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ON BEST COAPPROXIMATION
IN NORMED LINEAR SPACES

T.D. NARANG

ABSTRACT. This article is a brief survey of the research
concerning best coapproximation, a kind of approximation in-
troduced by C. Franchetti and M. Furi. It is concerned with
the existence and uniqueness of elements of best coapproxi-
mation by elements of linear subspaces, characterizations of
elements of best coapproximation, characterizations of strict
convexity in terms of best coapproximation, properties of the
best coapproximation operator and best coapproximation on
convex sets. Some unsolved and partially solved problems
raised by persons working in this field have been mentioned.

1. Introduction. The main object of the theory of best approxima-
tion is solution to the following problem: Given a subset G of a normed
linear space F and an element x € E, find elements go € G such that

(1.1) llz — gol| < ||z —g|| for every g € G.

The set of all such elements gy € G (if any) satisfying (1.1) are
called elements of best approximation of z by means of the elements
of G and is denoted by Pg(z) (see, e.g., [21] or [22]). Clearly,

Pg(z) = Cg(z) N G, where Cg(z) = Ngegbjz—g||(z), br(z) denotes
the closed ball with center x and radius r.

Recently, another kind of approximation from a subspace G, which
naturally extends to any set, has been introduced by Franchetti and
Furi [10], who have considered those elements gg € G (if any) for which

(1.2) llgo —gll < ||z —gl|| for every g€ G

and have denoted the set of all such elements go € G by Rg(z). Any
go € G satistfying (1.2), i.e., any go € Rg(z), is called an element of
“best coapproximation” of = by means of the elements of G. Clearly,
Rg(z) = Ba(z) NG, where Bg(x) = Ngeabjjz—g/(9)-
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This branch of approximation theory is comparatively very new. Only
a few mathematicians have pursued this study initiated by Franchetti
and Furi.

The material of this article is divided in the following way: In Section
2 we give certain notations and definitions. In Section 3 we discuss
the existence and uniqueness of elements of best coapproximation. In
Section 4 we shall give a relation between best coapproximation by
elements of a linear subspace G and best approximation by elements of
certain one-dimensional linear manifolds, and we shall use it to obtain,
via theorems known for best approximation, some characterizations of
elements of best coapproximation (i.e., some necessary and sufficient
conditions in order that gy € Rg(x)). Applying results of this section
to characterizations and existence of elements of best coapproximation
in spaces of continuous functions defined on compact spaces, best
polynomial coapproximation in C([0,1]) can be completely described.
In Section 5 we shall give some characterizations of strict convexity
of a normed linear space F in terms of best coapproximation, and
we shall compare them with some known characterizations of strict
convexity in terms of best approximation. In Section 6 we shall give
some properties of the best coapproximation operator Rg : ¢ — Rg(z),
also called metric co-projection [3]. It will be observed that if the space
is a Hilbert space, given a subspace G of X, the two mappings Pg and
R¢ coincide and are everywhere defined and linear; but in the general
setting of Banach spaces, they have (also when they are everywhere
defined) a completely different behavior. This is because of the lack
of symmetry of orthogonality in these spaces. In Section 7 we discuss
various properties of the map R¢, where C' is an arbitrary subset of a
normed linear space. It will be observed that various properties of the
map Rg, where G is a linear subspace, can only partially be extended
to the map R¢, and the map R¢ is also related to the orthogonal
retraction defined in [5]. The problem of “strong approximation” for
the map R¢, similar to that of the map Pc suggested in [2], is also
considered in this section. Finally, at the end of this article we point
out that best coapproximation seems to be useful both as a kind of
approximation and because of its relations with some other notions,
which can also be expressed in terms of Rg(z). We also indicate some
unsolved and partially solved problems.
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In order to limit the size of the article, we have only mentioned the
results. For proofs of these, one should refer to the respective cited
references. We do not claim that the article is complete in itself. Some
results have been omitted due to various reasons.

In this article we shall consider only real normed linear spaces. The
extension of these results to complex scalars is easy.

2. Notations and definitions. We begin with giving certain
notations and definitions. All notations and terminology which is not
given in this article can be found in the respective quoted papers.

In this article @ denotes the empty set, R stands for the set of real
numbers, E\G is the complement of G in F, E* stands for dual of
the normed space E, D(f) stands for domain of the mapping f, z LG
denotes that element z is orthogonal to every element of the set G,
B(z,r) ={y € E : ||z — y|| < r}, dist(z, A) denotes distance between
x and A and iff stands for if and only if.

