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A METHOD FOR THE NUMERICAL SOLUTION
OF A CLASS OF NONLINEAR
DIFFUSION EQUATIONS

LUCIANO LOPEZ

ABSTRACT. We propose a finite difference scheme for the
diffusion equation, (x) u; = d(u)Au + f(u), on a general
spatial domain of R™, m > 1, d(u) is a bounded positive
smooth function.

For the numerical solution of (x) one usually uses a finite
difference method based on the well-known #-method, which
requires a factorization of a matrix at each time step.

Here we propose a numerical scheme in which we need a
single factorization of a matrix for each time level.

We prove that if W is an invariant region for (), it is also
invariant for the proposed method. Comparisons between our
scheme and the explicit/implicit Euler method are made.

We give an error bound which implies the first order con-
vergence of the method and shows that the error does not
exceed diam (W) for ¢ — +oo. Finally, we show a numerical
application.

1. Introduction. In recent years much interest has been shown in
the numerical solution of the nonlinear diffusion equation

(1.1) up = d(u)Au + f(u), Q x (0, +00)

with the addition of certain initial and boundary conditions. In (1.1),
Q is a bounded domain of R™, m > 1 with smooth boundary 0%;
A denotes the Laplace operator in the spatial variable z and d(-) is a
positive smooth function. Let W = [0, b] be the u-space interval and let
us suppose that d(u) is bounded on W, that is, two positive constants
a and [ exist such that

(1.2) 0<a<d(u)<p foranyuecW.
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Moreover, we assume that f(-) is a smooth function such that a constant
¢ exists for which

(1.3) |f'(u)] <c forany u e W
and
(1.4) flw)-n(u) <0, u € OW,

where n(u) is the outer normal on the boundary OW of W. We suppose
that (1.1) has a unique sufficiently smooth solution u(z,t) and that W
is an invariant region for (1.1): that means that if the initial function
u(z,0) belongs to W, for any = € Q, then u(z,t) belongs to W, for any
(z,t) € Q x (0,+00) (see [1]).

Example. As a practical example of diffusion equation (1.1) we can
consider the temperature controlled problem in the one-dimensional
domain (0, 1):

vy = A(V)vgg, 0<z<1,0<t<T,

v(z,0) =0, 0<z<l,
v(0,t) = fo(t), v(1,t) =0, 0<t<T,

which has been studied by Duchateau in [4].

Models of the form (1.1) can also be found in biology. In this case
u denotes the density of the species being considered, while d(u) takes
into account that the diffusion process depends on the density of the
individuals of the species.

In recent years several schemes have been proposed for the numerical
solution of nonlinear diffusion equations of the form (1.1) (see, for
example, [2,3,5]).

In [5] Hoff studied a family of finite difference schemes based on the
well-known #-method:

(1.5) [I—OL(V™M)V™H =1+ ¢L(V™)]V" + AtF(V"™),

where V™ is the numerical solution at the time ¢, and L(V"™) is a
matrix which depends on the diffusion.
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He proved that, under certain conditions on the mesh, the numerical
solution given by (1.5) is stable, in the sense that W is also invariant
for the numerical solution (V° € W implies V* € W for any n > 0).

We now observe that, if 0 < § < 1, (1.5) requires one factorization of
a matrix at each time step. On the other hand, if # = 0, (1.5) becomes
an explicit scheme; no factorization is needed, but in order to have
stability we must greatly restrict the time step.

Hence a method which avoids all the factorizations of (1.5) and
preserves the stability, under reasonable restrictions on the mesh, would
be suitable.

In this paper we propose a scheme which requires a single factoriza-
tion for each time level.

The method is suggested by the fact that we can write d(u) as

(1.6) d(u) = d(u*) +d(u) for any u € W,

where u* is the point in which the minimum value of d(u) occurs and
d(u) is the positive function given by d(u) = d(u) — d(u*).

Then, the matrix L(V™) in (1.5) can be written as
(1.7) L(V") = L(V*) + L(V"),

where V* = (u*,u*,...,u*)" and L(V™) is a matrix defined by d(u).
Considering (1.7), from (1.5) we can obtain the scheme

(1.8) [I—0L(V*)V" =[I+@L(V"™) +OL(V")V" + AtF(V")

for n > 0.

