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A NOTE ON DEDEKIND NON-D-RINGS

K. ALAN LOPER

1. Introduction. All rings considered will be commutative integral
domains with unity. The term prime ideal will refer to a nonzero,
proper, prime ideal. Following [3, 5], we define non-D-ring as follows:

Definition 1. A ring R is a non-D-ring provided there is a
nonconstant polynomial f(z) € R[z] such that f(a) € U(R) (the unit
group of R) for every a € R. The polynomial f(z) will be called a uv
(unit valued) polynomial.

Roughly speaking, a non-D-ring is a ring in which the unit group is
large and maximal ideals are sparse. It is reasonable to assume then
that one should be able to draw some strong conclusions about the
ideal structure of non-D-rings. In this direction, the following result
was proven in [5].

Theorem 1. If R is a Dedekind non-D-ring with f(z) € R[z] being
a monic uv-polynomial with degree n > 2, then Cl(R), the ideal class
group of R, is a torsion group with exponent d where d is a positive
integer which divides n.

Theorem 1 is interesting in that it places strong restrictions on the
structure of the ideal class group of a Dedekind non-D-ring, but it
provides no mechanism for constructing examples of Dedekind non-D-
rings. In this note we will prove a theorem which will provide us with
the means to construct a large class of Dedekind non-D-rings. We will
then construct some specific examples and analyze the ideal class group
structures.

We conclude this section with more terminology and results from [5]
concerning non-D-rings.
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Definition 2. Suppose that R is a ring, P C R is a prime ideal,
and f(z) € R[z] is a nonconstant polynomial. We say that P is an
f-non-D-ideal of R provided f(z) is a uv-polynomial for the local ring
Rp.

Proposition 1. Suppose R is a Ting, a and b are nonzero elements
of R and f(z) € R[z] is a monic polynomial of degree n > 2. If P C R
is an f-non-D-ideal of R, then b" f(a/b) € P if and only if a,b € P.

Corollary 1. Suppose R is a Noetherian ring, f(z) € Rlz] is a
monic polynomial of degree n > 2, and P C R s an f-non-D-ideal
of R. Then there erists an element a € P such that if P, C R is an
f-non-D-ideal of R with a € Py, then P C P;.

2. Construction. In this section we will consider locally finite
intersections of discrete valuation domains (i.e., Krull domains). We
will show that the non-D property can be preserved under intersection
and can be used to insure that the intersections are sparse enough to
make the Krull domains Dedekind.

Proposition 2. Let F be a field and let f(x) € F[z] be a nonconstant
polynomial. Suppose that {T;|i € S} is a collection of subrings of F
such that for each i € S, f(z) € T;[z] and T; is a non-D-ring with f(x)
serving as uv-polynomial. Then T = N;esT; is a non-D-ring with f(x)
serving as a uv-polynomial.

Proof. Let a € T and ¢ € S. Then a € T; and so 1/f(a) € T;.
Since this is true for each i € S, then 1/f(a) € T. Thus, f(x) is a
uv-polynomial for T O

Proposition 3. Let R be a Noetherian ring with field of fractions
F, let f(x) € Rlz] be a nonconstant polynomial, let W be a discrete
valuation domain such that R C W C F, and let Q, be the maximal
ideal of W. Suppose that Q1 is an f-non-D-ideal of W. Then P, =
RN Q@ is an f-non-D-ideal of R.
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Proof. Suppose that P is not an f-non-D-ideal of R. Then f(z) is not
a uv-polynomial for Rp,. Hence, there exist a,b € R with b ¢ P; such
that f(a/b) € PLRp,. However, this gives a/b € W with f(a/b) € Q1
which implies that @, is not an f-non-D-ideal of W. O

The following assumptions will hold for Propositions 4-7, Theorem 2
and Corollary 2.

Assumptions. 1. R is a Noetherian ring with field of fractions F'.

2. f(x) € R[x] is a monic polynomial of degree n > 2.

3. C ={W;|i € S} is a collection of discrete valuation domains such
that for each i € S, RC W; C F and f(z) is a uv-polynomial for W;.

4. W =NiesW;.

5. For each i € S, Q; is the maximal ideal of W;, P, = @Q; N R and
Ji=Q;NW.

6. D = {V;|i € S} is the collection of valuations corresponding to
the W;’s.

7. If a € W, then V;(a) > 0 for at most finitely many valuations V;
of D.

Proposition 4. Ifa and b are nonzero elements of W and V; € D,
then V;(b"™ f(a/b)) > 0 if and only if Vi(a) > 0 and V;(b) > 0.

