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SUBGROUP SEPARABILITY
OF CERTAIN HNN EXTENSIONS

P.C. WONG

ABSTRACT. We show that certain HNN extensions are
subgroup separable and then apply the result to get a char-
acterization for the Baumslag-Solitar groups to be subgroup
separable and some other results.

1. The residual finiteness and hopficity of the one-relator groups
Gr, = (t,a;t 1a*t = d'), now called the Baumslag-Solitar groups,
were exhaustively studied and completely characterized by Baumslag
and Solitar [2], Meskin [7] and Collins and Levin [3]. Their results can
be summarized as follows:

Theorem 1. Let Gy = (t,a;t takt = a'). Then G, is residually
finite if and only if |k| =1 or |I| =1 or |k| = |l| and G, is hopfian if
and only if |k| =1 or |l| =1 or (k) = n(l), where m(n), for a nonzero
integer n, denotes the set of prime divisors of n.

In the note we shall characterize the groups Gj,; with regards to
subgroup separability. We shall prove the following:

Theorem 2. Let Gy = (t,a;t71a*t = a'). Then Gy, is subgroup
separable if and only if |k| =|I|.

Theorem 2 will follow from Theorems 1, 3 and 4. Theorem 3, which
is our main result, partially extends Theorem 1 of Andreadakis, Raptis
and Varsos [1].

The notations used here are standard. In addition, the following will
be used. Let G be a group.
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N <¢ G means N is a normal subgroup of finite index in G.

(g9) means the cyclic subgroup generated by the element g in G.
f.g. means finitely generated.

s.s. means subgroup separable.

G = (t,K;t 1At = B, ¢) denotes the HNN extension where K is the
base group, A, B are the associated subgroups and ¢ is the associated
isomorphism ¢ : A — B.

Finally recall that a group is subgroup separable if for each f.g.
subgroup M and for each # € G\M, there exists NV <y G such that
xM NN = ¢. Tt is well known that polycyclic groups (and hence f.g.
abelian groups) are s.s. (Mal’cev [6]).

2. We prove Theorem 3 in this section. We begin with a lemma
which will be used in the proof of Theorem 3.

Lemma. Let G = (t, K;t"1At = B, ) be an HNN-extension where
K is a finite group. Then G is subgroup separable.

Proof. The group G is free-by-finite (Hall [4], Karass, Pietrowski and
Solitar [5]). But free groups are s.s. (Hall [4]) and finite extension of
s.s. groups are again s.s. (Romanovski [8], Scott [9]). Hence, G is s.s.
o

Now we prove Theorem 3.

Theorem 3. Let G = (t,K;t 1At = B,¢) be an HNN extension
where K is a finitely generated abelian group and A, B have finite index
in K. If there exists a subgroup H of finite index in K and H is normal
in G, then G is subgroup separable.

Proof. Let M be an f.g. subgroup of G and z € G\M. If = ¢
MH, then «H ¢ MH/H. Now G/H =~ (t,K/H;t \(A/H)t =
(B/H),p) where ¢ : (A/H) — (B/H) is the isomorphism induced
by . Therefore, G/H is s.s. by the Lemma. Thus, there exists
N/H <y G/H such that tH(MH/H) N N/H = ¢, namely there exists
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N < G such that ztM NN = ¢.

Suppose that x € MH. Then z =mh, m € M, h € Hbut h ¢ HNM
(since x ¢ M). Now H and H N M are f.g. abelian. Since H is s.s.
(Mal’cev [6]), there exists a characteristic subgroup R of H of finite
index in it such that A(HN M)NR = ¢. If tR € MR/R, then
x =mh=myr,m; € M,r € R. Hence hr—! = m~'m; € HNM (since
R < H) and so h(HN M) N R # ¢, a contradiction. So xR ¢ MR/R.
Now, by the Lemma, the group G/R is s.s. So we can argue, as before,
with R in place of H and find N <y G such that M NN = ¢. This
completes the proof of the theorem. a

3. We complete the proof of Theorem 2 by proving Theorem 4 in
this section.

Theorem 4. Let G = (t,a;t tat = a™), |m| # 1. Then G is not
subgroup separable.

Proof. Clearly a ¢ (a™) in G. Let Gt denote a homomorphic image
of G of order n. Then a®) =t "paypt™h = a™" ¢ € (a™Y). So G is not
ss. O

4. We show other applications of Theorems 3 and 4 in this section.

Corollary. Let G = (t,K;t 1At = A, ¢) be an HNN extension where
K is a finitely generated abelian group, K # A and A has finite index
i K. Then G is subgroup separable.

Proof. This follows directly from Theorem 3. u]

Theorem 5. Let
G = (t,ay,as,. .. ,an;t_la?"t = afi,i =1,2,...,n,[a;,a5] =1)
where di,k; £ 0,1 =1,2,... ,n. Then G is subgroup separable if and
only if |di| = |ki|, i=1,2,... ,n.

Proof. This follows directly from Theorems 3, 4 above and Corollary
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3 of Andreadakis, Raptis and Varsos [1]. o
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