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NON-HOMEOMORPHIC DISJOINT SPACES
WHOSE UNION IS w*

W.W. COMFORT AND AKIO KATO

ABSTRACT. For certain pairs (o, 3) of cardinals we show
that the Stone-Cech remainder w* = B(w)\w can be written
in the form w* = Ug<oC¢ where the spaces C¢ are pairwise
disjoint, pairwise non-homeomorphic, countably compact, and
dense in w*, with each |C¢| = (. In specific cases the condition
that the spaces {C¢ : {£ < a} are non-homeomorphic may be
strengthened, as follows:

(i) a=2%c< B =pY <2% for £ < a there is no
one-to-one continuous function from C¢ into U, <¢Cy.

(i) w<a<2%p =2% forn < & < a there is no
continuous function from Cy, onto Cg.

(iii) 1 < a < 2° B = 2° for { < a there is no one-to-one
continuous function from C¢ into w*\Cg.

1. Preliminaries. The symbol w denotes the least infinite cardinal
number and the countably infinite discrete topological space, and w* is
the Stone-Cech remainder 3(w)\w. We consider only Tychonoff spaces,
and we write X ~ Y if X and Y are homeomorphic. The expression
X C;, Y means that X embeds into Y, i.e., there is X’ C Y such that
X~ X'

For spaces X,Y and K with K compact and continuous f: X - Y C
K, the symbol f denotes the continuous function f : X — K such
that f C f. In this context we will consider repeatedly the question
whether or not a point p € BX\X satisfies f(p) € Y. We note in
this connection that the choice of the enveloping compact space K is
irrelevant. That is, if K and L are compact spaces containing Y and
if f is continuous from X into Y, then for each p € X the function
fx = f: X =Y C K satisfies fx(p) € Y if and only if the function
fr=1f:X =Y C L satisfies fr(p) €Y.
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The set of embeddings (that is, homeomorphisms) of w into the space
X is denoted H(X), and

E(X) = {p € w*: there is h € H(X) such that h(p) € X}.

For p,q € w*, we write p ~ ¢ if there is a permutation h of w
(equivalently, h € H(w)) such that h(p) = g. We write

T(p)={gcew":p~q} for p € W,

and
T(w*)={T(p):pew"}.

The set T'(p) is called the (Frolik) type of p, and T'(w*) is the set of all
types of w*. A subset S of w* is said to be T-saturated if T(p) C S
whenever p € S; that is, if S =U{T'(p):p € S}.

The Rudin-Frolik pre-order C on w* is defined as follows:
p C q if there is h € H(w*) such that h(p) = q.

It is clear that if p’ ~ p C ¢ ~ ¢’ then p’ C ¢’. Thus the relation C
extends to a relation (also denoted ) on T'(w*) = w*/ ~ as follows:

T(p)=T(q) ifpCy

It is a theorem of Z. Frolik [8] and M.E. Rudin [17] (see also [5] for an
expository account) that the relation C defined on T'(w*) by the rule

T(p)ET(q) if T(p)ET(q) or T(p)=T(q)
is reflexive, anti-symmetric, and transitive. For p € w*, we write
A(p) ={qew’:pCq} and B(p)={gcw*:qCp}

(the symbols are suggested by the words “above” and “below”), and
from the three sources just cited we collect the following facts.

Theorem 1.1 (Frolik [8], Rudin [17]). Let p € w*. Then
(a) pC p is false (and hence T(p) N A(p) = T'(p) N B(p) = 9);
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(b) [T(p)| = c;
(c) |A(p)| =25
(d) [B(p)| < ¢
(e) {T(q):q¢€ B(p)} is linearly ordered under C; and

(f) T(p) is E-minimal in T(w*) if and only if there is no countable
discrete subset D of w* such that p € D\D.

For X C w*, we write

AX) = |J A(p) and B(X)= | B(p),

peX peX

and we note that the sets A(X) and B(X) are T-saturated. The symbol
E(X) is defined for every (Tychonoff) space X, while A(X) and B(X)
are defined only for X C w*. We will use the following simple result.

Theorem 1.2. If X C w*, then E(X) C B(X).