Proof. Choose V; € D and a, b nonzero elements of W. Then a,b € W;
and the result follows immediately from Proposition 1 applied to W;
and Qz O

Proposition 5. For each V; € D there exists d; € W such that
Vi(di) > 0 and Vj(d;) =0 if V; € D and V; # V;.

Proof. Choose Vi € D. Consider all of the valuations V; € D such
that @; N R O P;. It follows from assumption 7 that there are at
most finitely many such valuations. Let {Vi,...,V;} be the collection
of all such valuations, and let {Py, Pa,..., P} be the corresponding
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prime ideals of R (note that the P;’s may not all be distinct). Let
T=WiNnWyn---NW;. Then T is a PID and the maximal ideals of T’
are exactly the ideals Q; N T for 1 < i <t. Hence, we can find r; € T
such that Vy(r1) > 0 and V;(r;) = 0 for 2 < < t. Then we can write
r1 = a1/by where a1,b; € R, Vi(a1) > Vi(b1) and V;(a1) = V;(by) for
2 < ¢ <t. Now apply Corollary 1 to choose an element z; € P; such
that if P’ is an f-non-D-ideal of R and z; € P’, then P; C P'. Clearly,
Vi(z1) > 0 for 1 < i < t. Also, by our method of choosing Py,... , P,
we know that for all i € S, P, D P implies P, € {P,P,,... ,P;}.
Thus, it follows easily from Proposition 3 that V;(z1) = 0if V; € D
and V; ¢ {Vi,...,V;}. Without loss of generality, V;(z1) > V;(a;) for
1 < ¢ <t (if not, simply replace z; by 2]* with a sufficiently large
m). Let qi = 27 f(a1/21) and let y1 = 27 f(b1/21). Let di = q1/y1.
Then for 1 < i < t, we have V;(q1) = Vi(a1) and V;(y1) = V;i(b1)
since V;(z1) > Vi(a1) > Vi(b1). Thus, Vi(dy) > 0 and V;(d;) = 0 for
2<i<t. Also,if V; € D and V; ¢ {V4,...,V;}, then since V;(z1) =0
we have V;(y1) = Vi(¢1) = 0 by Proposition 4 and so V;(d;) = 0. O

Proposition 6. The ideals {J;|i € S} are exactly the minimal prime
ideals of W.

Proof. By Theorem 110 of [4] we know that each prime ideal of W
contains J; for some i € S. Hence, each minimal prime ideal of W is
one of the J;’s. Then Proposition 5 implies that the ideals {J;|i € S}
are all distinct and that if J; C J;, then J; = J;. Hence, J; is a minimal
prime ideal of W for each 7 € S. O

Proposition 7. Every prime ideal of W is mazimal.

Proof. Theorem 110 of [4] implies that every prime ideal of W
contains a minimal prime ideal of W. Working from Propostion 6 we
need only show that J; is maximal in W for each i € S. Choose i € S
and choose r; € W such that r; ¢ J;. We need to find an element z; €
W such that r;z; =1 (mod J;). Write r; = a;/b; with a;,b; € R. Since
Vi(r;) = 0, then V;(a;) = V;(b;). Use Proposition 5 to find an element
d; € W such that V;(d;) > 0 and Vj(d;) =0 for all V; € D with V; # V;.
Without loss of generality, Vi(d;) > Vi(a;) (if not, replace d; by d*
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for some sufficiently large integer m). Let z; = (b;al™')/[d? f(a;/d;)].
Since V;(d;) > Vi(a;) we know that V;(z;) = 0. Also, Proposition 4
implies that if V; € D and V; # V;, then V;(d} f(a;/d;)) = 0. Hence,
Vj(z;) > 0 for all V; € D and so z; € W. Next, observe that r;z; — 1 =
(ai/bi)((bia} =) /[d7 f(ai/di)]) = 1 = [af — dP f(ai/d:)]/1d} f(ai/di)].
Since V;(d;) > Vi(a;) it is easy to see that V;(d} f(a;/d;)) = Vi(al') and
that V;(a? —d? f(a;/d;)) > Vi(dia?™") > Vi(a?). Hence, Vi(riz;—1) > 0
and so r;z; =1 (mod J;). o

Theorem 2. W is a Dedekind non-D-ring with f(z) as a uv-
polynomial.