Definition 2.1. Let G be a subset of a normed linear space F and
x € E. Then the elements of best approrimation of x, by means of the
elements of G, are those go € G (if any) for which

(2.1) e~ goll < |z — gl forallg e G.
The set of all such elements gy is denoted by Pg(z). If Pg(z) # &,
then P2(x) will denote an arbitrary point of Pg(z).

Definition 2.2. Let G be a subset of a normed linear space F and
x € E. Then the elements of best coapproxzimation of x by means of
elements of G, are those gy € G (if any) for which

(2.2) lgo —gll < llz —g|| forallg € G.
The set of all such elements gg is denoted by Rg(z). Clearly
(2.3) Rg(z) = Bg(z) NG,

where Bg(z) = Ngeabjjz—g| (9)- It follows from (2.3) that Rg(z) is a
bounded set (in fact (2.2) implies that ||go|| < ||z]|| for all g € R (x)).
Also, Rg(z) is closed if G is closed and it is convex if G is convex.
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It is well known (see, e.g., [20]) that
(2.4) go € Pg(z) iff x — gy LG,
and it was observed in [10] that
(2.5) go € Rg(z) iff GLz — go.

It follows that, in Hilbert spaces, Rg = Pg (see, e.g., [10]). We recall
that here the notion of orthogonality is used in the sense of G. Birkhoff
[4] (see also [13]), i.e., zLly iff ||z + ay|| > ||z|| for all scalars a, and
G1 1G5 means that g, 1gs for all g, € G; and g2 € Gs.

We consider Rg as a set-valued mapping from
D(Rg) ={z € E: Ra(z) # ¢}

into GG, and we denote by ROG an arbitrary selection of Rg, i.e., a
mapping of D(Rg) into G such that R%(z) € Rg(z) for all z €
D(Rg). Clearly, D(Rg) D G and Rg(z) = {z} for all z € G and
so (R%)%*(z) = RY(z) for all z € D(Rg), i.e,. the set-valued mapping
R is idempotent.

Definition 2.3. A subset A of a normed linear space F is said to
be admissible [7] if it is the intersection of a family of closed balls. A
complete family of centers of A is a set C such that

A=n{B(z,r(z)):z € C}

for a mapping 7 : C' — [0,00[. A closed subspace D of E is called a
diameteral space if it contains a complete family of centers of A.

Definition 2.4. If F denotes a normed linear space over the real
field R, the tangent functional 7(z,y) from E x E into R is defined as

) T+ tyl| — ||z
o) = tim 0= ]

Definition 2.5. A set V in a normed linear space E is called a linear
manifold if it is of the form V = zo + G = {xo + ¢ : g € G}, where G
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is a linear subspace of E. A closed linear manifold H C E is called a
hyperplane if there exists no closed linear manifold H; C E such that
HCH, and H# H, # E.

Definition 2.6. A normed linear space F is said to be strictly convex
if ||| <7, ||y|| < 7 imply ||(z 4+ y)/2|| < r unless x = y where r > 0 is
a real number.

Definition 2.7. A projection is a mapping f which satisfies the
following: whenever p € D(f), t > 0, and p* = f(p) + t(p — f(p)) €
D(f), then f(p*) = f(p).

Definition 2.8. If C' is a convex subset of a Banach space F, a
projection is a retraction r of C onto a subset F' which, for each x € C,
maps each point of the ray {r(z) + t(z —r(y)) : t > 0} N C onto the
same point r(z).

A retraction 7 of C' onto F' is orthogonal if, for eachp € C and y € F,
I(1 = t)r(p) +tp —yll = [Ir(p) —yl| forallt>0.

Definition 2.9. We say that zq is strongly unique or belongs to
P (z), C asubset of E (or to Pg(x), G alinear subspace of E), strongly
if there exists an 7,0 < r < 1 such that

|z = yll = [|lz — zol[ + r[lz0 — yl|
for every y € C (for every y € G), i.e.,
7(x — o, w0 — y) > 7|z — Y|

for all y € C (for all y € G). This for a linear subspace G is equivalent
to
7(x — o, m) > r|jm]|

for every m € G.

Definition 2.10. Let A be a bounded subset of a normed linear
space X and V be any subset of X. For any « € X, put

Fa(z) = sup{||lz -yl : y € A}.
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The Chebyshev radius of A, r(A), and the Chebyshev radius of A w.r.t.
V, rv(A) (see, e.g., [19]), are defined as

r(A) = mug( Fy(z), ryv(A) = znel\f/ Fy(z).

