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SOLUTIONS OF A NONLINEAR BOUNDARY LAYER
PROBLEM ARISING IN PHYSICAL OCEANOGRAPHY

WILLIAM C. TROY

ABSTRACT. We investigate a mathematical model for
large scale ocean circulation. Under reasonable assumptions
the partial differential equations reduce to the third order
ordinary differential equation ¢’ + A(¢¢"" — (¢')2)+1—¢ =0
with either “no-slip” initial conditions ¢(0) = 0, ¢'(0) = 0
or “stress-free” initial conditional ¢(0) = 0, ¢"/(0) = 0. The
appropriate boundary condition in each case is ¢(c0) = 1. We
prove that for each A > (27/4)1/3, the no slip problem and
the stress free problem each has at least one solution.

I. Introduction. We investigate the existence of solutions of the
equation

(1) ¢" +ANo¢" —(¢)°)+1-¢=0
which satisfy either of the initial conditions

(2) ¢(0) = ¢'(0) =0

or

(3) ¢(0) = ¢"(0) =0,

and subject to the boundary condition

(4) ¢(o0) = 1.

Equation (1) arises in the theory of physical oceanography and was
developed by Ierley and Ruehr [2]. They derived a two-dimensional, one
layer model for large scale ocean circulation with particular emphasis on
the gulf stream. They assume that the steady state vorticity equation
holds and restrict z and y to a rectangular region. Taking into account
the east-west flow of the wind, they observe that a boundary layer
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is formed on the westernmost edge of the region. As is typical with
boundary layer problems, they then introduce the similarity function ¢
and assume that the stream function is proportional to ¢. Subsequently,
they employ an appropriate matched asymptotic expansion procedure
and arrive at the boundary value problem for ¢, namely (1)—(2)—(4)
or (1)—(3)—(4). Conditions (2) and (3) correspond to “no-slip” and
“stress-free” conditions, respectively. Condition (4) is arrived at by
matching the solutions across the edge of the boundary layer. The
complete derivation of the problem (1)—(4) is given in [2]. A summary
of results on similar models is found in [1].

The numerical studies [2] predict that solutions of the no-slip problem
(1)—(2)—(3) behave as follows:

(i) for A > 0 there is a unique solution,
(ii) for —.7913 < XA < 0 two solutions exist, and
(iii) for A < —.7913 no solution exists.

Further, their computations show that solutions of the stress free
problem (1)—(2)—(4) satisfy

(i) if A > 0 then exactly two solutions exist,

(if) if A = 0 one solution exists,
(iii) if —.29657 < A < 0 there are two solutions, and
(iv) if A < —.29657 then no solution exists.

Recently, Lu and Troy [3] have rigorously investigated the existence of
solutions of these problems. The results of that study are summarized
in the following two theorems.

Theorem 1. There is an g9 > 0 such that if |A| < o, then
(1)=(2)—(3) has at least one solution and (1)—(2)—(4) has at least one
solution. Furthermore, these solutions have the following asymptotic
behavior:

(i) (o(z) —1)e*/® =0 as z — oo
(i) |¢'(z)e*/8| < 3 and |¢" (x)e®/3| < 3 for all > 0,

(iii) the solution of (1)—(2)—(3) satisfies limx_,o |#(z) — po(z)| = 0
uniformly for x € [0,00), and ¢y = 1 — (e */%/\/3)sin(v/3z/2) —
e~%/2 cos(v/31/2);
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(iv) the solution of (1)—(2)—(4) satisfies limy_o |¢p(z) — ¢1(z)] = 0
uniformly for 0 < x < oo, ¢1 = 1+ e */2((1/v/3)sin(v3/2z) —
cos(v/3z/2)).

Theorem 2. If A < =9, then (1)—(2)—(3) has no solution. If
A < —(2)Y/3, then (1)—(2)—(4) has no solution.

In Theorem 2, we have obtained results concerning the nonexistence
of solutions of (1)—(2)—(3) and (1)—(2)—(4) for large negative A. As de-
scribed by Ierley (private communication) the nonexistence of solutions
for large negative A may play a role in the explanation why separation
of the Gulf Stream occurs at a point considerably south of the observed
“zero of wind stress curl.”

In this paper we investigate the existence of solutions of (1)—(2)—(4)
and (1)—(3)—(4) for large positive values of A. In this range the fixed
point argument used in Theorem 1 fails and we resort to a topological
shooting argument. QOur results are summarized in the following two
theorems:

Theorem 3. (no-slip). For each A > (27/4)'/% there is at least one
solution for the problem (1)—(2)—(4).