Proof. 1t follows immediately from Proposition 2 that W is a non-D-
ring with f(z) as a uv-polynomial. A ring which can be expressed as a
locally finite (assumption 7) intersection of discrete valuation domains
within its field of fractions is known as a Krull domain (see [4, p. 82]).
Hence, by definition, W is a Krull domain. It is known that a Krull
domain in which every prime ideal is maximal is a Dedekind domain
(see [4, #2 p. 83]). o

Corollary 2. The ideal class group of W s a torsion group with
exponent d where d is a positive integer which divides n.

Proof. This follows immediately from Theorems 1 and 2. O

3. Examples. In this section we will define a class of discrete valua-
tions on Q(z), the field of rational functions over the rational numbers
and use the results of Section 2 to construct Dedekind domains.

Definition 3. Let P C Z[z]| be a prime ideal. We define V}, : Z[z]* —
Z (Z[z]" = Z[z]\{0}) by

0 if f(z) & P;
Vlf(@) = {t if f(x) € PA\PHHL,

Then if f(z),g9(z) € Z[z]* we define Vp(f(z)/g9(x)) = Vp(f(z)) —
Vp(g(z)). In this way, we extend Vp to a discrete valuation on
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Q(z) with Z as the value group. We will designate by Wp and
Q@ p, respectively, the valuation ring and its maximal ideals which are
associated with Vp.

It is easy to see that Vp : Q(z) — Z as defined above is well defined
if P is a principal prime ideal of Z[z]. Before we proceed with the
construction, we prove the following proposition which guarantees that
Vp is well defined if P is a maximal ideal of Z[z].

Proposition 8. Let M C Z[z] be a mazimal ideal and let a,b € M
with Var(a) =t and Vag(b) = r. Then Vpr(ab) =t +r.

Proof. If t = r = 0 the result is obvious. If ¢t > r =0orr >t =0, the
result follows easily from the fact that M™ is primary for any n > 0.
Suppose then that r,¢ > 0. Suppose also that M is generated by a
prime p € Z and a monic polynomial f(z) € Z[z]. Since Vps(a) = ¢
and Vs(b) = r, we can write

0= gil@p(F(@)"
with g;(z) ¢ M for some 4 and
b= 3 by (7))

with h;(z) ¢ M for some j. Then by multiplying the above expressions
for a and b, we obtain

t+r

(1) ab="y " lp(z)p"(f(2))""" "

k=0
with l(z) ¢ M for some k. Clearly, Vjs(ab) > t + r. Suppose that
Var(ab) >t + 7+ 1. Then we can write

t+r41

(2) ab = Z L(z)p(f(z)) =
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If we combine equations (1) and (2) and simplify we can obtain an
equation of the form

t+r t+r+1

B Y RE@PGE@)T = Y Gl f) T

with F;(z) = 0 or F; ¢ M for each 7 and F;(x) # 0 for some 3.

To see that equation (3) leads to a contradiction, we note that
equation (3) implies the existence of at least one positive integer
m for which we can find polynomials Hy(z),...,Hy,(z), Ko(z),
Ky(z),... ,Kni1(z) € Z]z] which satisfy the equation

m mtl
@ Y EEUE) = Y K@ 1)

with H;(z) =0 or H;(z) ¢ M for each ¢ and H;(z) # 0 for some 3.

Let m be the minimal such positive integer. Suppose first that
H,,(z) # 0. Then since M is maximal we can assume without loss
of generality that H,,(z) = 1. Let d be a root of f(x). Then if we
substitute z = d in equation (4) we obtain p™ = K,,1(d)p™*! and so
K,41(d) = 1/p. Since Kp,11(x) € Z[z] and d is an algebraic integer,
this is a contradiction. Now suppose that H,,(z) = 0. If m > 1, this
yields a contradiction of the minimality of m. If m = 1, this yields
Hy(z) # 0 and Hy(z) € M which contradicts the defining conditions of
equation (4). In either case we have reached a contradiction which
tells us that equation (4) is impossible for all positive integers m
and, in particular, equation (3) (m = t 4 r) is impossible. Thus,
Vi (ab) >t + 7+ 1 is impossible and so Vjs(ab) =t + r. O

Note. The referee has informed me that the valuation Vs described
above with M a maximal ideal of Z[z] is well known and is referred to
in a more general context as the ord valuation of a regular local ring
(for order of an element in a power series ring). Further, the referee
tells me that Proposition 8, which guarantees that Vj; is well defined,
can be proven in a more general context by using the fact that the
completion of a regular local ring is a ring of formal power series over
either a field or complete discrete valuation ring (see [1]).