An element zg € X (xg € V) is a Chebyshev center or a center of A
(center of A w.r.t. V) if

Fa(zo) :zigg(FA(w), Fa(zp) = élel‘f/FA(w)

The set of centers (of centers w.r.t. V) of A is denoted by E(A)
(Ev(4)).
If V is a closed subspace of X, a € X, and s is such that

dist(a,V) =d < s,

the set
Cs=B(a,s) NV ={veV:|v-adl <s}

is called a hypercircle.

Definition 2.11. Let S = {u € E : ||u|| = 1} be the unit sphere in
a Banach space E. FE is said to be smooth if, for each (z,y) € S x S,
the limit

t —
e+ tyll = el

(2'6) t—0 t

exists. F is said to be uniformly smooth if the limit is uniform for each
(z,y) € SxS.

If E is smooth, the semi inner product [-,-] on E is the Gateaux
differential of (1/2)||-||? (with arguments reversed):

(L= +tyl]* = |||
—lim (- .
[y, z] im (2 ;

t—0

This limit exists for each z,y € E because of existence of (2.6) for each
x,y €S.
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If F is a Banach space with a semi-inner product (s.i.p.) [,-]
and x1,x2,...,%, is a system of n elements of F, we associate with
this system a number I'(zq,zs,...,2,), called generalized gramian
determinant of z1,x2, ... ,x, w.r.t. the si.p. [-,] given by

[5171,5171] [fvm»ﬁ]
F(IhIZa"' 7In) = ‘ ‘

[Z1,20] o0 [Tn, 0]

3. Existence and uniqueness of elements of best coapprox-
imation. In this section we discuss the existence and uniqueness of
elements of best coapproximation. The following result on the existence
of best coapproximation was proved in [10]:

Theorem 3.1. If G is a closed subspace of a Hilbert space X or G
is a one-dimensional subspace of a Banach space X, then D(R¢g) = X.

The following result proved in [10] gives a structure of elements of
best coapproximation.

Theorem 3.2. Let X be a real normed space, A an admissible subset
of X, D a diametral space of A. Then Rp(A) = DN A.

Using Theorem 3.2 the following theorem was proved in [10].

Theorem 3.3. Let X be a real Banach space of dimension > 3.
Then the following properties are equivalent:

(i) X is a Hilbert space.
(ii) Rg(z) # ¢ for every hyperplane G and every x € X.

(iii) AND # ¢ for every admissible set A and every diameteral space
D of A.

The following sufficient condition for the existence of best coapprox-
imation was given in [14]:
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Theorem 3.4. If, for every subspace G of a normed linear space
X, there exists at least one element x € X\G such that x has a best
coapprorimation in G, then for any subspace G of X every element of
X has a best coapproximation in G.

The following result proved in [10] gives the uniqueness of elements
of best coapproximation.

Theorem 3.5. If E is a smooth normed linear space, then D(R¢) is
a linear subspace of E and Rg(z) is a singleton for each © € D(Rg).

Next we correlate elements of best coapproximation with radii of
hypercircles.

Suppose V is a closed subspace of a Banach space X, a € X and s
is such that dist(a,V) = d < s. Let 75 be the Chebyshev radius of the
hypercircle

Cs=B(a,s) NV ={veV:|v-ada <s}

and I, =ry —s. Let [ = lim,[,.

The following theorem proved in [9] relates [ and elements of best
coapproximation:

Theorem 3.6. In any normed linear space X, a € D(Ry) =1 < 0.
If X is a reflexive Banach space, a € D(Ry) <1 <0.

As a consequence of this result, we get the following characterization
of reflexive Banach spaces of dimension > 3.

Corollary 3.1 [9]. If X is a real reflexive Banach space with
dim X > 3, then X is a Hilbert space iff 0 > | = l(a,V) for every
pair (a,V) with V a closed hyperplane and a € X.

Remark 3.1 [9]. By the above mentioned characterization of real
Hilbert spaces it follows that the set

Ry(a) ={vo €V :|lvp —z|| < |la— x|,z € V}
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is empty in every non-Hilbert space X with dim X > 3 for a suitable
pair (a, V) with a € V and V a closed hyperplane; but if X is a reflexive
Banach space,

Voo ={vo €V :illug —z|| < |la —z||+ 1,z € V}
is never empty. We conclude under these assumptions that

Ry(a)=¢=1>0.

