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A TOPOLOGICAL APPROACH TO MORITA
EQUIVALENCE FOR RINGS WITH LOCAL UNITS

G.D. ABRAMS, P.N. ANH! AND L. MARKI!

ABSTRACT. In [1] and [3] a theory of Morita equivalence
has recently been developed for certain not necessarily unital
rings called rings with local units. In this article we prove
that the special Hom-sets which figure in the description
of equivalence functors are actually the sets of continuous
homomorphisms from a locally projective generator (endowed
with a suitable topology) into discrete modules. The main
result of this paper says that two rings with local units
which fulfill a topological condition of projectivity are Morita
equivalent if and only if suitable matrix rings over them are
isomorphic to each other.

Following the terminology of [3], a ring R is said to have local units
if there is a set E of idempotents in R such that for any r,s € R there
is an e € E which acts as a two-sided identity for both r and s; in
particular, any unital ring has local units with E = {1}. Note that if
R has local units, then R = U.cgeRe. For any ring R with local units
and any (infinite) set I, denote by R{ the ring of I x I matrices over R
which contain at most finitely many nonzero entries. Clearly, R}c also
has local units.

Throughout this article all modules are assumed to be left modules
(unless otherwise indicated), and all module homomorphisms will be
written on the right. For any set I and any module M, we denote by
M) the (discrete) direct sum of I copies of M.

Let R be a ring with local units. As in [3], we denote by RMod
the category of unitary modules g M (those with RM = M) together
with all R-homomorphisms. Recall [3, Definition 2] that a module
P € RMod is said to be locally projective if there is a direct system
{P;}icr of finitely generated projective direct summands of P (so that
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I is an upward directed set, and P; is a summand of P; whenever ¢ < j)
together with projections v; : P — P; satisfying 1;1; = 1; whenever
1 < j, and such that h_n)l{Pi} = P. If we order the idempotents in a set
E of local units for R by defining e; < e; whenever e;e; = eje; = e,
then rR is seen to be locally projective, with summands P; =Re; and
projections ¢; : R — Re; defined via right multiplication by e;.

If R is aring with a set E of local units, then a natural topology can be
introduced in R by taking the sets R(1—e) = {r—re|r € R,e € E} as
a base of open neighborhoods of 0. This topology is Hausdorff because
UecgRe= R. More generally, if gP is any locally projective module
with a direct system P; and projections v;, then the sets ker ¢; form
a base of open neighborhoods of 0 in P. The corresponding topology,
which is Hausdorff, will be called the locally projective topology for P,
and P will denote the locally projective module P endowed with the
locally projective topology. Note that the topology of P induces the
discrete topology on each P;.

As we shall see below in Example 3, a locally projective module may
carry various locally projective topologies, depending on its defining
system of projections. Nevertheless, we shall speak of the locally
projective topology, because whenever we have a locally projective
module, we assume tacitly that a defining system has been fixed for
it; however, in order to avoid cumbersome notations, we shall continue
to write simply P for a locally projective module. When speaking of
rR, we always mean the locally projective structure induced by the set
of all idempotents of R as was described above; in fact, any set of local
units induces this same topology on R.

For any M € RMod, we denote by M the module M endowed with
the discrete topology. If P,M € RMod and P is locally projective,
then a mapping a : P — M factors through one of the canonical
projections v¢; of P if and only if it is continuous as a mapping from
P to M, because both conditions mean that ker o contains ker; for
some ¢ € 1.

For any two topological left R-modules X and Y we denote the
abelian group of continuous R-homomorphisms from X to Y by
ContHompg(X,Y) (the subscript R will be suppressed when the un-
derlying ring is clear from context). Then the following can be added
to the list of properties of equivalences given in [3, Theorem 2.1]:
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Proposition 1. Let R and S be equivalent rings with local units via
inverse equivalences G : RMod — SMod and H : SMod — RMod, and
put P = H(sS) and Q@ = G(rR). Then we have, under suitable locally
projective topologies on g P and 5@,

G = ContHomg(P,— ) and H = ContHomgs(—@Q, ).