The computational advantage of (1.8) with § > 0 on (1.5), with 6 > 0,
is more evident when the spatial dimension m is greater than one and
Q is a general domain of R™. In fact, in this case the matrix on the
left of (1.5) is a full matrix and a factorization of such a matrix at any
time is very expensive (see [ 7]).

Moreover, the advantage of (1.8), with § > 0, over (1.5) with § =0
(that is, the Euler explicit scheme) concerns the stability conditions.
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In fact, in the one dimensional case, we shall prove that the invariance
condition, for the numerical solution obtained by (1.8), is given by

1
c+2(8— Ha)/AacZ;

(1.9) At <

while, for the Euler explicit scheme, we have

1

(1.10) At < ct28/As2

Then, comparing (1.9) and (1.10), we can say that (1.9) requires a

less restrictive bound on At than the one required by (1.10), because

B > B — a. Of course, the more that (8 — «)/8 is less than 1, the more

the bound on At given by (1.9), is less restrictive than the one given
by (1.10).

The paper is organized as follows: in section 2 we recall the #-method
for nonlinear diffusion equations and introduce the new scheme in the
one spatial dimensional case; in section 3 we show that the proposed
scheme preserves some invariant properties of the #-method; in section
4 we give a bound for the error which tends to diam W as ¢t — +o00 and
which is O(At+Az?) for fixed ¢; in section 5 we extend the method to a
more general spatial domain € R? and show a numerical application.

2. Description of the method. For the sake of simplicity, we now
propose the numerical method in the one spatial dimensional case. In
the case m = 2 the method will be easily derived in section 5.

Hence, consider
(2.1a) up = d(uw)uge + f(u), z € (0,1),t € (0,400)
subject to the initial condition

(2.1b) u(z,0) = uo(z), z € (0,1).

To simplify the exposition we assume homogeneous boundary condi-
tions

(2.1¢) ug(0,t) = ug(1,t) =0, t € (0,+00)
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but observe that the main results of this section can also be found for
more general boundary conditions. Let Az be the step in the spatial
variable and At the step in the time variable. Let zp = (k — 1)Az be
a point of the spatial interval [0, 1], for any £ = 1,..., K with K as a
positive integer, such that Az(K — 1) = 1. We also discretize the time
interval by ¢, = nAt for n > 0, and denote by u}} and v;; the exact and
approximate solutions of (1.1) evaluated at the point (z,t,). We now
consider the known operator

§w(zy) = ki) - 212(;7219) + w(xkfl),

where w : [0,1] — R. Then (1.1) can be replaced by the following
system of difference equations

n+1 n
Ye T U

22) ()0 + o) + (o)

v = uo(xg),

for k=1,...,K, n > 0. (2.2) results from the application of the 6-
method to (1.1), where we compute f at the previous time level (see
Richmeyer & Morton [8]). In (2.2) 6 and ¢ are two positive constants,
the sum of which is one.

Denote, by V™ and F(V™), the two vectors
Vh=(f,.ug) BV = (7)), f(vR))
and, by L(V™), the K x K tridiagonal matrix
=2d(vy)  2d(v}) 0
Ly | A 2
0‘ ' 2d(v‘%) —2d(v?})
with r = At/Az?.

Then (2.2) can be written in compact form as

[~ OL(V™)V™ = [ + gL(VM)V" + AtF(V"), 1> 0,

(23) Ve (V.
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Now observe that, if 0 < § < 1, the numerical efforts in (2.3) are
dominated by the factorization of a time-dependent matrix, and hence
it would be very advantageous to reduce the number of factorizations
required by (2.3). For this purpose, we write the diffusion function d(u)
as

(2.4) d(u) = d(u*) +d(u), for any u e W,
where d(-) is the positive function d(u) = d(u) — d(u*) and u* is the
minimum point of d(u) on W.

Then, we introduce the tridiagonal matrix L(V™) given by

—2d(v?)  2d(v}) 0

0 2d(v)  —2d(vi)
Thus L(V™) can be written as

(2.5) L(V™) = L(V*) + L(V"), for any n >0,

where V* is the K-vector given by V* = (u*,u*,... u*)t.