Now suppose that V' is a one-dimensional subspace of X. Since we
work essentially in the two-dimensional subspace generated by a and
V', we cover the case excluded in Corollary 3.1.

Let s > d = dist(a, V), then Ey(Cs) = {cs}, where ¢, is the middle
point of the segment Ci.

Theorem 3.7 [9]. {cs} is a convergent sequence, and if ¢y = lim; cs,
then V. La — ¢y, i.e., a € D(Ry) and ¢g € Ry (a), we have also | < 0.

Problem 3.1 [9]. Is it possible that [~ = infl(a,V)/d(a,V) > 07 If
yes, since Ry (a) # ¢ = 1 < 0 by Theorem 3.6, it must be Ry (a) = ¢
for all admissible pairs (a, V).

Next we associate to every system of n vectors zi,x2,...,z, of a
Banach space X, a number having some utility when dealing with the
linear independence of these vectors, and with Ry, if M is the subspace
of X they generate.

Theorem 3.8 [17]. If I'(z1,22,...,2,) # 0 for every semi-inner
product and * € D(Rypr), then every z° € Rp(x) is given by an
expression of the type

0 z1 Tn

y=— 1 [,z1]  [z1,21] - [z, 2]
L(z1,...,2n) | -

[T, zn] [T1,20] -0 [Tn, Tl

for an s.i.p. [-,].
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Remark 3.2. In the hypothesis of this theorem, we have

Iz, z1,...,2n)

D(zy,29,... ,2n)

= [w—mo,x] = HﬂUH2 - ||5”0H ||z]| > 0.

From here we see that a necessary condition in order that z € D(Rys)

is that I'(z, 2y, ... ,z,) and I'(zy,... ,2z,) have the same sign.
Problem 3.2 [17]. Is I'(z,z1,... ,z,) > 0 a sufficient condition in
order that © € D(Rys), where M = [zq,... ,2,]7

4. Characterizations of elements of best coapproximation.
In this section we shall give some necessary and sufficient conditions
in order that go € Rg(z). To this end, we first make the following
basic observation (see [20]) relating best approximation and best coap-
proximation. This will permit us to apply the known characterization
theorems of the theory of best approximation.

Theorem 4.1. Let E be a normed linear space, G a linear subspace
of E and x € E\G. Then

(4.1) R (z) = {90 € G : go € NgeG Pgo,)(9)}
where {go, ) = {az+ (1—a)go : @ € R} is the linear manifold spanned
by go and x.
Corollary. Let E be a normed linear space, G a linear subspace of
E and x € E\G. For an element go € G we have go € Rg(z) iff
GC P[;igo] (0)={2€E:0€ P,_y(2)},
where [x — go] = {a(z — go) : @« € R}.

Using the above observations the following theorem on the character-
ization of elements of best coapproximation was proved in [20].

Theorem 4.2 [20]. let E be a normed linear space, G a linear
subspace of E and x € E\G. For an element gy € G the following
statements are equivalent:
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(i) g0 € Ra(x).
(ii) For each g € G there exists a functional f9 € E* such that

(4.2) £ =1
(4.3) f9(@) = f9(g0)
(4.4) f9(g) = llgll-
(ili) The same as in (i), with (4.4) replaced by
(4.5) 179(9)] = llgll.

Remarks 4.1. (a) Condition (4.3) (for all g € G) can also be written
in the form

(4.6) T —go € ﬂ ker f9,
geaG
whence
(4.7) domRg C G+ ﬂ ker f9.
geG

(b) If E is smooth, then for each g € G, there exists one and only
one f9 € E* satisfying (4.2) and (4.4).

(c) Theorem 4.2 (equivalence (i) < (ii)), admits the following
geometric interpretation: An element g9 € G satisfies g9 € Rg(z)
iff, for each g € G, there exists a hyperplane HY supporting the ball
B(0,||gl|) at g and such that z — go + g € HY.

By considering, for each g € G, the functional f979° instead of f9 in
Theorem 4.2, one obtains the following nicer geometric interpretation:
An element gy € G satisfies gg € R () iff, for each g € G, there exists
a hyperplane H, supporting the ball B(g,||g— go||) at go and such that
x € Hy.