Proof. For p € E(X), there is an h € H(X) such that h(p) =z € X.
From h € H(w*) follows p C « € X and hence p € B(X). o

Remark 1.3. Tt is well known (see, for example, [9, 5]) that the space
w* contains both (i) a family of c-many pairwise disjoint nonempty open
subsets, and (ii) a family of 2¢-many pairwise disjoint homeomorphs of
B(w); further, every nonempty open subset of w* contains an open-
and-closed copy of w* (and hence a copy of B(w)). From these facts the
following statements are nearly immediate. (Here, as in [18, 7], we say
that a subspace C of w* is extra countably compact in w* if and only if
every infinite subset of w* has an accumulation point in C.)

Theorem 1.4. (a) FEvery set of the form T'(p) (and a fortiori, every
nonempty T-saturated subset of w*) is dense in w*.

(b) Ewery dense subset C' of w* satisfies |C| > c.
(c) Every extra countably compact subset C' of w* satisfies |C| = 2°.

(d) Ewery extra countably compact subset of w* is dense in w*.
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(e) Every set of the form A(p) (with p € w*) is extra countably
compact in w*.

(To prove (e) it is enough to note that if h € H(w*) then p C h(p)
(so h(p) € A(p)) and h(p) is an accumulation point of the discrete set
hlw].)

In the three remaining sections of this paper (Sections 2, 3 and
4) we achieve three decompositions of the form w* = Ug.oC¢ with
C¢ pairwise disjoint, pairwise non-homeomorphic, countably compact,
dense in w* and of cardinality prescribed in advance. As our Abstract
indicates, the sets C: may be chosen to satisfy certain additional
constraints. The method of Section 2 depends on what we call p-closed
sets and the p-closure; Section 3 uses the Disjoint Refinement Lemma,;
and Section 4 is based on the existence of 2°-many C-minimal types in
T(w*).

We use frequently and without explicit mention the fact that every
infinite (Hausdorff) space X contains a copy of the countably infinite
discrete space wj; that is, H(X) # @.

Remarks 1.5. (a) The methods and results of the present paper
are considerably stronger than those of [18, 7], where it was shown
nevertheless that the space w* contains large families of pairwise non-
homeomorphic extra countably compact subspaces.

(b) In work to appear [12], the second-listed author will recapture
some of the results of the present paper and other facts about the space
w*, using the methods of elementary sub-models.

(c) The reader conversant with topological Ramsey theory will notice
that our results and our methods can be used to find a number of spaces
Y for which the relation w* — (Y')3 holds, and others for which it fails.
We offer several results in this connection in [4].

(d) We announced several of the results of this paper and of [4] in
[3].

2. The method of p-closure. Given p € w*, we say that a space
Y is p-closed if every h € H(Y') satisfies h(p) € Y. (It is not difficult to
see that there is a (Hausdorff, nonregular) topology on w* with respect
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to which the closed sets are exactly what we here call the p-closed sets.
We explore and exploit this topology in [4]; we do not describe its
properties here because they are not needed for our present purposes.
The terminology is chosen as a suggestive weakening of the concept of
a p-compact space introduced by A. Bernstein [1]: Y is p-compact if
each h : w — Y satisfies h(p) € Y. That not every p-closed space is
p-compact is shown by a theorem of van Mill [15, (3.3), 16, (4.4.1)];
there are ¢ € w* such that ¢ € A\ A for some countable A C w* but for
no countable discrete A C w*.)

Clearly the intersection of p-closed subspaces of a fixed space is p-
closed, so for every p-closed space X and Y C X there is a smallest
p-closed subspace of X containing Y’; this we denote p-clyY, or p-clY
if ambiguity is impossible. The following lemma allows us to construct
p-clY “from the inside out” and to bound its cardinality in terms of Y.
The construction parallels that of a countably compact extension given
by Comfort and Saks [6, (1.1)] and of a minimal p-compact extension
given by Ginsburg and Saks [10, (2.12)].

Lemma 2.1. Let X be p-closed and let Y be an infinite subset of X,
and for £ < wt defineYy =Y,

Yer1 =Ye U{h(p) : h € H(Y)},

and
Ye = U Y, for limit ordinals & < w™.
n<é
Let C =Y,+. Then
(a) C =p-clY;

(b) C is countably compact;

©) 0] < VI

(d) pe E(C); and

(e) Y Cw* andY is T-saturated, then C is T-saturated.

Proof. (a) Clearly C C p-clY, and C is p-closed.

