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LINEAR THIRD-ORDER DIFFERENCE EQUATIONS:
OSCILLATORY AND ASYMPTOTIC BEHAVIOR

B. SMITH

Introduction. In several recent papers, the oscillatory and asymp-
totic behavior of solutions of second order difference equations have
been discussed. For example, note the following papers [1, 3, 5, 7].
When compared to differential equations, the study of the oscillation
properties of difference equations has received little attention for orders
greater than two.

In this paper we will be concerned with the solutions of the linear
third order difference equation

(E) A3(]11 + Pn+1AUn+2 + QnUn+2 = 07

where A denotes the differencing operation, AX,, = X,,11 — X,. The
coefficient sequences are real sequences satisfying P, > 0, Q,, < 0,
AP, —2Q, >0,n>1and Y. (AP, — 2Q,,) = co.

In [6] the equation
(1) AU, — P,Up 42 =0,

is studied subject to the condition P, > 0 for each n > 1. Therein:
it is proved that (1) always has a nonoscillatory solution; a character-
ization of the existence of oscillatory solutions of (1), in terms of the
behavior of nonoscillatory solutions is established; an example is given
demonstrating (1) as having only nonoscillatory solutions.

In this work we prove (E) always has an oscillatory solution (Theorem
2.1). The theorem is a generalization of [6, Theorem 3.9], and extends
to difference equations the result of Jones [4, Theorem 2] concerning
linear differential equations. Moreover, a sufficient condition is given
in terms of the sequences P,, @, so that (E) has a solution satisfying

sgn U, = sgn AU,, = sgn A%U,,,
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n sufficiently large. Such a solution, where U,, > 0, is termed strongly
increasing [6].

Primarily we use the terminology of Fort’s book [2] in our discussion.
A real sequence U = {U,} satisfying (E) for each n > 1 we term a
solution of (E). By the graph of a solution U we mean the polygonal
path connecting the points (n,U,), n > 1. A point of contact of the
graph of U with the real axis is a node. A solution of (E) is said to be
oscillatory if it has arbitrarily large nodes; otherwise it is said to be
nonoscillatory.

Section 1. For each solution U = {U, } of (E) define F, where
(2) FlU,] = F, = (AU,)? — 2U,41A%U, — P, U2, 5.

Computing the difference of F,, and making the substitution from (E),
we find

AF, = (2Q, — AP,)UZ 5, — (A%U,)? — Poy1(AUpg2).

We have the following lemma.

Lemma 1.1. IfU is a solution of (E), the function defined by (2) is
NONINCreasing.

Because F), is nonincreasing, it follows that if U is a nontrivial
solution of (E), F,, is eventually sign definite. Note the solution U
of (E) with initial values

(3) U1 =a, U2 = 2(1, U3 = 4(1,,

a > 0 and constant, is such that F;, < 0, n > 1. It is also true a
solution of (E) exists where F,, remains positive for each n > 1. We
have the theorem.

Theorem 1.2. There exists a solution of (E) satisfying F,, > 0 for
alln>1.

A proof is identical to that of [6, Theorem 2.4] and is omitted.
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We conclude these preliminaries with a remark concerning the graph
of a sequence U.

Remark 1.3. From the literature of differential equations, a function f
defined by f(z) is oscillatory provided f(x) has arbitrarily large zeros;
otherwise f is nonoscillatory. See [8] for example. The graph of a
sequence U is the graph of a continuous function G defined by

G(z,Uy,) = (AU,)(z — n) + Uy, n<z<n+1l,n>1.

It is clear, under a horizontal translation of axes, the oscillatory
character of G is invariant.

Section 2. We now state and prove our main results.

Theorem 2.1. A solution U of (E), where F[U,] > 0, n > 1, is
oscillatory.

Proof. Let U be a solution of (E), where F[U,] > 0 for each n > 1.
Suppose U is nonoscillatory. Because (E) is linear, no generality is lost
if we assume U, > 0 for all n > N. For such a solution, {AU,} is
nonoscillatory, for if AU,, has a node at g = i, ¢ > N an integer (cf.
Remark 1.3), we see from (2),

F[U;| = —2U;11A%U; — PU?,, > 0.