Remark 4.2 [20]. Another characterization of elements of best coap-
proximation, in terms of the derivatives of the norm, which is a conse-
quence of some more general result of [18], admits the following equiv-
alent formulation: Under the assumptions of Theorem 4.2, we have
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go € Rg(z) iff, for each g € G, there exists a functional h9 € E* such
that

(4.8) [R7]] =1
(4.9) h(z = go) = 0
(4.10) h?(g0 — 9) = [lg90 — gl|-

Geometrically, it means that, for each g € G, there exists a hyperplane
H, supporting the ball B(g,||g — gol|) at go and such that = and
B(g,||lg — gol|) are on different sides of H,.

Using the fact that dim (g, ) = 1, one obtains the following charac-
terization theorem.

Theorem 4.3 [20]. Let E be a normed linear space, G a linear
subspace of E and x € E\G. An element go € G satisfies go € Rg(x)
iff, for each g € G, there exist two extremal points f{,f5 of Bp- =
{f € E*:||f|| <1} and two numbers ], A\ > 0 with A\{ + 5 = 1, such
that

(4.11) M P (@) + A5 () = M f{ (90) + A2 5 (90)

(4.12) M1 (9) + X315 (9) = llgll-

Remark 4.3. [20]. In the case of complex scalars, Theorem 4.3 holds
with three f{ and three \{ (i = 1,2, 3) instead of two.

Remark 4.4. Using Theorem 4.3, Papini and Singer [20] deduced
a characterization of elements of best coapproximation in the space
E = C(Q) of all real-valued continuous functions on a compact space
@, endowed with the supremum norm ||z|| = max,ecq |z(g)|, and some
consequences, in £ = C(Q), of this characterization. They also gave
some applications of these results to characterization and existence
of elements of best coapproximation in F = C([a,b]); in particular,
they have completely described best polynomial coapproximation in

(o, 1]).
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5. Characterizations of strict convexity in terms of best
coapproximation. In this section we shall give some characteriza-
tions of strict convexity of a normed linear space E in terms of best
coapproximation and we shall compare them with some known charac-
terizations of strict convexity in terms of best coapproximation.

The following characterization of strict convexity was given in [20]:

Theorem 5.1. Let E be a normed linear space. The following
statements are equivalent:

(i) For every linear subspace G of E, every x € E\G and every
go € Rg(z), we have

(5.1) llgo — gl < llz —gll, geG.

(ii) Same as (i), for every linear subspace G of E with dim G = 1.

(iii) For every linear subspace G of E, every x € E\G and every
go € Rg(x), we have

(5.2) llgoll < [l]].

(iv) Same as (iii), for every linear subspace G of E with dim G = 1.

(v) E is strictly convez.

Remark 5.1 [20]. It is interesting to compare Theorem 5.1 with the
following well known characterizations of strict convexity in terms of
best approximation (see, e.g., [21]):

Let E be a normed linear space. The following statements are
equivalent:

(i) For every linear subspace G of E, every x € E\G and every
go € Pg(z) we have

(5.3) |z = goll <llz—gll  (9€G,97# g)

(ii) Same as (i), for every linear subspace G of E, with dim G = 1.
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(iii) FE is strictly convex.

6. Best coapproximation operator. In the present section we
shall give some properties of the set-valued mapping Rg : ¢ — Rg(z),
defined on the subset

domRg = {z € E: Rg(x) # ¢}
of E into G. We denote by R an arbitrary selection of Rg, i.e., a
mapping of D(Rg) into G such that R%(z) € Rg(z) for all z € D(Rg).

The following theorem was proved in [10].

Theorem 6.1. The set-valued mapping R has the following prop-
erties:

(i) = € D(Rg) = Az € D(Rg) and Rg(Az) = ARg(z) for every
scalar A, i.e., the set-valued mapping Rg s homogenous.
(ii) D(Rg) D G and Rg(z) = {z} for all z € G.
(iii) ||RY(@)|] < ||z|| for all z € D(Rg) (the result is true for any
subset G of E with 0 € G).
(iv) If z € D(Rg) and Pg(z) # ¢, then ||z — RL(2)|| < 2|z —
Pg(2)]]
(v) If X is smooth, then Rg is single-valued on D(R¢g) and it is a
norm one linear projection of D(Rg) onto G.

(iv) If X is an inner-product space then Rg = Pg. If X is a Hilbert
space, then D(Rg) = X.

The following theorems were proved in [17] (see also [10]).

Theorem 6.2. (i) If M is a one-dimensional subspace of X, then
D(Ry) = X and Ry admits a linear selection.