678 K.A. LOPER

The following seven assumptions describe the Dedekind domains that
we wish to consider.

1. f(t) € Z[z][t] is a monic polynomial in ¢ of degree n > 2.

2. C1y = {M;]i € S} is a collection of maximal ideals of Z[z] such
that each M; € C; is an f-non-D-ideal of Z[z| and if g(x) € Z|z] then
g(z) is contained in at most finitely many M,’s.

3. For each i € S, M; is generated by p; and f;(z) where p; € Z
is prime and f;(z) € Z[z] is a monic polynomial which is irreducible
modp;.

4. Cy = {P|P is an f-non-D-ideal of R and P C M; for some
M; € Cl} Note that C; C Cs.

5. For each P € Cy, let Vp, Wp and @Qp be as in Definition 3.

6. W= ﬂPeC2 WP

7. Foreach P € Cy, let Jp =QpNW.

We know by Theorem 2 that W, as defined above, is a Dedekind
non-D-ring with f(z) serving as a uv-polynomial. We will now give a
list of further properties of W.

Proposition 9. a) Suppose g(x), h(x) € Z[z]* and that g(x)/h(z) €
W. Suppose also that g(z)/h(zx) is in lowest terms and that k(z) €
Z[x]* is an irreducible polynomial such that k(z)|h(z). Then Vp(k(z)) =
0 for every P € Co\C1. In particular, k(x) is either a unit in W or
else generates a prime ideal in Z[x] which is not an f-non-D-ideal.

b) Suppose k(z) is as in a) above. Then either k(xz) ¢ M; for all
M; € Cq or else k(z)|(k2(z))" f(k1(x)/ka(z)) for some ki(x), ka(x) €

Z[z]* with ki(x), ke(x) having no common factors.
c) If I CW is an ideal, then I™ is principal.
d) The ideals Jp for P € Cy are ezactly the prime ideals of W.
e) If M; € Cy, then Jy, is generated by p; and f;(z).

f) CL(W), the ideal class group of W, is generated by the set
{JMi|Mi c Cl}

Proof. a) Choose P € C5\C; and suppose that Vp(k(z)) > 0. Since
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g(x)/h(x) € W then Vp(g(z)) > Vp(h(z)) > Vp(k(xz)) > 0. Since P
is a principal prime ideal and Z[z] is a UFD, we must have k(z)|g(z)
and k(z)|h(z) which is a contradiction.

b) Suppose k(z) € M; for some M; € C;. Let P be the ideal
generated by k(z) in Z[z]. Then P is not an f-non-D-ideal by (a).
Hence, f(x) is not a uv-polynomial for Z[z]p. This implies that there
exist kyi(z),ke(z) € Z[z]* such that ki(x)/ke(z) is in lowest terms,
k(z) t ka(z) in Z[z] and k(z)|f(ki(z)/k2(z)) in Z[z]p. This implies
that k(z)|(k2(2))" f (k1 (2)/k2(2))-

c) This is the content of Corollary 2.

d) Immediate from Propositions 6 and 7.

e) Choose M; € C;. Since M; is the only prime ideal of Z[z] which
contains both p; and f;(z), it follows that Jyy, is the only prime ideal
of W which contains both p; and f;(z). Thus, p; and f;(x) generate
some power of Jpy,. Since Vaz, (pi) = Var, (fi(z)) = 1, then p; and f;(x)
generate Jyy,.

f) For each M; € C; choose a; € W such that M = a;W. Let
W' = W[{1/asli € S}. Then W' = Npee, o, Wp (see [3, Theorem
III]). However if P € C2\C1, then Wp is simply the local ring Z[z]p
(i.e., Z[x] localized at P). Hence, W' is seen to be a localization of Z[z]
and so is a UFD. Since W’ is also a localization of W, it is a Dedekind
domain. Hence, W' is a PID. O

We now examine the way that the above construction works out in a
particular case.