_(b) For every infinite subset A of C' there is an h € H(A), and then
h(p) is an accumulation point of A in C.
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(c) This is the case & = w™ of the statement, easily proved by
induction, that Yz < |Y|“ for all { < w™.

(d) There is an h € H(Y) C H(C), and from h(p) € C follows
p € E(C).

(e) A routine inductive argument shows that Y is T-saturated for
all £ <wt. O

Lemma 2.2. Let X and Y be disjoint, T-saturated subspaces of w*
with Y # @, let p € w*\B(X), and let C = p-clY. Then CNX = @.

Proof. There is an h € H(Y) C H(C) and from h(p) € C follows
p € E(C). If there is a ¢ € C'N X, then in the notation of 2.1 there are
¢ <w* and h € H(Yg) such that h(p) = ¢ € X, and then from p C ¢
follows p € B(X), a contradiction. O

Lemma 2.3. Let p € w*, and let X and Y be infinite spaces such
that Y is p-closed. If there is a one-to-one continuous function f from
Y into X, then p € E(X).

Proof. Choose h € H(Y). Since |f o hlw]]| = w, there is an
A C w such that |A] = w and f o h|A is a homeomorphism from
A into X. Let ¢ be a one-to-one function from w onto A. Then
hoi e H(Y) and fohoi € H(X), and from (hoi) (p) € Y follows
fo(hoi)™(p) € f[Y] C X and hence (fohoi)~(p) € X; thus p € E(X).
O

Theorem 2.4. Let 8 be a cardinal number such that c < 8 = 8% <
2°. The space w* can be partitioned in the form w* = Ugco:Ce where
the spaces C¢ are pairwise disjoint, countably compact, dense in w*,
and of cardinality B, and for £ < 2 there is no one-to-one continuous
function from C¢ into Uy<¢Cy, (in particular, the spaces C¢ are pairwise
non-homeomorphic).

Proof. Let {ge : £ < 2°} be a faithful indexing of w*. For £ < 2° we
will define X¢,pe,Ye and C¢ so that

(1) XO = @;
(ii) po € w*;
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(iii) | Xel < B-1€);
(iv) |Ye| = and Y¢ is T-saturated;
(v) pe € w\B(X¢);

(vi) XeNY: =@ and g¢ € X¢ UYg; and

(Vii) Cg = pg-ClYg.

Indeed, define Xy and pg by (i) and (ii), choose Yy C w* such that
qo € Yo, |Yo| = B and Yg is T-saturated, and set Cy = pg-clYy. Now
let ¢ < 2¢ and suppose that X¢, pe, Ye and C¢ have been defined for all
€ < ¢ so that (ili)—(vii) hold for { < ¢. Let X = Ug<¢Ct, and note
from (iv), (vii) and 2.1(c) that X, is T-saturated. From (iv) and (vii)
it follows that |X¢| < 2¢, so |B(X¢)| < 2¢ by 1.1(d). Hence there is
pe € w*\B(X¢) and there is Y; C w*\ X, such that |Y;| = 8 and Y¢ is
T-saturated; if g ¢ X we choose Y so that g; € Y;. Finally, we set
CC = pg—ClYC.

The definition of X¢,pe, Yy and C¢ is complete for all £ < 2°. The
relation w* = Ug<2eCy is immediate from (vi). That C¢ N C,, = @ for
n < & < 2¢ follows from 2.2 and the relation C,, C X¢. From (vii) and
2.2(b) it follows that each of the spaces C¢ is countably compact. That
each C¢ satisfies |C¢| = 8 follows from (iv), 2.2(c) and the hypothesis
B = B“; the sets C¢ are dense in w* by 1.4(a) and 2.1(e). The fact

that for { < 2 there is no one-to-one continuous function from Cf into
X¢ = Up<eC, follows from (v), (vii) and 2.3. o

Remarks 2.5. (a) Since every dense subset D of w* satisfies |D| > c,
the condition 8 > c in the statement of Theorem 2.4 cannot be relaxed.
We do not know whether 2.4 remains true for ¢ < < 2¢ if the
condition 8 = B“ is omitted; we note that for ¢ < 8 < 2¢ the condition
B = B¥ is satisfied if GCH is assumed (for then 8 = c) or if there is a
positive integer n such that § is the nth successor of c.