(ii) X 1is smooth iff, for every (or also, for every one-dimensional)
subspace M of X, RS, is uniquely determined over its domain.

(iii) If X is smooth, for every subspace M of X, RS, is a norm one
projection from D(Rpr) (which is a subspace) onto M.
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Theorem 6.3. Let X be a Banach space with dim (X) > 3. Then
X is a Hilbert space iff one of the following conditions hold:

(i) X is smooth and D(Rg) = X for every subspace G (or also,
D(Rg) = X and Rg is linear for every subspace G).

(i) D(Rg) = X for every hyperplane G.
(iii) There is a proper subspace Y of X such that, for every subspace
G of X, X-isomorphic toY, and for every x we have Pg(z) C Rg(z).

(iv) X is strictly conver and there is a proper subspace Y of X such
that for every subspace G of X, X -isomorphic to Y, R is defined on
X and I — ROG 1§ contractive.

The following result on the composition of set-valued operators of
best coapproximation was given in [20].

Theorem 6.4. Let E be a normed linear space and G,G' linear
subspaces of E, with G C G'. Then

Re(Rgi(x)) C Rg(x) forallx € E.

It was also shown in [20] that in general the inclusion in Theorem 6.4
is strict. However, when F is smooth, the situation is different, viz.

Theorem 6.5 [20]. Let E be a smooth normed linear space and G,
G' linear subspaces of E, with G C G'. Then
(6.1) Re(Rg/(x)) = Rg(z) for all x € Dom (Rg),
(6.2) ||Ra(2)|| < ||Ra/(z)|| for all z € Dom (Rg/) NDom (R¢).

Remarks 6.1 [20]. (a) When FE is not smooth, the inequalities (6.2)
need not hold for selections from Rg(x) and R/ ().

(b) It is interesting to compare (6.2) with the following well-known
inequalities (see [21]) for best approximation, where G,G’ are linear
subspaces of F with G’ C G:

lz — mg(@)]| < ||z — mg ()|
7(z) € Pa(x) # ¢, 1/ (x) € Por(x) # ¢
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The following theorem proved in [20] shows that the mapping R¢ is
idempotent and quasi-additive.

Theorem 6.6. Let E be a normed linear space and G a linear
subspace of E. Then

(a) Rg(Rg(z)) = Rg(x) for all z € Dom (Rg), i.e., the set-valued
mapping Ra is idempotent;

(b) If x € Dom(Rg) and g € G, then ¢ + g € Dom (R¢) and

Rg(z +g) = Ra(z) + 9,

i.e., the set-valued mapping Rg is quasi-additive.

Remarks 6.2 [20]. (a) The quasi-additivity and homogeneity of
the mapping R permits us to apply to Rg some results of [23] on
general quasi-additive homogenous projections. For example, from [23,
Proposition 2.3] (extended, with the same proof, to the set-valued case),
it follows that

(6.3) 90 € Rg(ax + (1 —a)go), 9o € Rg(z), a € R;

of course, one can see this directly also, since GLlz — g¢ implies
Gla(zx —go) =az+ (1 —a)go — go, « € R.

(b) The well-known fact that, for every one-dimensional subspace G
of a normed linear space F, there exists a linear projection of norm 1
of E onto GG reformulated in terms of Rg shows:

For every G with dim G = 1, we have dom Rg = E and the

operator Rg admits a linear selection.

(c) One can also study semi-continuity properties of the set-valued
mapping Rg, e.g., it was observed in [20] that if G is closed, then the
mapping R is upper (K )-semi-continuous.

(d) Since Rg is a bounded mapping, and R;'(0) = {z € E: 0 €
Rg(z)} is closed, some results on the continuity of Rg (when Rg is
single-valued) can be deduced from those of [23, Section 3].
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7. Best coapproximation on convex sets. In this section we
discuss various properties of the map R, where C' is an arbitrary
subset of a normed linear space. It will be observed that various
properties of the map Rg, when G is a linear subspace, can only
partially be extended to the map R¢, and the map R¢ is also related
to the orthogonal retraction defined in [5]. The problem of “strong
approximation” for the map R¢, similar to that of the map Pg
suggested in [2], is also considered in this section.