Theorem 4. (stress-free). For each A > (27/4)'/% there is at least
one solution of the problem (1)—(3)—(4).

Comments. We have restricted our attention to the parameter range
A > (27/4)'/3. For these values of \ a stability analysis of the steady
state shows that solutions of both (1)—(2)—(4) and (1)—(3)—(4) must
eventually become monotonic as n — oco. This property allows us to
reduce the original third order problem via a Ricatti transformation
to a second order nonautonomous equation. We then develop our
topological shooting argument to prove the existence of the solutions
described in our theorems. We prove our theorems separately in
sections two and three. It remains an open problem to prove the
existence of the second branch of solutions of the stress-free problem.
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II. Proof of Theorem 3 (no-slip conditions). For the proofs of
both of our theorems we find it convenient to make the transformation
u= ¢ — 1. Then (1) becomes
(5) u" + 2" —u+ Nuu" — (u')?) = 0.

The no-slip boundary conditions are

(6) u(0) = -1, w(0)=0
and
(7) u(o0) =0

As stated in the previous section our method of proof is to use a
topological shooting argument. For this we assume that u”(0) = 3.
The first step in our analysis is to determine the behavior of solutions
of (5)—(6)—(7) for large B8 > 0. We do this in the following technical

lemma.

Lemma 1. Let A > 0. If 8 > 7/3, then v > 0 and v”" > 0 on (0,1),
and u(1) > 0.

Proof. From (5) and (6) it follows that
(8) u"'(0) = —1.
Differentiating (5) twice and using (6) and (8), we find that
9) u""(0) =0
and wu satisfies
(10) u® + A1+ w)u® = A(u?)? +u?
with

(11) u®(0) = 8+ AB%.
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From (9)—(10)—(11) it follows that u(¥ > 0 for 0 < 5 < 1 as long as
u” > 0. Thus v > —1 as long as v” > 0 on (0,1). Integrating, we
conclude that

7
u”>,6’—7]>§—n>0 on [0,1].

Thus,

™m n? m
12 W>——— and u>————1
(12) ~ 3 2 ~ 6 6
for 0 < < 1. From (12) it follows that v’ > 0 on (0,1) and »(1) > 0,

completing the proof of the lemma. O

Lemma 1 will be of use in the definition of our shooting set. Before
defining this set, however, we need to obtain more technical information
about the behavior of solutions for small values of 8. To do this we
make the transformation r = u’/u. Then r satisfies the equation

(13) (" + @Br+ A+ ) + 3+ X — 1)u=0
with
(14) r(0) =0 and 7'(0)=-3.

A note of clarification is in order concerning the existence, uniqueness
and continuity properties of solutions of (13)—(14). The function u(n)
is assumed to satisfy (5) together with the initial conditions

(15) w(0)=—1, W(0)=0, u"(0)=04.

We restrict our attention to solutions of (13) which satisfy »(0) = 0,
r’(0) = —B. Thus, there is a one-to-one correspondence between
solutions of (5)—(15) and solutions of (13)—(14). Furthermore, r = u’/u
must be continuously dependent upon 7 and 3 as long as u < 0 and
u, v’ and v are continuous in 7 and 8. Similarly, the uniqueness of
solutions of (13) is guaranteed over any interval I C [0, c0) over which
u < 0. In order to proceed with our shooting arguments and analyze
solutions of (5), we find it necessary to analyze (13) and make use
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of some special solutions as described below. An elementary analysis
shows that the equation

(16) rP A —1=0

has three real roots for each A > (27/4)/3. One of the roots, g, is
positive. The other two, r; and rs, are negative and we assume that
re < r; < 0. Furthermore, we observe that ui(n) = —e™" is a solution
of the full nonlinear equation (5).

We are now prepared to proceed with our shooting arguments. We
assume that A > (27/4)'/% and define the set

Ay ={B>0]3ng >0 with r(ng) =7y, and r' <0 for 0 < n < ng}.

We summarize the properties of this set in the following.

Lemma 2. The set Ay is nonempty, open and bounded below with

,81 =inf A; > 0.

