.3].

Lemma 2. Let P € P, 29 € 0D, with P'(z9) # 0. Then, for every
0 € (0,7/2), there exist g > 0,7 > 0 such that

P(z2) —ee'¥2P'(z) € P(D)

for each z = zpe'® with |¢| <, 0 < e < &g, Y| < 4.
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Proof of Proposition 2. First, we can rule out the possibility that
P’ = const. because, for such a P, Part 1 applies and proves that the
corresponding w takes values only in D, which contradicts w(1) = (.
Second, we observe that $, # @ since, otherwise, the functions
wp(z) 1= w(pz), with |p — 1| small, belong to F and can be used to
show that ( is an interior point of A.

Now assume that there exists U € P,, with U(0) = U(1) = 0 which
does not fulfill (2.7). For € > 0, we define P, := P 4+ cU. The analytic
functions w. := F~! o P. are, in a neighborhood of z = 0, uniquely
defined by fixing w.(0) = 0. It is clear that, for ¢ small, they can be
analytically extended to the whole of D (they are continuous variations
of w). We wish to show that w. € F and that, in fact,

(2.8) we(D) C Q

holds for ¢ small. Once this has been done, it becomes clear that,
for all p with |p — 1| small, we have w. ,(z) := w:(pz) € F. Since
we(1) = w(1) = ¢, this will prove that ¢ is an interior point of A, a
contradiction.

It remains to prove (2.8). Let zg € 9,,. Then, from the properties of
U, we deduce the existence of an open arc I’ C 0D which contains 2o,
and of a § < 7/2 such that

(i) m:=inf.c |2P'(2)/U(2)] >0,

(ii) |arg(—2zP'(2)U(2)| <9,z € I,.
By Lemma 2 we find an open subarc I, C I  containing zp such that
(2.9) P(z2) —ee'V2P'(z) € P(D) C F(w(D))

for 0 <e' <el, ¢ <6,z €I, Inview of (i), (i), the relation (2.9)

holds for the choices

0<e<ey, =me,, z€l,,

in other words,

P.(z) € F(w(D)), 0<e<e,,, z€1,.
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Since F'(w(zp))w'(20) # 0 we see (possibly after making €,, and I,
still somewhat smaller) that

(2.10) we(2) €Q, 0<e<ey,, z€I1,.

If zp € OD\9,,, then P(z) € F(2), and we can find an open arc
I,, C 0D containing zo such that P.(z) € F(Q) for 0 < € < &4,
z € I,,. In the same way as above, we deduce that (2.10) also holds in
this case.

The sets I,,, zp € 0D form an open covering of 0D. We choose a
finite subcovering and an ¢y > 0 that works, in the sense of (2.10), in
all the cases of the finite subcovering. (2.10) then gives

we(z) €, 0<e<egp, z€dD.

This proves (2.8). O

Now we can complete the proof of Theorem 2 (assuming the truth
of Theorem 3, which will be established in the next section). Let w, P
be as in Proposition 2. In the notation of Theorem 3, we set R = P’,
V=U/z2,$=9,, m=deg(P')(#0). Then Propositions 1, 2 say that
all assumptions of Theorem 3 are satisfied. Hence, P’ has all its roots
on OD. But then Part 1 of this proof applies, and we obtain w(D) C D,
a contradiction to |w(1)| =|¢| > 1.0

3. Proof of Theorem 3. First, note that $ has at least m + 1
elements since, otherwise, every polynomial V* € P, with V*(1) =0
and V*(z) = R(z), z € §, contradicts (1.3). The next step is to extend
(1.3) to the apparently trivial cases where V has zeros in ). Let V{ be
a polynomial of exact degree m which has all of its zeros (they may be
multiple) in §, except for a simple zero in the point 1, and let A be the
set of the zeros different from 1. We claim that

(3.1) 0 € co{R(2)Vo(2), z € H\A}.

Indeed, let z* € H\A be fixed and assume, without loss of generality,
that Vp(2*) = R(z*). Then, for p > 0, use Hermite interpolation to
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construct the polynomials V,, € P,, which are uniquely determined by

V,(1) =0,
Vp Z*) = VO(Z*)a
Vp(z) = PR(Z)a
VP(J)(Z):O, ]:]_,,j(z)*].,

for z € A and with j(z) the multiplicity of the zero z of V5. Then
lim,_,o V, =V and, since § is finite, V,(z) # 0, for z € $ and p small.
Hence, for p small, we have

0 < R(2)V,(2) < R(z")V,(2%), z€4%,
and from (1.3) it follows that
co{R(2)V,(2) : z € ©} = co{R(2)V,(2) : 2 € H\A}.

Taking the limit p — 0, we arrive at (3.1).

Now let €95, 0 < 0; < 2m, j =0,...,m — 1, denote the zeros of
Vo, 60 = 0. Then, for certain constants A, A* £ 0, we have

m—1

V'O(eiﬁ):AH(eia_e = A*e —zmTTi_[

and, after a rotation, (3.1) reads

e e H\A

‘m o 1 0 —
0€col e "3 R(e”) H sin !

Without loss of generality, we may assume that R(1) > 0. We write

mé

(3.2) e 1% R(e) = s(0) + it(6),

and note that ¢(0) = 0. To simplify the notation, we write 6 € §' if
e € $ and 0 < § < 2r. Our previous considerations show that, for
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both choices, v = s and v = t, the following is true: for all possible
sequences A’ = (01,...,0,_1) C ', the numbers

00,
2 ?

m—1
(3.3) v(6) ] sin 0 e\,
j=1

cannot be all negative or all positive. We shall prove that this implies
that v has at least m zeros (counting multiplicity) in

I:= [9a70b]7 ea = minf)l, 9[7 = maxf)'.

Assuming that there are less than m zeros in I, we construct a suitable
sequence 2’ as follows: first put every zero of v which lies in §’ into the
sequence 2" according to its multiplicity. If any of the open intervals
of I\ $' contains exactly k zeros of v, then we put k copies of the upper
limit of that interval into 2A’. Clearly, the sequence 2’ now contains
exactly the same number of elements as v has zeros in I, namely,
< m — 1. If there are < m — 1 elements in 2, then we fill it up
with a corresponding number of copies of 6,. It is now easy to check
that this sequence 2 leaves all the elements in (3.3) with the same sign
(none of them is zero).

The functions s, ¢ can have at most m zeros in [0, 27) if they are not
identically zero. But ¢ has an additional zero in § = 0. Hence, t = 0.
The m zeros of s are, therefore, identified to be, in fact, zeros of R on
0D, which completes the proof. O
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