NON-HOMEOMORPHIC DISJOINT SPACES WHOSE UNION IS ω^*

W.W. COMFORT AND AKIO KATO

ABSTRACT. For certain pairs $\langle \alpha, \beta \rangle$ of cardinals we show that the Stone-Čech remainder $\omega^* = \beta(\omega) \backslash \omega$ can be written in the form $\omega^* = \cup_{\xi < \alpha} C_\xi$ where the spaces C_ξ are pairwise disjoint, pairwise non-homeomorphic, countably compact, and dense in ω^* , with each $|C_\xi| = \beta$. In specific cases the condition that the spaces $\{C_\xi : \xi < \alpha\}$ are non-homeomorphic may be strengthened, as follows:

- (i) $\alpha=2^{\mathbf{c}},\ c\leq\beta=\beta^{\omega}<2^{\mathbf{c}};\ \text{for }\xi<\alpha$ there is no one-to-one continuous function from C_{ξ} into $\cup_{\eta<\xi}C_{\eta}.$
- (ii) $\omega \leq \alpha \leq 2^{\mathbf{c}}$, $\beta = 2^{\mathbf{c}}$: for $\eta < \xi < \alpha$ there is no continuous function from C_{η} onto C_{ξ} .
- (iii) $1 \leq \alpha \leq 2^{\mathbf{c}}$, $\beta = 2^{\mathbf{c}}$: for $\xi < \alpha$ there is no one-to-one continuous function from C_{ξ} into $\omega^* \backslash C_{\xi}$.
- 1. **Preliminaries.** The symbol ω denotes the least infinite cardinal number and the countably infinite discrete topological space, and ω^* is the Stone-Čech remainder $\beta(\omega)\backslash \omega$. We consider only Tychonoff spaces, and we write $X \approx Y$ if X and Y are homeomorphic. The expression $X \subseteq_h Y$ means that X embeds into Y, i.e., there is $X' \subseteq Y$ such that $X \approx X'$.

For spaces X,Y and K with K compact and continuous $f:X\to Y\subseteq K$, the symbol \bar{f} denotes the continuous function $\bar{f}:\beta X\to K$ such that $f\subseteq \bar{f}$. In this context we will consider repeatedly the question whether or not a point $p\in\beta X\backslash X$ satisfies $\bar{f}(p)\in Y$. We note in this connection that the choice of the enveloping compact space K is irrelevant. That is, if K and L are compact spaces containing Y and if f is continuous from X into Y, then for each $p\in\beta X$ the function $f_K=f:X\to Y\subseteq K$ satisfies $\bar{f}_K(p)\in Y$ if and only if the function $f_L=f:X\to Y\subseteq L$ satisfies $\bar{f}_L(p)\in Y$.

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on December 16, 1990, and in revised form on April 30,

AMS-MOS Subject Classification. Primary 54A25, 54D40, Secondary 54D30, 04A20.

Key words and phrases. Stone-Čech remainder, disjoint union, Rudin-Frolík order, countably compact, extra countably compact, disjoint refinement lemma.

The set of embeddings (that is, homeomorphisms) of ω into the space X is denoted $\mathbf{H}(X)$, and

$$E(X) = \{ p \in \omega^* : \text{ there is } h \in \mathbf{H}(X) \text{ such that } \bar{h}(p) \in X \}.$$

For $p, q \in \omega^*$, we write $p \sim q$ if there is a permutation h of ω (equivalently, $h \in \mathbf{H}(\omega)$) such that $\bar{h}(p) = q$. We write

$$T(p) = \{ q \in \omega^* : p \sim q \}$$
 for $p \in \omega^*$,

and

$$T(\omega^*) = \{ T(p) : p \in \omega^* \}.$$

The set T(p) is called the (Frolík) type of p, and $T(\omega^*)$ is the set of all types of ω^* . A subset S of ω^* is said to be T-saturated if $T(p) \subseteq S$ whenever $p \in S$; that is, if $S = \bigcup \{T(p) : p \in S\}$.

The Rudin-Frolík pre-order \square on ω^* is defined as follows:

$$p \sqsubset q$$
 if there is $h \in \mathbf{H}(\omega^*)$ such that $\bar{h}(p) = q$.

It is clear that if $p' \sim p \sqsubset q \sim q'$ then $p' \sqsubset q'$. Thus the relation \sqsubset extends to a relation (also denoted \sqsubset) on $T(\omega^*) = \omega^*/\sim$ as follows:

$$T(p) \sqsubset T(q)$$
 if $p \sqsubset q$.