Proof. As was seen before the formulation of Theorem 2.5 in [3], for
any M € RMod, SHompg (P, M) consists of those homomorphisms from
P to M which factor through one of the ;. Since these homomorphisms
are exactly the elements of ContHomp(P,— ), by [3, Theorem 2.1(3)]
we obtain the validity of our first claim. The second is proven dually.

]

Remark . In particular, the ring ContHompg (P, P) consists of those
endomorphisms of P which factor through one of the ;. On the other
hand, we have that

ContHom(P, P) = {a € ContHom(P, P) | « is of finite rank},

where “« is of finite rank” means that the image of «a is contained
in a finitely generated submodule. To verify this, note that if o €
ContHom(P, P) is of finite rank, then a(P) is contained also in some
P;; then, for this i, kery; N a(P) = 0 and thus a=(0) = o~ (ker ;).
Now ker 1; is open in P and « : P — P is continuous, whence a~1(0) is
open in P and thus o : P — P is continuous. Conversely, if o : P — P
is continuous, then, of course, it is also continuous as o : P — P, and
it is of finite rank because by an earlier observation it factors through
some 1;, whose image is the finitely generated submodule P;.

Proposition 1 and the above remark as well as [3, Theorem 2.1 and
2.5] now yield the following.

Theorem 2. Two rings R and S with local units are Morita
equivalent if and only if there exists a locally projective generator grP
such that S is isomorphic to the ring of continuous endomorphisms of
finite rank of P.

Example 3. Consider a division ring D and a dual pair (p M, Np)
of vector spaces over D (i.e., a bilinear product (, ) : M x N — D
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is defined which is nondegenerate in the sense that (m,y) = 0 for all
y € N implies m = 0 and (z,n) = 0 for all x € M implies n = 0).
As is described in Chapter IV of [6], the given bilinear product induces
a topology on M (which is called the finite topology). Denote by S
the ring of continuous endomorphisms of finite rank of this topological
module M. S is a regular ring, hence a ring with local units (see [3,
Section 3, Example 1]), and the set of all idempotents of S induces
a locally projective structure on the left vector space M by putting
pM = h_r)n{Mf | f2 = f € S}, with order inherited from f < g if and
only if fg = gf = f and with the canonical projections ¢ : m — mf.
It is clear from the considerations in [6] that the locally projective
topology of M agrees with the original topology of M.

Conversely, if M = lim M; is a locally projective left vector space
over D with projections 1; we denote by IV the right vector space of all
continuous homomorphisms from pM to pD. Putting (m,n) = (m)n
we obtain a dual pair (M, N) over D, and it is clear that the topology
induced by this bilinear product on M agrees with the original locally
projective topology.

By [6, Ch. IV, Section 6, Prop. 3] we also know that, for a dual pair
(M, N) over D, all submodules of M are closed if and only if N = M*
(= all D-homomorphisms from M to D; obviously, if (M, N) is a dual
pair, then N can be considered as a subspace of M*). We have seen
above that the topologies induced by dual pairs on a vector space M
are the same as the locally projective topologies on M; hence, if (M, N)
is a dual pair with N # M*, then the dual pairs (M, N) and (M, M*)
yield two different locally projective topologies on M.

Now let grP be a locally projective module and I'" an arbitrary set.
Then P is also locally projective, being the direct limit of the system
{®,erA,} where only finitely many A, are different from 0 and each of
the latter is a P; in P,. The locally projective topology of P s just

e P, so that P~ pm)
as topological modules. Furthermore, if o : P — @ is a topological
isomorphism between two locally projective R-modules, then o induces
in the obvious way an isomorphism between the rings ContHom(P, P)

and ContHom(Q, Q). Therefore, we have a ring isomorphism

ContHom(P 1), P() = [ContHom(P, P))L.

the restriction of the product topology in []
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Let R be aring with a set E of local units. Throughout the remainder
of this article we assume (unless otherwise indicated) that any direct
sum of modules is endowed with the topology induced by the product
topology; in particular, we endow the module rU = @®.cgRe with the
topology induced by the product topology. Then we have a direct sum
R(E) = U @ L also in the topological sense, where L = ®.cpR(1 — e€).
Now let I be an arbitrary set whose cardinality is larger than that of
E. Then we have topological isomorphisms

7Y ~ RO =~ REXD) ~ (R®YD = (U g L) = y®) g LO)
2™ guD ¢ L0 2y® g RD 2y® ¢ R =~ (U e R)D.