Hence, A2U; < 0. Consequently, at an arbitrary node for AU, the
slope of G(z,AU,) is negative, therefore G(z,AU,) cannot change
signs for n > i. Thus, AU, is eventually of one sign. Suppose AU,, <0
for all large n. Then AU, > 0 for all n sufficiently large. It follows
that A2U,, is eventually sign definite. We cannot have A2U,, > 0 for
all large n, because AU, AU, > 0 for all n sufficiently large implies
sgn AJ~1U,, = sgn AJU,, eventually. Similarly, A2U,, < 0 together with
AU, < 0 for all large n is impossible since U,, > 0, n > N. So we must
have that an integer M > N exists, where AU,, > 0, n > M. Summing
both sides of

AF, <(2Q, — APn)U,ZH_Z,
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from M to m — 1, we find

m—1

0< Fp < Fy+Uppig 3 (2Qn — AP,) — —0
M

as m — 00, which is a contradiction. We conclude every solution U of
(E), satisfying F[U,] > 0, n > 1 is oscillatory. u]
Ezample 2.2. The sequence defined by U,, = 2" is a solution of
1 1/1 1
3 _
A Un + WAU”+2 — |:§ <2_n> + Z:| Un+2 =0.

This example illustrates our basic equation can have both oscillatory
and nonoscillatory solutions. Example 2.2 further serves to illustrate
the following general principle.

Theorem 2.3. Suppose P11+ Qn <0, n > 1. Then (E) has a
solution U satisfying
sgnU,, = sgn AU,, = sgn A?U,,,
n>1.
Proof. Consider the solution U of (E) satisfying the relations (3).

Clearly,
U, >0, AU; >0, A2U1 > 0.

Suppose Uy, > 0, AU, > 0, A2U;, > 0 for some positive integer k > 1.
From the identities

Uky1 = AUy + Uy,
AUy = AU + AUy,

we see Ugy1 > 0 and AUgyq > 0. Now,
(4) AUy, = A3U + AUy
Making the substitution of (E) in (4), we find

(1 + Pii1)A%Ug i1 = —(Prt1 + Qi) AUk11 — QpUkt1 + AU,
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It follows that A%2Uy,; > 0, and the theorem follows by mathematical
induction. o

A consequence of Theorem 2.1 and Theorem 2.3 is the following
result.

Theorem 2.4. If P11 + Q, < 0, n > 1, equation (E) has both
oscillatory and nonoscillatory solutions.

We turn to our final results.

Theorem 2.5. Let U be a solution of (E) satisfying F,, >0, n > 1.
Then the following are true:

(i) (AP, —2Q,)Up s < 00,
(i) S>™(A%U,)? < o,
(iii) Y% P,(AU,41)% < 0.

Proof. Because U satisfies F,, > 0, n > 1, as a result of differencing
F,, and summing from 1 to m — 1, we have

m—1
O0< F,=F+ Z(2Qn_APn)U3+2
—1n71 -1
- Z (AzUn)z - Z Pn+1(AUn+2)2-
n=1 n=1
Thus,
m—1 m—1 m—1
(AP, —2Qn)Up iz + Y (A%Un)* + D Pori(AUnys)* < Fi.
n=1 n=1 n=1

Letting m tend to infinity establishes each of (i), (ii) and (iii), since Fy
is independent of m. a

Theorem 2.6. Let U be a nontrivial solution of (E). Suppose P,
is bounded, and liminf, ,. (AP, — 2Q,) > 0. The following are
equivalent:
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(iv) Fn>0,n>1,
(v) XU < oo,

(vi) limp_e0 Up = limy,_, 00 AU, = lim,,_, o A2U, =0,
)

(vil) lim,— oo Fpn = 0.

Proof. That (iv) implies (v) follows from (i) Theorem 2.5.
The relations (vi) follow trivially from (v).
That (vi) implies (vii) follows from the boundedness of P,.

Let U be a nontrivial solution of (E) such that F[U,] — 0 as n — oo.
Since F,, — 0, and F,, is decreasing, we must have F,, > 0 for each n.
Hence, (vii) implies (iv) and the proof is complete. O
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