It is a theorem of Z. Frolík [8] and M.E. Rudin [17] (see also [5] for an expository account) that the relation \Box defined on $T(\omega^*)$ by the rule

$$T(p) \sqsubseteq T(q)$$
 if $T(p) \sqsubset T(q)$ or $T(p) = T(q)$

is reflexive, anti-symmetric, and transitive. For $p \in \omega^*$, we write

$$A(p) = \{q \in \omega^* : p \sqsubset q\} \quad \text{and} \quad B(p) = \{q \in \omega^* : q \sqsubset p\}$$

(the symbols are suggested by the words "above" and "below"), and from the three sources just cited we collect the following facts.

Theorem 1.1 (Frolík [8], Rudin [17]). Let
$$p \in \omega^*$$
. Then (a) $p \sqsubset p$ is false (and hence $T(p) \cap A(p) = T(p) \cap B(p) = \emptyset$);

- (b) $|T(p)| = \mathbf{c};$
- (c) $|A(p)| = 2^{\mathbf{c}};$
- (d) $|B(p)| \leq c$;
- (e) $\{T(q): q \in B(p)\}$ is linearly ordered under \sqsubseteq ; and
- (f) T(p) is \sqsubseteq -minimal in $T(\omega^*)$ if and only if there is no countable discrete subset D of ω^* such that $p \in \overline{D} \setminus D$.

For $X \subseteq \omega^*$, we write

$$A(X) = \bigcup_{p \in X} A(p)$$
 and $B(X) = \bigcup_{p \in X} B(p)$,

and we note that the sets A(X) and B(X) are T-saturated. The symbol E(X) is defined for every (Tychonoff) space X, while A(X) and B(X) are defined only for $X \subseteq \omega^*$. We will use the following simple result.

Theorem 1.2. If $X \subseteq \omega^*$, then $E(X) \subseteq B(X)$.

Proof. For $p \in E(X)$, there is an $h \in \mathbf{H}(X)$ such that $\bar{h}(p) = x \in X$. From $h \in \mathbf{H}(\omega^*)$ follows $p \sqsubset x \in X$ and hence $p \in B(X)$. \square

Remark 1.3. It is well known (see, for example, [9, 5]) that the space ω^* contains both (i) a family of **c**-many pairwise disjoint nonempty open subsets, and (ii) a family of 2^c -many pairwise disjoint homeomorphs of $\beta(\omega)$; further, every nonempty open subset of ω^* contains an openand-closed copy of ω^* (and hence a copy of $\beta(\omega)$). From these facts the following statements are nearly immediate. (Here, as in [18, 7], we say that a subspace C of ω^* is extra countably compact in ω^* if and only if every infinite subset of ω^* has an accumulation point in C.)

Theorem 1.4. (a) Every set of the form T(p) (and a fortiori, every nonempty T-saturated subset of ω^*) is dense in ω^* .

- (b) Every dense subset C of ω^* satisfies $|C| \geq \mathbf{c}$.
- (c) Every extra countably compact subset C of ω^* satisfies $|C| = 2^{\mathbf{c}}$.
- (d) Every extra countably compact subset of ω^* is dense in ω^* .

(e) Every set of the form A(p) (with $p \in \omega^*$) is extra countably compact in ω^* .

(To prove (e) it is enough to note that if $h \in \mathbf{H}(\omega^*)$ then $p \sqsubset \bar{h}(p)$ (so $\bar{h}(p) \in A(p)$) and $\bar{h}(p)$ is an accumulation point of the discrete set $h[\omega]$.)

In the three remaining sections of this paper (Sections 2, 3 and 4) we achieve three decompositions of the form $\omega^* = \bigcup_{\xi < \alpha} C_{\xi}$ with C_{ξ} pairwise disjoint, pairwise non-homeomorphic, countably compact, dense in ω^* and of cardinality prescribed in advance. As our Abstract indicates, the sets C_{ξ} may be chosen to satisfy certain additional constraints. The method of Section 2 depends on what we call p-closed sets and the p-closure; Section 3 uses the Disjoint Refinement Lemma; and Section 4 is based on the existence of $2^{\mathfrak{c}}$ -many \square -minimal types in $T(\omega^*)$.

We use frequently and without explicit mention the fact that every infinite (Hausdorff) space X contains a copy of the countably infinite discrete space ω ; that is, $\mathbf{H}(X) \neq \emptyset$.