Definition. A unitary topological module rP is said to be topolog-
ically projective if it is a topological direct summand of a direct sum of
discrete modules of the form Re, e € E. A ring R with local units is
called topologically projective if zR is topologically projective.

Obviously, every topologically projective module is projective, but
(as we will show in Example 11 below) the converse need not hold. It
is also clear that a module is topologically projective if and only if it is
a topological direct summand of U¥) for a suitable set K.

In spite of the one-sided definition, the property of being topologically
projective is a two-sided property for rings with local units. In fact,
suppose that R is a ring with a set E of local units and grR is
topologically projective. Then there is a topological isomorphism
UK) ~p R® R/, for a suitable topological module R’ € RMod and
some set K. If we endow the ContHom-sets with the finite topology,
then we have topological isomorphisms

(@ eR)™) = ( & Hom(Re,R))"™
eckE ecE

ContHom(U(K) ,R) = (ContHom(U, E))(K)

J”

ContHom(R @ R', R) = ContHom(R, R) @ ContHom(R',R) = Rp ® R",
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whence the topological isomorphism (®ecpeR)E) = Rp @ R is valid.
Thus Rp is indeed topologically projective.

Proposition 4. Let R and S be rings with local units, and G :
RMod — SMod be an equivalence functor. Then G preserves topologi-
cal projectivity.

Proof. We first prove the statement for modules M € RMod which
are topological direct sums of discrete modules of the form Re, e € E.
Indeed, we have G(®Re) = ®G(Re) algebraically and topologically;
here every G(Re) is finitely generated and projective, so there is an
idempotent f = f(e) in S and an integer n such that G(Re) is a direct

summand of (Sf)™.

Suppose now that P = lim P; is a locally projective module with

projections ¢;. Then every G(P;) is a finitely generated projective S-
module, hence G(P) = h_r)nG(Pi) is a locally projective module with

projections G(1;). Assume now that P is topologically projective;
i.e, there is a module rQ such that P ® ) = ®jcsRe algebraically
and topologically. Since the topology on ®jcsRe is linear, the above
condition means that the topology on @ is linear. In addition, for any
open submodules P, C P and @ C @ there is a finite subset K C J
with © 5\ g ReC Py © Q1; also, for every finite subset L C J there are
open submodules P, C P and Q2 C Q with P> ® Q2 C @& Re.
Since G preserves both direct sums and submodule inclusions, the
topologies on G(P) ® G(Q) = G(®jcsRe) defined by carrying over
the linear topologies of G(P) and G(Q) (respectively, G(®,csRe))
from P and @ (respectively, ®jcsRe) are identical. This means that
G(®jesRe) = ®jcsG(Re) is a topological direct sum of G(P) and
G(Q). Since a topological direct summand of a topologically projective
module is clearly topologically projective, the proposition is established
by using the first paragraph of the proof. 0O

Suppose now that R is topologically projective. Then there is a
topological module zpR' such that R @ R’ = U¥) for some infinite
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set K. This induces topological isomorphisms

U = yExK) = (Y (K) = (Rg R)F) = B g R
>R o R o ) 2 RY Ul ~ U o R,
and similarly, if gP is an arbitrary topologically projective module
then we obtain a topological isomorphism U¥) = (U @ P)¥) for some
infinite set K.

If such a P is in addition a locally projective generator for RMod,
then for each e € E there is an integer n = n(e) such that Re is a
topological direct summand of P™. Since Re is finitely generated and
P is locally projective, we can assume that Re is contained in a finitely
generated projective direct summand of P™, and therefore we can
choose a direct complement of Re in P™ such that this decomposition
is topological. Hence U is a topological direct summand of P(/) for
a suitable infinite set J, and we obtain, in the same way as above, a
topological isomorphism P(/) = (U ¢ P)().

After all these preparations we prove the main result of this paper.

Theorem 5. Let R and S be topologically projective rings with local
units. Then R and S are Morita equivalent if and only if there is a set
I for which R}c & S{.