It was observed in [18] that the map R satisfies the following
properties similar to the results in [10]:

(i) C C Dom(R¢) and Re(z) = {z} for every = € C;
(ii) Rc(z) is closed if C' is closed;

(iii) Rc(x) is convex if C' is convex;

(iv) If z € Dom (R¢), then R (x) is bounded;

(v) If 2° € Ro(z), then 2° € Re(tz + (1 — t)20), for ¢ > 1;

(vi) C C Rc¢(z) whenever the diameter of C is smaller than
dist(z, C).

Another kind of map R, —the so-called “orthogonal retraction” was
defined in [5]. If 2’ € C, we say that 2’ € R () if

(7.1) (' —y,z —2') >0 for every y € C.

These maps obviously satisfy the properties (i), (ii), (iv), (v). Corollary
7.1 below will imply that (iii) is also satisfied.

The following relationship between Ry, and R¢ was observed in [18].

Theorem 7.1. z' € Ry (x) implies ' € Rc(x), and also =’ €
Ry (tx + (1 —t)z) fort > 0.

The following two properties—property (A) and property (B) below
were considered in [18] and are sufficient for Ro(z) = R ().

(A). Suppose that R¢(z) satisfies:

If 2° € Ro(x), then 2° € Ro(te + (1 —t)2°) for 0 <t < 1.
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Then R¢(z) = Rp(x).

This property implies that Ro () is contained in the boundary of C.
Also, by Theorem 7.1 and property (A), one obtains the following:

Corollary 7.1 [18]. z° € Ry (z) iff 2° € Rc(tz + (1 — t)z°) for
0 <t <1 (so, in view of (v), for every t > 0).

(B). Suppose that Rc(x) satisfies:
If 2° € Ro(x) and y € C, then (1 —t)2° +ty € C for t > 1.
Then R¢(x) = Rp ().
From Property (B), we get

Theorem 7.2 [18]. Let C' be a subset of normed space B such that
if y1 and ya belong to C', then also ty; + (1 —t)y2 € C' fort > 1. Then
Ry, = Rer. In particular, 2° € Rg(z) iff (9,2 — 2°) > 0 for every
geaq.

Remark 7.1. Theorem 7.2 is similar to the well-known result: zo €
Pg(z) iff 7(x — zg,g) > 0 for every g € G. But it was observed in [18]
that a result similar to z¢ € Po(z) iff 7(x — o, 9 —y) > 0, for every
y € C, does not hold for the map Rc¢.

Remark 7.2. In Hilbert spaces, Rc = Ry = Pc¢ for every C. If B
is two-dimensional and C is closed, then R{, (so also R¢) is always
defined (see [5, Theorem 5]); in particular, R, exists whenever C' is
contained in a one-dimensional subspace of B. If B is smooth, then
R, is single-valued and nonexpansive on its domain (see [5, Lemma 1
and Theorem 1]: In that terminology, R¢ is a nonexpansive projection).
If C is bounded and R¢ is defined on B, the fulfillment of property (A)
for every = € B is a very strong condition (see [6, 11]).

Next we speak of “strong approximation” for the map R¢, similar to
that for the map P suggested in [2], considered in [18]. This concept
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of strongness has a different meaning from that of strong unicity for
Pe.

Definition 7.1 [18]. We say that 2° € Rco(z) (or 2° € Rg(z))
strongly, if z € C (or z € G) and there exists an r > 0 (r < 1) such
that

(7.1)  [la® —yl[ +rl]a® — 2|l < [lz —y|| for every y € C (y € G).

We say that 2’ € Ry, () strongly, if ¢ C and there exists an 7 > 0
(r <1) such that

(7.2) m(z' —y,x —2') >r|lz —2'|| foreveryyeC, y#ua'.

Clearly, (7.2) implies (7.1). If (7.1) is satisfied for z° and property (B)
holds, then 7(z° — y,z — 2°) > r||z — 2°||; in particular, for Rg = R,
(7.1) is equivalent to (7.2) and to

(7.3) 7(g9,z — 2°) > rl|lx — 2°|| for every g € G, g # 0.

The definition given by (7.1) means that if a point if moved in C' (or in
G) from a strong approximation z°, inside the ball of radius r||z — z°||
and centered at x°, all the points reached are still approximations. So
the above concept of strongness has nothing to do with unicity, and the

larger r is, the more x moves from z°.

The following result given in [18] gives an upper bound for the
Chebyshev radius of the set of strong approximation in the sense of
(7.1) (so also for the set defined by (7.2)).

Theorem 7.3. The radius of the set of elements which belong
strongly to Rc(x), for a given r, is not larger than (1 — r)d.