- Remarks 1.5. (a) The methods and results of the present paper are considerably stronger than those of [18, 7], where it was shown nevertheless that the space ω^* contains large families of pairwise non-homeomorphic extra countably compact subspaces.
- (b) In work to appear [12], the second-listed author will recapture some of the results of the present paper and other facts about the space ω^* , using the methods of elementary sub-models.
- (c) The reader conversant with topological Ramsey theory will notice that our results and our methods can be used to find a number of spaces Y for which the relation $\omega^* \to (Y)_2^1$ holds, and others for which it fails. We offer several results in this connection in [4].
- (d) We announced several of the results of this paper and of [4] in [3].
- **2.** The method of p-closure. Given $p \in \omega^*$, we say that a space Y is p-closed if every $h \in \mathbf{H}(Y)$ satisfies $\bar{h}(p) \in Y$. (It is not difficult to see that there is a (Hausdorff, nonregular) topology on ω^* with respect

to which the closed sets are exactly what we here call the p-closed sets. We explore and exploit this topology in [4]; we do not describe its properties here because they are not needed for our present purposes. The terminology is chosen as a suggestive weakening of the concept of a p-compact space introduced by A. Bernstein [1]: Y is p-compact if each $h: \omega \to Y$ satisfies $\bar{h}(p) \in Y$. That not every p-closed space is p-compact is shown by a theorem of van Mill [15, (3.3), 16, (4.4.1)]; there are $q \in \omega^*$ such that $q \in \bar{A} \setminus A$ for some countable $A \subseteq \omega^*$ but for no countable discrete $A \subseteq \omega^*$.)

Clearly the intersection of p-closed subspaces of a fixed space is p-closed, so for every p-closed space X and $Y \subseteq X$ there is a smallest p-closed subspace of X containing Y; this we denote p-cl $_XY$, or p-cl $_XY$ if ambiguity is impossible. The following lemma allows us to construct p-cl $_XY$ "from the inside out" and to bound its cardinality in terms of |Y|. The construction parallels that of a countably compact extension given by Comfort and Saks $[\mathbf{6}, (1.1)]$ and of a minimal p-compact extension given by Ginsburg and Saks $[\mathbf{10}, (2.12)]$.

Lemma 2.1. Let X be p-closed and let Y be an infinite subset of X, and for $\xi \leq \omega^+$ define $Y_0 = Y$,

$$Y_{\xi+1} = Y_{\xi} \cup \{\bar{h}(p) : h \in \mathbf{H}(Y_{\xi})\},\$$

and

$$Y_{\xi} = \bigcup_{n < \xi} Y_{\eta} \quad \textit{for limit ordinals} \quad \xi \leq \omega^{+}.$$

Let $C = Y_{\omega^+}$. Then

- (a) C = p-cl Y;
- (b) C is countably compact;
- (c) $|C| \leq |Y|^{\omega}$;
- (d) $p \in E(C)$; and
- (e) if $Y \subseteq \omega^*$ and Y is T-saturated, then C is T-saturated.

Proof. (a) Clearly $C \subseteq \text{p-cl } Y$, and C is p-closed.

(b) For every infinite subset A of C there is an $h \in \mathbf{H}(A)$, and then $\bar{h}(p)$ is an accumulation point of A in C.

- (c) This is the case $\xi = \omega^+$ of the statement, easily proved by induction, that $Y_{\xi} \leq |Y|^{\omega}$ for all $\xi \leq \omega^+$.
- (d) There is an $h \in \mathbf{H}(Y) \subseteq \mathbf{H}(C)$, and from $\bar{h}(p) \in C$ follows $p \in E(C)$.
- (e) A routine inductive argument shows that Y_{ξ} is T-saturated for all $\xi \leq \omega^+$. \square

Lemma 2.2. Let X and Y be disjoint, T-saturated subspaces of ω^* with $Y \neq \emptyset$, let $p \in \omega^* \backslash B(X)$, and let C = p-cl Y. Then $C \cap X = \emptyset$.

Proof. There is an $h \in \mathbf{H}(Y) \subseteq \mathbf{H}(C)$ and from $\bar{h}(p) \in C$ follows $p \in E(C)$. If there is a $q \in C \cap X$, then in the notation of 2.1 there are $\xi < \omega^+$ and $h \in \mathbf{H}(Y_{\xi})$ such that $\bar{h}(p) = q \in X$, and then from $p \sqsubseteq q$ follows $p \in B(X)$, a contradiction. \square

Lemma 2.3. Let $p \in \omega^*$, and let X and Y be infinite spaces such that Y is p-closed. If there is a one-to-one continuous function f from Y into X, then $p \in E(X)$.