Proof. Recall from Lemma 1 that if 3 > 7/3, then there exists
no € (0,1) such that «’ > 0, u” > 0 on (0,79) and u(no) = 0. Therefore,
since u” = (r' + r?)u, it follows that r(n) < 0 on (0,7). Also, since
u(no) = 0, there is a first 7 € (0,70) such that u(7) = u1(7), hence
u'(7) > w) (7). That is, r(7) < ry1. Thus, there is a first n; € (0, 7] such
that 7(n1) = r1 and 7'(n1) < 0. The uniqueness of solutions of (14)
implies that 7'(n1) < 0. From these observations and (15) it follows
that A; D (7/3,00), and continuity implies that A; is open. Finally,
we consider the case 8 = 0. Then v’(0) = —1 and there is an interval
(0,7) on which v < 0 and v < —1. Thus, r > 0 on (0,7). From this,
(14) and continuity it follows that there is a value 8y > 0 such that
if 0 < B8 < o, then ' = 0 at some first 7 € (0,7), r(7) > r1 and
r"(77) > 0. Thus (0,5p) N A1 = ¢ and the lemma follows. O

The proof of Theorem 3 is completed in the following lemma.

Lemma 3. Let u”(0) = 81. Thenu' > 0 for alln > 0 and u(cc) = 0.
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Proof. Since r'(0) = —fB; and 8y > 0, then r is initially decreasing.
Our goal is to prove that r’ < 0 Vn > 0. Suppose that r'(ny) = 0 at
some first 79 > 0 with r(n) > ry. If r(ng) = 71, then uniqueness of
solutions implies that /(1) < 0. From this and (14) we conclude that
r1 < r(nmo) < 0 and r”(ny) > 0. Thus, by continuity it follows that if
B — 1 > 0 is sufficiently small then ' = 0 before r = ry, contradicting
the definition of 8;. Therefore, 7' < 0 as long as r > r;. As noted
above, if 7(n;) = ry at some first n; > 0, then (1) < 0. Again, from
continuity we conclude that if 8y — 8 > 0 is sufficiently small, then
r(n1) = r1 at some first n; > 0 with ' < 0 on [0, 1], contradicting the
definition of B;. Therefore, it follows that r > r; and 7’ < 0 Vn > 0.
Let v = 7(1). Then r; < u//u < 7 on (1,00). An integration shows
that u(1)e?™ D < u(n) < u(1)e™™ 1 ¥ > 1 and the lemma follows.
[}

III. Proof of Theorem 4 (stress-free conditions). The stress
free boundary value problem consists of the equation

(17) " + M —u+ ANun” — (u)?) =0
where
(18) u(0) = -1, u"(0) =0, u(oo) = 0.

We set u/(0) = 8. As in the proof of Theorem 3 we need to determine
the behavior of solutions of (17)—(18) for large and small values of
B> 0. Again we let 7 = u//u. For each A > (27/4)'/3 define the set

Ay ={B>0|2n3>0 withr(ng) =71 andr’ <0 on[0,7s]}

The crucial properties of this set are summarized in

Lemma 5. The set Ay is open, nonempty, and bounded below with
B2 = inf Ay > 0.

Proof. Recall that u(0) = —1, ¥/(0) = B, «’(0) = 0. Thus,
r(0) = =3, r'(0) = —32. In particular, at 3 = —r; we have r(0) = ry,
7'(0) = —r?. Therefore, by continuity, if 3 € (—r; —¢&,—71) and € > 0
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is sufficiently small, then 7’ < 0 until 7 < ry. Thus, (—7r1—¢,—71) C As
for sufficiently small € > 0. It follows from uniqueness of solutions and
continuity that A, is open. Next, we consider the value § = 0. Here
u'(0) = ¥”(0) = 0 and w'”(0) = —1. Therefore, r(0) = r'(0) = 0,
r"(0) > 0, hence 7(n) > 0 on a small interval (0,6). From this and
continuity it follows that if 8 > 0 is sufficiently small, then ' = 0 at
some first ; > 0, r(1) > r1 and r"'(11) > 0. Therefore 3 € Az for
B > 0 sufficiently small, hence inf A3 > 0 which completes the proof of
the lemma. O

To complete the proof of Theorem 4 we consider the particular
solution of (17) with initial conditions

(19) w(0)=—1, @'(0)=pBs  u"(0)=0.

For this solution we observe that r; < r(0) = —82 < 0 and r'(0) =
—% < 0 it follows exactly as in the proof of Lemma 3 that r’ < 0 and
r>ry ¥p > 0. Thus, r; <7(n) = v'/u <y =7r(1)Vy>m. An
integration shows that u satisfies

u(1)e? ™™V < u(n) < u(1)em @Y Vn > n;.
Thus, lim,,—,+ u(n) = 0. This completes the proof of Theorem 2. O
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