Now, putting (2.5) on the left hand side of (2.3) and computing the
term L(V™)V"*+! at the previous time level, we have

(2.6) [I— OL(V*)[V™HL = I+ ¢L(V") + 0L(V™)|V™ + ALF(V™),

which requires a single factorization of the matrix I —0L(V*). We now
show the stability of (2.6) in the sense of the invariance of W for the
numerical solution.

3. Invariance properties of the method. In this section we shall
deal with square nonnegative matrices, i.e., matrices A = (Ag;), with
Ags > 0 for all k, s, which we shall denote by A > 0. We now recall
some known definitions and results:

Definition 3.1. A square matrix A with Ags < 0, for K # s, is
called an M-matrix if it is nonsingular and A~! > 0. Moreover, it is
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called a singular M-matrix if it is singular and if, for all scalar £ > 0,
A + el is an M-matrix.

Theorem 3.1. If A, with Ags < 0 for all k # s, and Agi > 0 for
all k, is an irreducible diagonally dominant matriz, then A~1 > 0.

We now show the following results:

Lemma 3.1. If we suppose that the condition
(3.1) 1> —@Ly — 0Ly, k=1,...,K,

is satisfied, then we have
(a) [I—60L(V*)] ' =0,
(b) I =0L(V*)] Yoo <1,
(d) (I +¢L(V™) +6L(V™)|lo < 1.

Proof. Observe that

(3.2) Ly >0, fork+#s, Ly, < 0; ZLkS —0.

Then, from the properties of the matrix L, I—6L(V*) is an irreducible
M-matrix, and Theorem 2.1 ensures that the relation (a) is satisfied.

From (3.1) and (3.2) it follows that
I+0L(V™) +0L(V") > 0.

Consequently, one can easily prove (b) and (¢). O

Now we can give the stability theorem:

Theorem 3.2. If we fix the step Ax and if the time step At is such
that

(3.3) 1—cAt > —@Ly — 0Ly, foranyk=1,... K,

where c¢ is the constant in (1.3), then W = [0,b] is invariant for the
numerical solution given by (2.6).
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Proof. The proof will follow by induction. Let B be the K-vector
given by B = (b,b,...,b)!, and if we suppose that V* — B < 0, that is
V" < B, then we can show that V*+! —B < 0.

From (2.6) and L(V™) = L(V™) — L(V*),

Vil B = [I-0L(V*)| YL+ ¢L(V™) + 0L(V™)](V" — B)

(3.4)
+ L(V")B + AtF(V™)}.

From (3.1) we have

K
(3.5) {L(V")B}r = > Lib=0.
r=1
Furthermore,
(3.6) F(V") < —c(V" - B),

which follows in fact from
{F(VM)}e = flog) = fFO) + f{(E) (v —b), &€ (vg,b),

(1.3) and (1.4).
Considering (3.3), (3.5) and (3.6) obtains

(3.7) {[I+ ¢L(V"™) +0L(V™)](V" — B) + L(V")B 4+ AtF(V")}
<@ — AT+ ¢L(V™) + L(V™)] (V™ —B) <0,

and, since (3.3) implies (3.1), [I — §L(V*)]~! is a nonnegative matrix.
Then, from the relations (3.3) and (3.7) we get V*"*! < B, ie.,
Vntl — B < 0. In the same way, we can show that, if V™ > 0, it
follows that V™1 > 0. Hence, we conclude that, when V° belongs to
W, V!l remains in W for alln > 0. O

Remark 3.1. The above result gives the conditions that we have to
assume in order to have a positive numerical solution, which is most
important in many applications.
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Remark 3.2. In order to explain the stability condition (3.3) better,
we observe that, if we require

1 — cAt > 2¢rd(u) + 20rd(u), for any u € W,

or,

1 —cAt > 2¢rS + 20r(8 — a),

then the stability condition (3.3) is verified. The last restriction can be
replaced by the more practical condition on At,

1
c+2(8 — fa)/Ax?

(3.8) At <

which, Az fixed, gives a bound on At in terms of «, 3,c. From (3.8),
because § > B — a, it follows that the numerical scheme (2.6), with
0 = 1, requires a bound on At which is less restrictive than the one
that we have to use if we employ (2.6) with § = 0.