Proof. Choose $h \in \mathbf{H}(Y)$. Since $|f \circ h[\omega]| = \omega$, there is an $A \subseteq \omega$ such that $|A| = \omega$ and $f \circ h|A$ is a homeomorphism from A into X. Let i be a one-to-one function from ω onto A. Then $h \circ i \in \mathbf{H}(Y)$ and $f \circ h \circ i \in \mathbf{H}(X)$, and from $(h \circ i)^-(p) \in Y$ follows $f \circ (h \circ i)^-(p) \in f[Y] \subseteq X$ and hence $(f \circ h \circ i)^-(p) \in X$; thus $p \in E(X)$.

Theorem 2.4. Let β be a cardinal number such that $\mathbf{c} \leq \beta = \beta^{\omega} < 2^{\mathbf{c}}$. The space ω^* can be partitioned in the form $\omega^* = \bigcup_{\xi < 2^{\mathbf{c}}} C_{\xi}$ where the spaces C_{ξ} are pairwise disjoint, countably compact, dense in ω^* , and of cardinality β , and for $\xi < 2^{\mathbf{c}}$ there is no one-to-one continuous function from C_{ξ} into $\bigcup_{\eta < \xi} C_{\eta}$ (in particular, the spaces C_{ξ} are pairwise non-homeomorphic).

Proof. Let $\{q_{\xi}: \xi < 2^{\mathbf{c}}\}$ be a faithful indexing of ω^* . For $\xi < 2^{\mathbf{c}}$ we will define $X_{\xi}, p_{\xi}, Y_{\xi}$ and C_{ξ} so that

- (i) $X_0 = \emptyset$;
- (ii) $p_0 \in \omega^*$;

- (iii) $|X_{\xi}| \leq \beta \cdot |\xi|$;
- (iv) $|Y_{\xi}| = \beta$ and Y_{ξ} is T-saturated;
- (v) $p_{\xi} \in \omega^* \backslash B(X_{\xi});$
- (vi) $X_{\xi} \cap Y_{\xi} = \emptyset$ and $q_{\xi} \in X_{\xi} \cup Y_{\xi}$; and
- (vii) $C_{\xi} = p_{\xi}\text{-}\mathrm{cl}Y_{\xi}$.

Indeed, define X_0 and p_0 by (i) and (ii), choose $Y_0 \subseteq \omega^*$ such that $q_0 \in Y_0$, $|Y_0| = \beta$ and Y_0 is T-saturated, and set $C_0 = p_0$ -cl Y_0 . Now let $\zeta < 2^{\mathbf{c}}$ and suppose that $X_{\xi}, p_{\xi}, Y_{\xi}$ and C_{ξ} have been defined for all $\xi < \zeta$ so that (iii)–(vii) hold for $\xi < \zeta$. Let $X_{\zeta} = \bigcup_{\xi < \zeta} C_{\xi}$, and note from (iv), (vii) and 2.1(c) that X_{ζ} is T-saturated. From (iv) and (vii) it follows that $|X_{\zeta}| < 2^{\mathbf{c}}$, so $|B(X_{\zeta})| < 2^{\mathbf{c}}$ by 1.1(d). Hence there is $p_{\zeta} \in \omega^* \backslash B(X_{\zeta})$ and there is $Y_{\zeta} \subseteq \omega^* \backslash X_{\zeta}$ such that $|Y_{\zeta}| = \beta$ and Y_{ζ} is T-saturated; if $q_{\zeta} \notin X_{\zeta}$ we choose Y_{ζ} so that $q_{\zeta} \in Y_{\zeta}$. Finally, we set $C_{\zeta} = p_{\zeta}$ -cl Y_{ζ} .

The definition of $X_{\xi}, p_{\xi}, Y_{\xi}$ and C_{ξ} is complete for all $\xi < 2^{\mathbf{c}}$. The relation $\omega^* = \bigcup_{\xi < 2^{\mathbf{c}}} C_{\xi}$ is immediate from (vi). That $C_{\xi} \cap C_{\eta} = \emptyset$ for $\eta < \xi < 2^{\mathbf{c}}$ follows from 2.2 and the relation $C_{\eta} \subseteq X_{\xi}$. From (vii) and 2.2(b) it follows that each of the spaces C_{ξ} is countably compact. That each C_{ξ} satisfies $|C_{\xi}| = \beta$ follows from (iv), 2.2(c) and the hypothesis $\beta = \beta^{\omega}$; the sets C_{ξ} are dense in ω^* by 1.4(a) and 2.1(e). The fact that for $\xi < 2^{\mathbf{c}}$ there is no one-to-one continuous function from C_{ξ} into $X_{\xi} = \bigcup_{\eta < \xi} C_{\eta}$ follows from (v), (vii) and 2.3.