In general, we see that the radius of R¢(z) is not larger than d.
Moreover, if the space is smooth we recall that R{(x) can contain at
most one point, so in that case no element can belong to Ry, (x) strongly,
the same for Rg(z) (a similar result holds for Pg(x); see [1, Theorem

5)).

Concerning Ry, the following result was proved in [18].
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Theorem 7.4. =’ € R, (x) strongly iff the set
A ={yeC:7(d' —y,z—2') <|ly—2'|}

contains no point of a certain sphere of positive radius, centered at T’

If (xo, G) denotes the linear span of 2y and G, the following result is
analogous to that of Proposition 1 of [2].

Theorem 7.5 [18]. If z has a strong approzimate z° from G, then
so does any element in (z,G). More precisely, z° € Rg(z) implies
kx® +vy € Rg(kx +vy) strongly with the same r for every y € G and
ke R.

Comments. The best coapproximation seems to be useful both
as a kind of “approximation” and because of its relations with some
other notions, which can be expressed in terms of Rg(z). For example,
go € Rg(z) implies that the norm of the linear projection

P:Goz] — G (where [z] = {az : a € R}),
along [z — go], i.e., of the operator
P(g + az) = g + ago, geG, aeR

is 1 and P(z) = go; conversely, if P is any linear norm 1 projection
of G & [z] onto G, then P(z) € Rg(z). Thus, for z € E\G, we have
R (z) # ¢ iff there exists a linear norm 1 projection from G @ [z]
onto G. Consequently, when G is closed, we have Rg(xz) # ¢ for
every € F\G iff there exists a linear norm 1 projection onto G from
every subspace of F containing G as a hyperplane (in general, this does
not imply the existence of a linear norm 1 projection from the whole
space E onto G). Other concepts, which are defined with the aid of
linear norm 1 projection, can also be expressed in terms of Rg(z). For
example, a sequence (z,) in a Banach space F is a monotone basic
sequence iff 0 € Rg, (2n41), n = 1,2,..., where G, = [z1,... ,2,] is
the closed linear subspace of E spanned by zi,...,z,. Some further
connections between Rg(z) and monotone bases, as well as some other
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types of bases, have been given in [17]. Also, the notion of orthogonal
retraction studied by Bruck [5] can be expressed in terms of Rg(z) as
follows: If G and C are subsets of E, with G C C, amappingr : C — G
is an orthogonal retraction of C' onto G iff

r(z) € Re(\z + (1 — Nr(z)), ze&CA>0;

when C' = E, this is an analogue of the “sun property” of G for the
metric projection Pg (see, e.g., [21], also (6.3)).

Remark 5.1 shows that, in a certain sense, rg(z) € Rg(z) behaves
like  — 7g(x) (€ P5'(0)) where g (z) € Pg(x). In this connection we
also recall that in a reflexive strictly convex space E, for every closed
linear subspace G we have a natural decomposition £ = G & P 1(0),
induced by 7mg (see, e.g., [22, Proposition 3.1]). Correspondingly (in
the light of Remarks 4.1(a), (b)), in a smooth space E, for every closed
linear subspace G we have a decomposition

dom (Rg) = G @ R5*(0),

with R a linear norm 1 projection of dom Rg onto G along RC_;I(O)
(hence GLRZ'(0)).

In 1961, V. Klee conjectured that there are nonconvex existence
and uniqueness sets for the best approximation in infinite-dimensional
Hilbert spaces. Although several fine results on this subject have been
proved within the last two decades (see, e.g., [16]), we are still far
from being able to give a definite answer. In contrast to this, for the
best coapproximation, the existence and uniqueness sets in a Hilbert
space are easily characterized. It was shown in [3] that for the best
coapproximation in a Hilbert space the existence and uniqueness sets
are the closed flats. But if the space is a strictly convex normed linear
space, then every existence set for the best coapproximation is closed
and convex.

To sum up the contents of this article, it is clear that very little
has been done so far regarding best coapproximation. This theory
can be developed to a large extent parallel to the theory of best
approximation. Recently, this study has been taken by Geetha S. Rao
and her pupil (see, e.g., [8]) when the underlying spaces are locally
convex spaces with a family of semi norms and some results have been
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proved. It will be interesting to generalize the other known results on
best coapproximation in such spaces and develop the theory further for
such spaces. Also, perhaps it is possible to develop a parallel theory
similar to the theory of farthest points. For known results in the theory
of farthest points, one may refer to [15].
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