(b) The condition in 2.4 that for £ < 2¢ there is no one-to-one
continuous function from C¢ into U,¢C), cannot be strengthened to
assert that C admits no one-to-one continuous function into w*\Ce¢: we
have noted above that the space w* contains 2°-many pairwise disjoint
homeomorphs of w*, and clearly no set of cardinality less than 2¢ can
meet each of these. This simple reasoning proves the following general
result.
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Theorem. Fuvery subspace C of w* such that |C| < 2¢ satisfies
C gh w*\C.

3. The disjoint refinement lemma. The disjoint refinement
lemma asserts that if x is an infinite cardinal and {S,, : n < k} is a (not
necessarily faithfully indexed) family of sets with each |S¢| = &, then
there is a family {71}, : n < &} such that |T;,| = x and T, C S, for all
n < k,and T NT;, = @ for £ < n < k. (For a proof of this result and
for references to the literature, the reader might consult [5, (7.5)].) In
the following theorem we let {D,, : n < 2°} be a listing of all countably
infinite subsets of w*, for n < 2¢ we set S, = D,\D,,, and we choose
Ty, C S, as given by the disjoint refinement lemma.

Theorem 3.1. Let w < a < 2°. The space w* can be partitioned in
the form w* = UgcoC¢ where the spaces C¢ are pairwise disjoint, extra
countably compact in w* (hence dense in w* and of cardinality 2¢), and
for & < a there is no continuous function from Uy<¢Cy, nor from any
of the spaces Cy, with n < &, onto C¢ (in particular, the spaces Ce¢ are
pairwise non-homeomorphic).

Proof. Choose {T}, : n < 2°} as above; use the inequality 2¢ > |a x 2|
to find a subset {p(n,&,¢) : &€ < a,e € {0,1}} of T}, faithfully indexed
by a x 2, and for ¢ < «, set

E = {p(n,&,0):n < 2°},
Ef ={p(n,£,1):n <2°}, and
_ 170 1

We note that each of the sets Eg (with £ < @) is extra countably
compact in w*; indeed, for n < 2° the point p(n,&,0) € Eg is an
accumulation point of D,,.

We will define the sets C¢ by recursion so that

(i) Co=EfU (w"\ Ugca E),

(i) E¢ C C¢ C E¢ for non-zero limit ordinals £ < a, and
(iti) EYU(E,\C,) C Ce C Ee U (E,\Cy) for E=n+1<a.
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We proceed by recursion. Use (i) to define Cy. Now let ( < «
and suppose that C¢ has been defined for all £ < (. If ¢ is a limit
ordinal set H; = Eg, and if ¢ is the successor ordinal ( = n + 1 set
H¢ = B¢ U (E,\Cy). Since He N E} = @ and |E}| = 2°, the family

A={H;UA:ACE}}

is a family of subsets of w* such that |A| = 22° > 2¢.
Now for £ < ¢, we have

d(Ce) < w(Ce) < w(w*) =<,

so the number of continuous functions from C¢ into w* does not exceed
|w*|® = (2°)¢ = 2¢. Thus since |A| > 2° there is a set in A (call it C)
such that none of the spaces C¢, { < ¢, maps continuously onto C¢ and
Ue<¢Ce does not map continuously onto Cg.

The definition of C¢ for all £ < a is complete.
We show that the family {C¢ : £ < a} is as required.

It is clear from the construction that for £ < « there is no continuous
function from U, <¢Cy, nor from any of the spaces C,, with n < &, onto
Cs.

The family {E¢ : £ < a} is pairwise disjoint, and C¢ C E¢ for nonzero
limit ordinals £, and C¢ C E:U(E,\C,) for ordinals { = n+1. It follows
that the family {C¢ : { < a} is pairwise disjoint.

Since C¢ 2 E'g and Eg is extra countably compact in w*, each set C¢
is extra countably compact in w*.

Since
Co 2 w™\ Ug<a Bt
and
E,=E)UE}CCyUCpp1  foralln<a,
we have

w* D UgcaCt 2 (w"\ Ugca Be) U (UpcaBy) = w™,

as required. a
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Remarks 3.2. (a) The technique of counting the number of continuous
functions from subspaces of w* into w*, and of using these estimates to
select C; € A with the appropriate properties, came to our attention
through the work of Hodel [11, (3.3)].