Remarks 2.5. (a) Since every dense subset D of ω^* satisfies $|D| \geq \mathbf{c}$, the condition $\beta \geq \mathbf{c}$ in the statement of Theorem 2.4 cannot be relaxed. We do not know whether 2.4 remains true for $\mathbf{c} \leq \beta < 2^{\mathbf{c}}$ if the condition $\beta = \beta^{\omega}$ is omitted; we note that for $\mathbf{c} \leq \beta < 2^{\mathbf{c}}$ the condition $\beta = \beta^{\omega}$ is satisfied if GCH is assumed (for then $\beta = \mathbf{c}$) or if there is a positive integer n such that β is the nth successor of \mathbf{c} .

(b) The condition in 2.4 that for $\xi < 2^{\rm c}$ there is no one-to-one continuous function from C_{ξ} into $\bigcup_{\eta < \xi} C_{\eta}$ cannot be strengthened to assert that C_{ξ} admits no one-to-one continuous function into $\omega^* \backslash C_{\xi}$: we have noted above that the space ω^* contains $2^{\rm c}$ -many pairwise disjoint homeomorphs of ω^* , and clearly no set of cardinality less than $2^{\rm c}$ can meet each of these. This simple reasoning proves the following general result.

Theorem. Every subspace C of ω^* such that $|C| < 2^{\mathbf{c}}$ satisfies $C \subseteq_h \omega^* \backslash C$.

3. The disjoint refinement lemma. The disjoint refinement lemma asserts that if κ is an infinite cardinal and $\{S_{\eta}: \eta < \kappa\}$ is a (not necessarily faithfully indexed) family of sets with each $|S_{\xi}| = \kappa$, then there is a family $\{T_{\eta}: \eta < \kappa\}$ such that $|T_{\eta}| = \kappa$ and $T_{\eta} \subseteq S_{\eta}$ for all $\eta < \kappa$, and $T_{\xi} \cap T_{\eta} = \emptyset$ for $\xi < \eta < \kappa$. (For a proof of this result and for references to the literature, the reader might consult $[\mathbf{5}, (7.5)]$.) In the following theorem we let $\{D_{\eta}: \eta < 2^{\mathbf{c}}\}$ be a listing of all countably infinite subsets of ω^* , for $\eta < 2^{\mathbf{c}}$ we set $S_{\eta} = \overline{D_{\eta}} \setminus D_{\eta}$, and we choose $T_{\eta} \subseteq S_{\eta}$ as given by the disjoint refinement lemma.

Theorem 3.1. Let $\omega \leq \alpha \leq 2^{\mathbf{c}}$. The space ω^* can be partitioned in the form $\omega^* = \bigcup_{\xi < \alpha} C_{\xi}$ where the spaces C_{ξ} are pairwise disjoint, extra countably compact in ω^* (hence dense in ω^* and of cardinality $2^{\mathbf{c}}$), and for $\xi < \alpha$ there is no continuous function from $\bigcup_{\eta < \xi} C_{\eta}$, nor from any of the spaces C_{η} with $\eta < \xi$, onto C_{ξ} (in particular, the spaces C_{ξ} are pairwise non-homeomorphic).

Proof. Choose $\{T_{\eta}: \eta < 2^{\mathbf{c}}\}$ as above; use the inequality $2^{\mathbf{c}} \geq |\alpha \times 2|$ to find a subset $\{p(\eta, \xi, \varepsilon): \xi < \alpha, \varepsilon \in \{0, 1\}\}$ of T_{η} faithfully indexed by $\alpha \times 2$, and for $\xi < \alpha$, set

$$\begin{split} E_{\xi}^{0} &= \{p(\eta, \xi, 0) : \eta < 2^{\mathbf{c}}\}, \\ E_{\xi}^{1} &= \{p(\eta, \xi, 1) : \eta < 2^{\mathbf{c}}\}, \quad \text{and} \\ E_{\xi} &= E_{\xi}^{0} \cup E_{\xi}^{1}. \end{split}$$

We note that each of the sets E_{ξ}^0 (with $\xi < \alpha$) is extra countably compact in ω^* ; indeed, for $\eta < 2^{\mathbf{c}}$ the point $p(\eta, \xi, 0) \in E_{\xi}^0$ is an accumulation point of D_{η} .

We will define the sets C_{ξ} by recursion so that

- (i) $C_0 = E_0^0 \cup (\omega^* \setminus \bigcup_{\xi < \alpha} E_{\xi}),$
- (ii) $E_{\xi}^{0} \subseteq C_{\xi} \subseteq E_{\xi}$ for non-zero limit ordinals $\xi < \alpha$, and
- (iii) $E_{\xi}^0 \cup (E_{\eta} \backslash C_{\eta}) \subseteq C_{\xi} \subseteq E_{\xi} \cup (E_{\eta} \backslash C_{\eta})$ for $\xi = \eta + 1 < \alpha$.