Proof. Suppose that R and S are Morita equivalent topologically pro-
jective rings. Since equivalence functors preserve topological projectiv-
ity (Proposition 4) and S is topologically projective, the equivalence of
R and S is induced, in view of [3, Theorem 2.5], by a bimodule rPs
such that P is a topologically projective generator. Since R is topo-
logically projective, we may use the topological isomorphisms obtained
above to ensure the existence of an infinite set I such that

RO gﬁ(l) ) (E@U)(I) o~ ) o (UEBF)(I) gﬁ(” ~ p(I)

with topological isomorphisms. Therefore, there is a ring isomorphism

ContHom(R(), RY)) = ContHom(PX), PW),
We have seen that

ContHom(P (), P()) = [ContHom (P, P)],
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and that ContHom(P, P) consists exactly of those endomorphisms of
P which factor through one of the ;. By Theorem 2.5 in [3], the ring
of these endomorphisms is just S, hence

ContHom(P(), P() =2 §7,
Similarly, we have
ContHom (R, R(D) = [ContHom(R, R)],

and clearly ContHom(R, R) = R. Thus we obtain R = §7.

The converse follows from the following more general statement.

Lemma 6. If R is any ring with local units, then R and Rf are
Morita equivalent for any set I.

Proof. Let P’ denote rR). Since rR is locally projective, P’ is
as well; further, P’ is obviously a generator. Now it is easy to see
that R{ is isomorphic to the ring of those endomorphisms of P’ which
factor through one of the projections belonging to the canonical direct
system of P’, whence [3, Theorem 2.5] yields that R and R} are Morita
equivalent. This completes the proof of both the Lemma and Theorem
5. O

As a special case of the above theorem we have the following un-
published result from the Ph.D. thesis of W. Stephenson [9, Theorem
3.6]:

Corollary 7. Let R and S be rings with identity, and let I be any
infinite set. Then R and S are Morita equivalent if and only if R}c and
S}c are isomorphic.

Remarks. 1. If R and S are topologically projective and the
cardinalities of the sets of local units F(R) and E(S) are at most ¢
where c is infinite, then the proof of the theorem yields that RS = Sf
whenever R and S are Morita equivalent.

2. If a ring R has an orthogonal set E of idempotents such that
R =) cpRe= ) peR, then the set of all finite sums of elements



RINGS WITH LOCAL UNITS 413

from F is a set of local units for R and R is topologically projective;
hence, the theorem applies to these rings. These rings are called rings
with enough idempotents in [4] and subsequent papers. In [3] it is shown
(see the Remark at the end of Section 2) that every Morita equivalence
class of rings with local units contains rings with enough idempotents.
We have no example of a topologically projective ring which is not a
ring with enough idempotents. However, even if we restrict the rings
R and S of Theorem 5 to be rings with enough idempotents, we know
of no direct (i.e., nontopological) way to establish the indicated ring
isomorphism.

Now we apply Theorem 5 to find, in a functorial way, canonical repre-
sentatives of Morita equivalence classes. Intuitively, a functor F' which
“chooses” exactly one representative from each Morita equivalence class
should satisfy the following two properties for all rings R and S with
local units:

(a) R and F(R) are Morita equivalent, and
(b) if R and S are Morita equivalent, then F(R) and F(S) are

isomorphic.

In what follows, such a functor F' will be called a choice functor. It is
not hard to see that for unital rings there is no faithful choice functor.
Specifically, let K be a finite field of prime order. By the Noether-
Skolem theorem (see, e.g., [5, Theorem 4.3.1]) every automorphism
of the full matrix ring K, is inner. Since for n > m the number of
units in K, is clearly greater than the number of units in K,,,, we may
conclude that |Aut(K,)| > |Aut(K,,)|. Now if F is a choice functor,
then properties (a) and (b) together with Morita’s theorem imply the
existence of an integer ¢ such that F(K,) is isomorphic to K, for
every n. But any functor preserves automorphisms, so in particular
F(Aut(Ky41)) C Aut(K,). By the above numerical observation we see
that F' cannot be faithful.