(b) In the recursive construction of C¢, with C¢ having been defined
for all £ < ¢, we chose a family F of subsets of Ug<¢C¢ such that
|F| = |¢| + 1, namely, F = {C¢ : £ < (} U{Ug<¢Ct}, and we chose C¢
so that no F' € F maps continuously onto C¢. It should be clear to
the reader that the argument used allows for a much larger family F.
Indeed, if at stage ¢ any family F = F(() of subsets of w* is chosen with
|F| < 22° then C¢ may be chosen so that no F' € F maps continuously
onto C¢.

4. The method of C-minimal ultrafilters. The method of this
section furnishes a decomposition of w* which has features in common
with that of Section 2 (the absence of one-to-one continuous functions)
and with that of Section 3 (the constituent sets C¢ are extra countably
compact in w*).

Theorem 4.1. Let 1 < o < 2¢. The space w* can be partitioned in
the form w* = UgcoC¢ where the spaces C¢ are pairwise disjoint, extra
countably compact in w* (hence dense in w* and of cardinality 2°),
and for £ < o there is no one-to-one continuous function from C¢ into
w*\C¢ (in particular, the spaces Ce¢ are pairwise non-homeomorphic).

Proof. We consider first the case a = 2€.

It is a theorem of Kunen, first proved assuming Martin’s Axiom [13]
and later in ZFC alone without additional assumptions [14], that there
are p € w* such that T'(p) is C-minimal in T(w*); indeed, the number
of such minimal types is 2° [14]. Let {T'(p¢) : 1 < & < 2°} be a faithful
enumeration of these minimal types, and define

Ce = T(pe) U A(pe) for 1 <¢<2°
and

COZLO*\ U CE‘

1<g<2e
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(It is known that Cy # @. For example, Bukovsky and Butkovi¢ova
[2] have shown the existence of p € w* such that {T'(¢) : ¢ T p} is
order-isomorphic to the negative integers. Clearly, p¢ T p fails for all
& < 2¢ for such p, so p € Cy.)

The key to the verification that the relation w* = Ug<2:C¢ expresses
w* in the required form is Theorem 1.1 (e): For each p € w* the
set {T'(q) : ¢ T p} is linearly ordered under C. This shows that if
1 <np<&<2°%then C,NC: = . Indeed, if some g € w* satisfies
q € C, N C¢ then from T(pe) T T(q) and T'(p,) T T(q) will follow
T(pe) T T(py) or T(p,) T T(pe), contrary to the definition of the
family {T'(pe) : 1 <& < 2°}. That CoNCe = @ for 1 < £ < 2° is clear,
since T'(pe) C T'(g) holds for every ¢ € C¢ and is false for every g € Cy.

We note next for £ < 2¢ that A(C¢) C C¢. (For £ > 0 this is
immediate from the definition, and for £ = 0 it follows from 1.1 (e).)
This observation has two consequences: Each of the sets C¢ is extra
countably compact in w* (use (1.4 (e)) and each C¢ is p-closed for
every p € C¢ (since for every h € H(C¢) from p T h(p) follows

h(p) € A(Ce) € C.)

A straightforward appeal to 1.1 (e) shows also that B(g) C C¢
whenever q € Cg.

It remains to show that if £ < 2° then there is no one-to-one
continuous function from C¢ into w*\C¢. It is enough to choose p € C¢
and to apply 2.3 with Y = C¢, X = w*\C¢; the space C¢ is p-closed,
so if such a function exists then

p € E(w\Ce) € B(w™\Ce) = U{B(q) : g € w"\Ce} Cw'\Ck,

a contradiction.

The proof for the case o = 2€ is complete. In case a < 2€ it is enough
to write

Ci=C¢ for1<é<a and Cj=w"\ U Cs.
1<é<a

The family {C{ : { < a} is then as required. O

Remark 4.2. The reasoning given in the last paragraph of the
foregoing proof concerning the decomposition w* = Ug<2:C¢ shows
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this: if C'(A) is defined for A C 2¢ by the relation

c@) = ¢,
€A

then for subsets A and B of 2¢ there is a one-to-one continuous function
from C(A) into C'(B) if and only if A C B. Indeed, if A C B, the
inclusion function from C(A) into C(B) is as required, and if there
is £ € A\B then there is no one-to-one continuous function from
C¢ into w*\Cg¢, hence none from C(A) into C(B). Thus the family
{C(A): @ # A C 2¢} is a family of 22" -many dense, extra countably
compact, pairwise non-homeomorphic subspaces of w*.
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