We proceed by recursion. Use (i) to define C_0 . Now let $\zeta < \alpha$ and suppose that C_{ξ} has been defined for all $\xi < \zeta$. If ζ is a limit ordinal set $H_{\zeta} = E_{\zeta}^0$, and if ζ is the successor ordinal $\zeta = \eta + 1$ set $H_{\zeta} = E_{\zeta}^0 \cup (E_{\eta}^1 \backslash C_{\eta})$. Since $H_{\zeta} \cap E_{\zeta}^1 = \emptyset$ and $|E_{\zeta}^1| = 2^{\mathfrak{c}}$, the family

$$\mathbf{A} = \{ H_{\zeta} \cup A : A \subseteq E_{\zeta}^{1} \}$$

is a family of subsets of ω^* such that $|\mathbf{A}| = 2^{2^c} > 2^c$.

Now for $\xi < \zeta$, we have

$$d(C_{\xi}) \leq w(C_{\xi}) \leq w(\omega^*) = \mathbf{c},$$

so the number of continuous functions from C_{ξ} into ω^* does not exceed $|\omega^*|^{\mathbf{c}} = (2^{\mathbf{c}})^{\mathbf{c}} = 2^{\mathbf{c}}$. Thus since $|\mathbf{A}| > 2^{\mathbf{c}}$ there is a set in \mathbf{A} (call it C_{ζ}) such that none of the spaces C_{ξ} , $\xi < \zeta$, maps continuously onto C_{ζ} and $\bigcup_{\xi < \zeta} C_{\xi}$ does not map continuously onto C_{ζ} .

The definition of C_{ξ} for all $\xi < \alpha$ is complete.

We show that the family $\{C_{\xi}: \xi < \alpha\}$ is as required.

It is clear from the construction that for $\xi < \alpha$ there is no continuous function from $\bigcup_{n<\xi} C_{\eta}$, nor from any of the spaces C_{η} with $\eta < \xi$, onto C_{ξ} .

The family $\{E_{\xi}: \xi < \alpha\}$ is pairwise disjoint, and $C_{\xi} \subseteq E_{\xi}$ for nonzero limit ordinals ξ , and $C_{\xi} \subseteq E_{\xi} \cup (E_{\eta} \setminus C_{\eta})$ for ordinals $\xi = \eta + 1$. It follows that the family $\{C_{\xi}: \xi < \alpha\}$ is pairwise disjoint.

Since $C_{\xi} \supseteq E_{\xi}^{0}$ and E_{ξ}^{0} is extra countably compact in ω^{*} , each set C_{ξ} is extra countably compact in ω^{*} .

Since

$$C_0 \supseteq \omega^* \backslash \cup_{\xi < \alpha} E_{\xi}$$

and

$$E_{\eta} = E_{\eta}^{0} \cup E_{\eta}^{1} \subseteq C_{\eta} \cup C_{\eta+1} \qquad \text{for all } \eta < \alpha,$$

we have

$$\omega^* \supseteq \cup_{\xi < \alpha} C_{\xi} \supseteq (\omega^* \setminus \cup_{\xi < \alpha} E_{\xi}) \cup (\cup_{\eta < \alpha} E_{\eta}) = \omega^*,$$

as required.

Remarks 3.2. (a) The technique of counting the number of continuous functions from subspaces of ω^* into ω^* , and of using these estimates to select $C_{\zeta} \in \mathbf{A}$ with the appropriate properties, came to our attention through the work of Hodel [11, (3.3)].

- (b) In the recursive construction of C_{ζ} , with C_{ξ} having been defined for all $\xi < \zeta$, we chose a family \mathbf{F} of subsets of $\bigcup_{\xi < \zeta} C_{\xi}$ such that $|\mathbf{F}| = |\zeta| + 1$, namely, $\mathbf{F} = \{C_{\xi} : \xi < \zeta\} \cup \{\bigcup_{\xi < \zeta} C_{\xi}\}$, and we chose C_{ζ} so that no $F \in \mathbf{F}$ maps continuously onto C_{ζ} . It should be clear to the reader that the argument used allows for a much larger family \mathbf{F} . Indeed, if at stage ζ any family $\mathbf{F} = \mathbf{F}(\zeta)$ of subsets of ω^* is chosen with $|\mathbf{F}| < 2^{2^c}$, then C_{ζ} may be chosen so that no $F \in \mathbf{F}$ maps continuously onto C_{ζ} .
- 4. The method of \Box -minimal ultrafilters. The method of this section furnishes a decomposition of ω^* which has features in common with that of Section 2 (the absence of one-to-one continuous functions) and with that of Section 3 (the constituent sets C_{ξ} are extra countably compact in ω^*).