Let S denote the full subcategory of the category of all rings whose
objects are those rings which contain an at most countable set of local
units; in particular, S contains all unital rings. If R is a ring from S,
then the idempotents of R can be orthogonalized; hence, R is a ring
with enough idempotents. Therefore, Theorem 5 applies to all rings
in S, and in this case all the index sets occurring in the proof of the
theorem can be chosen to be countable. We let FM : S — S denote
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the functor FM(R) = R{V (with coordinatewise induced morphisms as
usual), where N is any countably infinite set. Then we obtain

Corollary 8. The functor FM : S — S is a faithful choice functor.

Remark . Based on Remark 1 after Corollary 7, if we put any upper
bound on the cardinalities of the sets of local units, we obtain faithful
choice functors in the corresponding categories of not necessarily unital
topologically projective rings similar to the one constructed above.

Finally we present two examples to illustrate that topological projec-
tivity is in fact a restrictive condition on rings with local units. We
begin by constructing a ring R with local units such that rR is not
projective.

Lemma 9. Let S be a regular ring with identity and let R be an ideal
in S. Then gR is projective if and only if sR is projective.

Proof. Since S is regular, R is also, and we have SR = R?> = R.
Therefore, every unitary R-module can be considered as an S-module.
Conversely, if M is an S-module, then RM is a unitary R-module. In
addition, if f :p R —r X is a homomorphism of left R-modules, then
f is in fact an S-homomorphism, since (for s € S, r € R, and e € R
with re = r) we have

(sr)f = (sre)f =sr-(e)f =s5-7-(e)f =s-(re)f =s-(r)f.

A straightforward check now completes the proof of the claim. 0O

Example 10. Define S to be the direct product of infinitely many
copies of an arbitrary field. Then S is a self-injective nonartinian
regular ring. Since S is not artinian, it is not hereditary either (see
[8]), hence it has an ideal R such that sR is not projective. By Lemma
9 and [3, Section 3, Example 1] this R is a ring with local units such
that gR is not projective.

Finally, we construct a ring .S with local units for which gS is pro-
jective but not topologically projective. For the necessary elementary
properties of linearly compact vector spaces, see, e.g., [7].
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Example 11. Let M be an infinite dimensional right vector space
over a division ring D, and consider the locally projective structure
induced by the dual pair (M*, M) on M. Then M* is isomorphic, both
algebraically and topologically, to a direct product of one-dimensional
discrete spaces, hence M* is linearly compact. Suppose that M* is
a topological direct summand of a topological vector space pV which
decomposes into a topological direct sum @;crDx; for a basis {z; |i € I}.
Then there is a subset J C I such that V = M* & (®icsDz;)
algebraically, and here N = @;c;Dz; is a closed subspace of V.
Furthermore, since M is infinite dimensional, M* is also, and therefore
the set I'\J must be infinite. Since addition is continuous, the identical
mapping M* @ N — V is a continuous function. On the other hand,
if X C M* and Y C N are open subspaces, then they must be closed,
hence they are both closed subspaces of V. Here X is linearly compact,
being a closed subspace of a linearly compact vector space, therefore
the image X' of X in the quotient vector space V/Y is also linearly
compact, hence it is closed. Thus the preimage of X', which is X Y, is
a closed subspace of V. Furthermore, X and Y are of finite codimension
in M* and N, respectively; hence, X @Y is of finite codimension in
V = M*®N. Therefore, X ®Y is an open subspace of V, which proves
that the identical mapping V' — M* @ N is also continuous. Thus
V = M*@®N both algebraically and topologically. An application of the
quotient mapping V' — V/N yields now that ®;cpjDz; = V/N = M*
holds both algebraically and topologically. Being the direct sum of
infinitely many discrete spaces, ®;cp sDx; cannot be linearly compact,

though we have seen that M* is so. This contradiction proves that M*
cannot be a topological direct summand of V; in other words, M* is
not topologically projective.

Consider now the ring S of continuous endomorphisms of finite rank of
M* (in the notation of [2], S 2 M®pM*). Then S is Morita equivalent
to D by Theorem 2, and this equivalence is induced by the bimodule
pME. Therefore, S, being the image of pM™* under this equivalence,
is projective but not topologically projective by Proposition 4.
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