The advantage becomes more effective the more the quotient (8 —
«)/f is less than 1. This is the case of diffusion function d(u) with a
weak dependence on u, that is, d(u) almost constant on W.

4. An error bound. We now derive a bound for the error of the
numerical scheme (2.6), given by

E'=U"-V", n>0,

where U" denotes the exact solution at the spatial points of the interval
[0, 1]:
U" = (uf,...,u%)".

We define the local truncation error of (2.6) by
(4.1) 5
Tas1 = [I — OL(V*)[U™! — [I+ SL(U") + OL(U™)U™ + AtF(U"),
for n > 0.

From the smoothness of the exact solution u(z,t) of (1.1) and of d(u)

and f(u), we can prove that

(4.2) ‘|Tn+1||oo S SlAth,
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where S is a positive constant independent of A¢, and Az but depen-
dent on us, Ugere and d(u), f(u), with b = At + Ax?.

Then we can prove the following theorem showing that, for a fixed h,
the error does not exceed diam W (= b) as time increases.

Theorem 4.1. Under the hypotheses of Theorem 3.2 there exists a
positive function S(t) and a positive constant p such that

e Plnt1 h

n+1 o
(4.3) [1£ lloo < h+ e—(P+S)tny1 [1E£°]loo + Sh] + h+ e—(P+S)tns1 b.

Proof. From (4.1) it follows that
(4.4) i
[I—OL(V*)]U™ ™ = I+ ¢L(V™) + OL(V™)|U™ + AtF(U™) + Tpyy

HOL(U™) ~ L(V™)[JU"+{6[L(U") -~ L(V")]}U".
Thus, subtracting (2.6) by (4.4), we have

(4.5)
I-OL(V*)E™ = [I+¢L(V")+0L(V")|E"+At[F(U")— F(V")]

s H{SL(U™) —L(V™)JU" +{9[L(U") - L(V")]}U".
Now consider that
L(U™) — L(V™) = L(U") — L(V™).
Hence, if we put
w = ¢[L(U") = L(V")]U" + 0[L(U") — L(V")]V",
then
wy = {L(U") = L(V)]U" b = Atld(up) — d(vp)]6%uy,
and, from the smoothness of d(u),

(4.6) [ wllso < S22 E™|oo,
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where S5 is independent of At, and Az by depending on maxg<;<:
|tgzzs (-, t)|. Moreover, we can see that

n+1

(4.7) IF(U") = F(V")|leo < 83/|Enllco;  n 20,

with S3 a positive constant.

Then, by considering that ||+ ¢L(V™) + 0L(V")||ls < 1 and (4.2),
(4.6) and (4.7), it follows that

(4.8) |E"Y|oo < (14 SAL)||E"||oo + SAth,
where S depends on Sy, Ss, Ss.

From (4.8), by using the discrete Gronwall’s lemma,
(49)  |EY|w < €S0 (Bl + SB), 1> 0.
Moreover, since U™ and V™ belong to W, then
(4.10) [|IE™||oo < b, for any n > 0.

Now, if we consider o = h/(h+e~PT5tn + 1) with p > 0 and multiply
(4.10) by o and (4.9) by 1 — o, then the result (4.3) follows. O

Remark 4.1. (4.3) shows the first order convergence of the numerical
scheme (2.6), for a fixed time, and that the error is bounded by
diam W = b, as time increases and h is fixed.

5. Bidimensional case: m = 2. We now suppose that € is a
spatial irregular domain of R?. Let Az’ be the increment in the spatial
variables 7 for j = 1,2. Let x, = (kyAz', k2Az?) be a point on the
grid of Q for ki, ko integers and k € T, where T is an appropriate index
set of N. If w : @ — R, we denote by wy, the value of w(zy) for k € T
and indicate by 5J2- a discretization operator of the second derivative of
w with respect to the variable =7, j = 1, 2.

For example, we can approximate the second derivatives at an irreg-
ular mesh point P, as described in Figure 1 by the following formulas:

_ h3’u)(P1) — (hl + hg)’w(P) + hl’lU(Pg)

(5.1a) 5w (P) hihs(hi + h3)/2
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FIGURE 1.
and
2 o hg’w(P4) — (hg + h4)w(P) + h4w(P2)
(5.1b) dsw(P) = haha(ha + he)) 2
(see [10]).