Theorem 4.1. Let $1 \leq \alpha \leq 2^{\mathbf{c}}$. The space ω^* can be partitioned in the form $\omega^* = \bigcup_{\xi < \alpha} C_{\xi}$ where the spaces C_{ξ} are pairwise disjoint, extra countably compact in ω^* (hence dense in ω^* and of cardinality $2^{\mathbf{c}}$), and for $\xi < \alpha$ there is no one-to-one continuous function from C_{ξ} into $\omega^* \setminus C_{\xi}$ (in particular, the spaces C_{ξ} are pairwise non-homeomorphic).

Proof. We consider first the case $\alpha = 2^{c}$.

It is a theorem of Kunen, first proved assuming Martin's Axiom [13] and later in ZFC alone without additional assumptions [14], that there are $p \in \omega^*$ such that T(p) is \sqsubseteq -minimal in $T(\omega^*)$; indeed, the number of such minimal types is $2^{\mathbf{c}}$ [14]. Let $\{T(p_{\xi}): 1 \leq \xi < 2^{\mathbf{c}}\}$ be a faithful enumeration of these minimal types, and define

$$C_{\xi} = T(p_{\xi}) \cup A(p_{\xi})$$
 for $1 \le \xi < 2^{\mathbf{c}}$

and

$$C_0 = \omega^* \backslash \bigcup_{1 \le \xi < 2^{\mathbf{c}}} C_{\xi}.$$

(It is known that $C_0 \neq \emptyset$. For example, Bukovský and Butkovičová [2] have shown the existence of $p \in \omega^*$ such that $\{T(q) : q \sqsubset p\}$ is order-isomorphic to the negative integers. Clearly, $p_{\xi} \sqsubseteq p$ fails for all $\xi < 2^{\mathbf{c}}$ for such p, so $p \in C_0$.)

The key to the verification that the relation $\omega^* = \bigcup_{\xi < 2^{\mathbf{c}}} C_{\xi}$ expresses ω^* in the required form is Theorem 1.1 (e): For each $p \in \omega^*$ the set $\{T(q): q \sqsubseteq p\}$ is linearly ordered under \sqsubseteq . This shows that if $1 \leq \eta < \xi < 2^{\mathbf{c}}$ then $C_{\eta} \cap C_{\xi} = \varnothing$. Indeed, if some $q \in \omega^*$ satisfies $q \in C_{\eta} \cap C_{\xi}$ then from $T(p_{\xi}) \sqsubseteq T(q)$ and $T(p_{\eta}) \sqsubseteq T(q)$ will follow $T(p_{\xi}) \sqsubseteq T(p_{\eta})$ or $T(p_{\eta}) \sqsubseteq T(p_{\xi})$, contrary to the definition of the family $\{T(p_{\xi}): 1 \leq \xi < 2^{\mathbf{c}}\}$. That $C_0 \cap C_{\xi} = \varnothing$ for $1 \leq \xi < 2^{\mathbf{c}}$ is clear, since $T(p_{\xi}) \sqsubseteq T(q)$ holds for every $q \in C_{\xi}$ and is false for every $q \in C_0$.

We note next for $\xi < 2^{\mathbf{c}}$ that $A(C_{\xi}) \subseteq C_{\xi}$. (For $\xi > 0$ this is immediate from the definition, and for $\xi = 0$ it follows from 1.1 (e).) This observation has two consequences: Each of the sets C_{ξ} is extra countably compact in ω^* (use (1.4 (e)) and each C_{ξ} is p-closed for every $p \in C_{\xi}$ (since for every $h \in \mathbf{H}(C_{\xi})$ from $p \sqsubset \bar{h}(p)$ follows $\bar{h}(p) \in A(C_{\xi}) \subseteq C_{\xi}$.)

A straightforward appeal to 1.1 (e) shows also that $B(q) \subseteq C_{\xi}$ whenever $q \in C_{\xi}$.

It remains to show that if $\xi < 2^{c}$ then there is no one-to-one continuous function from C_{ξ} into $\omega^* \backslash C_{\xi}$. It is enough to choose $p \in C_{\xi}$ and to apply 2.3 with $Y = C_{\xi}$, $X = \omega^* \backslash C_{\xi}$; the space C_{ξ} is p-closed, so if such a function exists then

$$p \in E(\omega^* \backslash C_{\varepsilon}) \subseteq B(\omega^* \backslash C_{\varepsilon}) = \bigcup \{B(q) : q \in \omega^* \backslash C_{\varepsilon}\} \subseteq \omega^* \backslash C_{\varepsilon},$$

a contradiction.