Example 1. Let W be as above with f(t) = t> + 1 and with C;
consisting of a single maximal ideal M; of Z[z] which is generated by
p1 and fi(x). Then the following statements are true of W.

a) The prime ideals which are contained in M; and are not f-non-
D-ideals of Z[z] are exactly those which are generated by irreducbile
polynomials of the form (k1(x))% + (k2(z))? with k1 (), k2(x) € M.

b) The nonzero elements of W are exactly the fractions h(z)/g(x)
with h(z),g(z) € Z[z]* and h(z),g(z) having no common factors
such that if k(z) € Mj is irreducible and k(z)|g(xz) then k(z) =
(k1(z))? + (k2(z))? for some ki(z), ka(x) € M.
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c) Cl(W), the ideal class group of W, has order 2 and is generated
by JMl-

d) Ju, is generated by p; and fi(x) and J}; is generated by
P+ fi(2)*

e) Let P C M; be a nonmaximal f-non-D-ideal of Z[z] generated by
an irreducible polynomial k(z). If Vi (k(z)) = 2t for some ¢ > 0,
then Jp is principal and is generated by k(z)/(fi(z)? + p?)t. If
Vi, (k(z)) = 2t — 1 for some t > 0, then Jp is nonprincipal and is
generated by p1k(z)/(f1(z)? + p?)" and fi(z)k(z)/(f1(x)* + pi)".

We observe now that b,d and e follow easily from (a) and (c) above
and Proposition 9. Hence, we will give arguments for (a) and (c).
First we note that if ki (x), ka(z) € M and ky(z) and kz(z) have no
common factors, then Proposition 1 tells us that any f-non-D-ideal
of Z[z] which contains (k;(x))? + (k2(z))? must contain both k()
and ky(z). Hence, if k(z) = (ki(x))? + (k2(x))? is irreducible for
some kq(z),ko(z) € M{, then k(z) generates a prime ideal which is
not an f-non-D-ideal. Now suppose that P is a prime ideal of Z[z]
such that P C M; and P is not an f-non-D-ideal of Z[z]. We can
infer from the proof of Proposition 9b that P can be generated by
an irreducible polynomial k(z) such that k(z)|(ki(z))? + (k2(z))? for
some k1 (z), k2(z) € Z[z]* which have no common factors. However,
the fact that Z[i][z] is a UFD forces k(z) = (k3(x))? + (ka(z))? for
some k3(z),ks(z) € Z[z]*. Then another application of Proposition 1
implies that ks(x), ks(z) € M. This proves (a). To prove (c) we need
only observe that if k(z) = (k3(z))?+ (ka(z))? as above, then it follows
from the factorization k(z) = (k3(z) + (iks(x))(k3(z) — (ika(z)) that
Vi, (k(z)) is even. (Note that since M is an f-non-D-ideal of Z[z],
then M extends to a maximal ideal in Z[¢][z]).

Example 1 demonstrated that if W is given by assumptions 1-7
preceding Proposition 9 then Cl(W) is nontrivial for some particular
cases. It seems reasonable to conjecture that in the general case Cl (W)
is a direct sum of cyclic groups of order n with each factor of the direct
sum generated by Jy, for some M; € Cy. Unfortunately, this is false
as the next example indicates.

Example 2. Let W be defined by assumptions 1-7 preceding
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Proposition 9 with f(t) = t* + 1 and C; consisting of the single
maximal ideal M; generated by x and 3. Consider the polynomial
g(x) = z* — 222 + 9. g(x) is the minimal polynomial for i — /2 and
so it is irreducible. Let h(z) = (1/12)(2® — 3x? — 5z + 3). Then
h(i —+/2) = (i +1)/v/2. Now let k(z) = (23 — 322 — 5z + 3)* + (12)*.
Then k(i — v/2) = 0 and so g(z)|k(x). It follows that g(x) generates
a prime ideal of Z[z] which is not an f-non-D-ideal of Z[z]. However,
Vi, (9(x)) = 2. Hence, J3;, is a principal ideal which is generated by
g(z) and so |C1(W)| < 2 although n = 4.

4. Conclusions. In [2] Eakin and Heinzer used a similar method to
ours to construct Dedekind domains with preassigned finitely generated
abelian group as ideal class groups. Although we have not achieved the
same amount of control over the ideal class group as they did, we feel
that our constructions allow the use of more simplistic valuations and
hence lead to nontrivial Dedekind domains whose ideal structure can,
potentially, be known in much more minute detail.
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