Instead, if P is a regular mesh point the previous formulas give the
usual discretization operators for the spatial second derivatives.

Now, if we denote by vy an approximation of the exact solution at
x for any k € T and at the time t¢,,, the f-method can be formulated
as

n 2
= () Y GO0 + ) + f(0R),
j=1

for k € T, n > 0. Then, setting d(v?') = d(v}) + d(v*) and discussing,
as in section 2, from (5.2) we obtain the proposed method.

It follows that (5.2) can be written in compact form as in (2.3), where
L is now a full matrix, while the new section can be written as in (2.6).

For example, if Q is the irregular domain of R? shown here
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ol
Py ha|p P
e ® °
hy hy
hy
P

FIGURE 2. Treatment of an irregular mesh point.

and, using (5.1) to discretize the spatial derivatives, we have that the
structure of L(V™) will be of the form

lin Liz Lis O

ny | lar loa 0 Ip3
Lv?) = I3 0 33 34
0 lyp lag lua

’

where the elements of L(V™) depend on the spatial steps and on the
diffusion.

In the case m = 2, the results of sections 3 and 4 can be derived in
the same way.

6. A numerical example. In order to furnish a practical applica-
tion of (1.8), we consider the one-dimensional controlled temperature
problem, studied in [4]:

vy = A(V) Vg, 0<z<l1l 0<t<l,
subject to the initial and boundary conditions

v(z,0) =0, 0<z<l,
v(0,t) = fo(2), v(1,t) =0, 0<t<l,
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where we assume

A(v) = 0.1+ 0%
fO(t) =t,

L. LOPEZ

O<ov<l1

0<t<l.

In column IIT of the table which follows we show the numerical solution
obtained by (1.8) for At = 0.1, Az = 0.05 at the time ¢ = 1 and at
the spatial mesh points. It is compared with the results given by the
implicit Euler method (IEM) for the same steps (column IT) and with
the exact solution (ES) which has been obtained by the Euler explicit
scheme, for very small steps (column I).

TABLE

X ES IEM (1.8) ES-IEM  ES-(1.9)
.05  .89E4-00 .05E+00 .87TE+00 40E+00  .23E-01
.10 .79E4-00 43E4-00 .7T6E4-00 36E4+00  .32E-01
.15 .69E4-00 .36E4-00 .656E4-00 33E+00  41E-01
.20 .59E+00 .31E+-00 .55E+-00 29E+00  .48E-01
.25 .50E4-00 .25E4-00 .45E4-00 25E4+00  .52E-01
.30 .42E+00 .21E4-00 .37E4-00 .21E4+00  .54E-01
.35 .34E4-00 .17E4-00 .27TE4-00 A7E400  52E-01
40 .27TE+00 .14E+4-00 .23E400 14E+00  .46E-01
45 .21E400 .11E4-00 .18E4-00 11E400  .38E-01
.50 .16E+00 .86E-01 .14E4-00 .T9E-01 .30E-01
.55 12E+00 .67E4-00 .10E4-00 ST7E-01 22E-01
.60  .93E-01 .53E-01 .78E-01 41E-01 15E-01
.65  .69E-01 41E-01 .H9E-01 28E-01 98E-02
.70 .50E-01 31E-01 44E-01 19E-01 .61E-02
.75 .36E-01 .23E-01 .33E-01 13E-01 .33E-02
.80  .25E-01 A7E-01 23E-01 .82E-02 .19E-02
.85 .17E-01 12E-01 .16E-01 .51E-02 .88E-03
90  .10E-01 .75E-02 .10E-01 29E-02 .35E-03
95 49E-02 .36E-02 A48E-02 13E-02 11E-03

These numerical results show that (1.8) is advantageous on the IEM
because the first method requires only one factorization of a matrix
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for all time levels, while the IEM needs a factorization at each time
step. The columns IV, V show a better accuracy of (1.8) on IEM, with
respect to the exact solution in column I. Moreover, (1.8) permits a
larger time step than that of the explicit Euler method. In fact, in this
case, in order to have the stability, we have to assume At = 1073,

Acknowledgment. Thanks are given to Professor Vincenzo Casulli
of the University of Trento for helpful discussions on the subject.
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