The proof for the case $\alpha = 2^{\mathfrak{c}}$ is complete. In case $\alpha < 2^{\mathfrak{c}}$ it is enough to write

$$C'_{\xi} = C_{\xi} \quad \text{for } 1 \leq \xi < \alpha \quad \text{and} \quad C'_0 = \omega^* \setminus \bigcup_{1 \leq \xi < \alpha} C'_{\xi}.$$

The family $\{C'_{\xi}: \xi < \alpha\}$ is then as required. \square

Remark 4.2. The reasoning given in the last paragraph of the foregoing proof concerning the decomposition $\omega^* = \bigcup_{\xi < 2^{\circ}} C_{\xi}$ shows

this: if C(A) is defined for $A \subseteq 2^{\mathbf{c}}$ by the relation

$$C(A) = \bigcup_{\xi \in A} C_{\xi},$$

then for subsets A and B of 2^{c} there is a one-to-one continuous function from C(A) into C(B) if and only if $A \subseteq B$. Indeed, if $A \subseteq B$, the inclusion function from C(A) into C(B) is as required, and if there is $\xi \in A \setminus B$ then there is no one-to-one continuous function from C_{ξ} into $\omega^* \setminus C_{\xi}$, hence none from C(A) into C(B). Thus the family $\{C(A) : \emptyset \neq A \subseteq 2^{c}\}$ is a family of $2^{2^{c}}$ -many dense, extra countably compact, pairwise non-homeomorphic subspaces of ω^* .

REFERENCES

- 1. Allen R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193.
- 2. L. Bukovský and E. Butkovičová, Ultrafilters with ℵ₀ predecessors in Rudin-Frolik order, Comm. Math. Univ. Carolin. 22 (1981), 429–447.
- 3. W.W. Comfort and Akio Kato, Non-homeomorphic disjoint spaces whose union is ω^* , Abstracts Amer. Math. Soc. 11 (1990), p. 332 (Abstract).
- **4.** W.W. Comfort, Akio Kato and Saharon Shelah, Topological partition relations of the form $\omega^* \to (Y)_2^1$. Proc. Seventh (1991) Summer Conference on General Topology and Applications, in honor of Mary Ellen Rudin and Her Work, Ann. New York Acad. Sci., 1993, to appear.
- 5. W.W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Grundlehren der math. Wissenschaften Band **211**, Springer-Verlag, Berlin, Heidelberg and New York, 1974.
- 6. W.W. Comfort and Victor Saks, Countably compact groups and finest totally bounded topologies, Pacific J. Math. 49 (1973), 33-44.
- 7. W.W. Comfort and Charles Waiveris, Intersections of countably compact subspaces of Stone-Čech compactifications, Uspekhi Mat. Nauk 35 (1980), 67-77 (in Russian). English translation: Russian Math. Surveys 35 (1980), 79-89.
 - 8. Zdeněk Frolík, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.
- 9. Leonard Gillman and Meyer Jerison, Rings of continuous functions, D. Van Nostrand Co., Inc., Princeton, Toronto, New York and London, 1960.
- 10. John Ginsburg and Victor Saks, Some applications of ultrafilters to topology, Pacific J. Math. 57 (1975), 403–418.
- ${f 11.}$ R.E. Hodel, The number of metrizable spaces, Fund. Math. ${f 115}$ (1983), 127-141.
 - 12. Akio Kato, Elementary submodels for a partition of $\beta\omega\backslash\omega$, submitted.
- 13. Kenneth Kunen, Some points in βN , Math. Proc. Cambridge Philos. Soc. 80 (1976), 385–398.

- **14.** ———, Weak P-points in N^* , Colloquia Mathematica Societatis János Bolyai **23** (1978), 741–749.
- **15.** Jan van Mill, Sixteen topological types in $\beta\omega$ - ω , Topol. Appl. **13** (1982), 43–57.
- 16. —, An introduction to $\beta\omega$, in Handbook of set-theoretic topology, K. Kunen and J.E. Vaughan, ed., North-Holland Publ. Co., Amsterdam, New York, Oxford, 1984.
- 17. Mary Ellen Rudin, Partial orders on the types of βN , Trans. Amer. Math. Soc. 155 (1971), 353–362.
- 18. Charles Waiveris, Intersections of countably compact subspaces of $\beta X,$ Topol. Proc. 4 (1979), 177–191.

Department of Mathematics, Wesleyan University, Middletown, CT 06459

Department of Mathematics, National Defense Academy, Yokosuka, Japan 239